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Foreword

This text is a transcript of my blackboard lectures for the mini-course Introduction to the Modular
Representation Theory of Finite Groups held at the Young Algebraists’ Conference 2021 and
which took place from the 6th of September to the 10th of September 2021 at the Ecole Polythech-
nique Fédérale de Lausanne (8 x 45 minutes).

Together with the necessary theoretical foundations the main aim of this mini-course was to provide
the participants with an introduction to the representation theory of finite groups from a module- and
block-theoretic point of view.

The material presented here has been very much influenced by lectures and summer lectures available
in conference proceedings or which I have followed myself as a student, doctoral student or young
postdoc. In particular, I want to mention here:

¨ [Mal15] G. Malle, Darstellungstheorie, M.Sc. lecture, TU Kaiserslautern, WS 2015/16. [Unpub-
lished]

¨ [Bro92] M. Broué, Equivalences of blocks of group algebras. Ottawa, 1992. [MathSciNet]

¨ [Kes07] R. Kessar, Introducton to block theory. EPFL: CIB 2005 & YAC 2012. [MathSciNet]

¨ [Kue18] B. Külshammer, Basic local representation theory. EPFL/CIB, 2016. [MathSciNet]

¨ [HKK10] G. Hiss, R. Kessar, B. Külshammer, An Introduction to the Representation Theory of
Finite Groups. Aachen, 2010. [Unpublished]

¨ [Samb16] B. Sambale, Determination of block invariants. EPFL/CIB, 2016. [Unpublished, avail-
able from his webpage]

Acknowledgement:
First of all, I wish to thank the organisers of the YAC’21 for inviting me to hold this mini-course and
the efforts they invested in organising this event as a presence event. I believe, after 18 months of
restrictions due to the pandemics, all participants immensely appreciated this rare opportunity to meet
their contemporaries and present their research work in a non-online format. I am also grateful for
this opportunity offered to me to meet the younger generations of researchers in my research topics.
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I also wish to thank my various coauthors, who, in different ways and through their own vision, all
taught me bits of the theory presented here through examples and applications to concrete problems.
In particular, I am thankful to Gerhard Hiss, who made me understand that a slow start in a lecture is
never an obstacle to arrive far and present involved advanced material in the end. Finally I want to
thank the participants who mentioned typos to me in the preliminary version of these notes. Further
comments, corrections and suggestions are of course more than welcome.

Caroline Lassueur,
Ecublens, Monday the 6th of September 2021



Conventions

Unless otherwise stated, throughout these notes we make the following general assumptions:

¨ all groups considered are finite;

¨ all rings considered are associative and unital, i.e. possess a neutral element for the
multiplication, denoted by 1;

¨ all modules considered are finitely generated left modules;

¨ R always denotes an associative ring with a 1 ;

¨ G always denotes a finite group;

¨ K always denotes a field of arbitrary characteristic;

¨ A always denotes a finite-dimensional K -algebra, which is split.

¨ pF,O, kq always denotes a splitting p-modular system for G and its subgroups, where F
contains a primitive exppGq-th root of 1.

v
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Monday, Chapter 1. Representations of Finite Groups

Representation theory of finite groups is originally concerned with the ways of writing a finite group G
as a group of matrices, that is using group homomorphisms from G to the general linear group GLnpK q
of invertible n ˆ n-matrices with coefficients in a field K for some positive integer n. Thus, we shall
first define representations of groups using this approach, and then translate such homomorphisms
G ÝÑ GLnpK q into the language of module theory.

Notation. Throughout this chapter, unless otherwise specified, charpK q ě 0. Moreover, we assume that
all KG-modules considered are finitely generated, so finite-dimensional when regarded as K -vector
spaces.

1 Linear Representations of Finite Groups
To begin with, we review elementary definitions and examples about representations of finite groups.

Definition 1.1 (K-representation, matrix representation)

(a) A K -representation of G is a group homomorphism ρ : G ÝÑ GLpV q, where V – K n

(n P Zě0) is a K -vector and GLpV q :“ AutK pV q.

(b) A matrix representation of G over K is a group homomorphism X : G ÝÑ GLnpK q (n P Zě0).

In both cases the integer n is called the degree of the representation.

(c) A K -representation (resp. a matrix representation) is called an ordinary representation if
charpK q “ 0 (or more generally if charpK q - |G|), and it is called a modular representation if
charpK q | |G|.

Both concepts of a representation and of a matrix representation are closely related. Indeed, choosing
a K -basis B of V , then we have a commutative diagram

G GLpV q

GLnpK q .

ρ

ö

D
–

6
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Example 1

(a) The map

ρ : G ÝÑ GLpK q – Kˆ
g ÞÑ IdK Ø 1K

is a K -representation of G of degree 1, called the trivial representation of G.

(b) If X is a finite G-set, i.e. a finite set endowed with a left action ¨ : G ˆ X ÝÑ X , and V is a
K -vector space with basis tex | x P Xu, then

ρX : G ÝÑ GLpV q
g ÞÑ ρX pgq : V ÝÑ V , ex ÞÑ eg¨x

is a K -representation of G of degree |X |, called the permutation representation associated
with X .
Two particularly interesting examples are the following:

(1) if G “ Sn (n ě 1) is the symmetric group on n letters, X “ t1, 2, . . . , nu, and the left
action ¨ : G ˆ X ÝÑ X is given by the natural action of Sn then ρX is called natural
representation of Sn;

(2) if X “ G and the left action ¨ : G ˆ X ÝÑ X is just the multiplication in G, then
ρX “: ρreg is called the regular representation of G.

Definition 1.2 (Homomorphism of representations, equivalent representations)
Let ρ1 : G ÝÑ GLpV1q and ρ2 : G ÝÑ GLpV2q be two K -representations of G.

(a) A K -homomorphism α : V1 ÝÑ V2 such that ρ2pgq ˝ α “ α ˝ ρ1pgq for each g P G is called a
homomorphism of representations (or a G-homomorphism) between ρ1 and ρ2.

V1 V1

V2 V2

ρ1pgq

α ö α

ρ2pgq

(b) If, moreover, α is a K -isomorphism, then it is called an isomorphism of representations (or a
G-isomorphism), and the K -representations ρ1 and ρ2 are called equivalent (or similar, or
isomorphic). In this case we write ρ1 „ ρ2.

Remark 1.3
(a) Equivalent representations have the same degree.

(b) Clearly „ is an equivalence relation.

(c) In consequence, it essentially suffices to study representations up to equivalence (as it es-
sentially suffices to study groups up to isomorphism).
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Definition 1.4 (G-invariant subspace, irreducibility, subrepresentation)
Let ρ : G ÝÑ GLpV q be a K -representation of G.

(a) A K -subspace W Ď V is called G-invariant if

ρpgq
`

W
˘

Ď W @g P G .

(In fact in this case the reverse inclusion holds as well, since for each w P W we can write
w “ ρpgg´1qpwq “ ρpgq

`

ρpg´1qpwq
˘

P ρpgq
`

W
˘

, hence ρpgq
`

W
˘

“ W .)

(b) The representation ρ is called irreducible if it admits exactly two G-invariant K -subspaces,
namely 0 and V itself; it is called reducible if it is not irreducible.

(c) If 0 Ĺ W Ď V is a G-invariant K -subspace, then

ρW : G ÝÑ GLpW q
g ÞÑ ρW pgq :“ ρpgq|W : W ÝÑ W

is called a subrepresentation of ρ. (This is clearly again a K -representation of G.)

2 The Group Algebra and its Modules
We actually want to be able to see K -representations of a group G as modules.

Definition 2.1 (Group algebra)
The group algebra of G over K is the K -algebra KG whose elements are the K -linear combinations
ř

gPG λgg with λg P K @g P G, and addition and multiplication are given by
ÿ

gPG
λgg`

ÿ

gPG
µgg “

ÿ

gPG
pλg ` µgqg and

`

ÿ

gPG
λgg

˘

¨
`

ÿ

hPG
µhh

˘

“
ÿ

g,hPG
pλgµhqgh

respectively.

Remark 2.2

¨ 1KG “ 1G ;

¨ dimK pKGq “ |G|;

¨ KG is commutative if and only if G is an abelian group;

¨ as K is a field, KG is a left Artinian ring, so by Hopkins’ Theorem a KG-module is finitely
generated if and only if it admits a composition series.

Also notice that since G is a group, the map KG ÝÑ KG defined by g ÞÑ g´1 for each g P G is an
anti-automorphism. It follows that any left KG-module M may be regarded as a right KG-module
via the right G-action m ¨ g :“ g´1 ¨m. Thus the sidedness of KG-modules is not usually an issue.
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As KG is a K -algebra, we may of course consider modules over KG and we recall that any KG-module
is in particular a K -vector space. Moreover, we adopt the following convention, which is automatically
satisfied if K is a field.

Proposition 2.3

(a) Any K -representation ρ : G ÝÑ GLpV q of G gives rise to a KG-module structure on V , where
the external composition law is defined by the map

¨ : G ˆ V ÝÑ V
pg, vq ÞÑ g ¨ v :“ ρpgqpvq

extended by K -linearity to the whole of KG.

(b) Conversely, every KG-module pV ,`, ¨q defines a K -representation

ρV : G ÝÑ GLpV q
g ÞÑ ρV pgq : V ÝÑ V , v ÞÑ ρV pgq :“ g ¨ v

of the group G.

Example 2
Via Proposition 2.3 the trivial representation (Example 1(a)) corresponds to the so-called trivial
KG-module, that is, K itself seen as a KG-module via the G-action

¨ : G ˆ K ÝÑ K
pg, λq ÞÝÑ g ¨ λ :“ λ

extended by K -linearity to the whole of KG .

Exercise 2.4
Prove that the regular representation ρreg of G defined in Exampale 1(b)(2) corresponds to the
regular KG-module KG˝ via Proposition 2.3.

Convention: In the sequel, when no confusion is to be made, we drop the ˝-notation to denote the
regular KG-module and simply write KG instead of KG˝.

Remark 2.5 (Dictionary)
More generally, through Proposition 2.3, we may transport terminology and properties from KG-
modules to K -representations and conversely.

This lets us build the following translation dictionary:
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K -Representations KG-Modules

K -representation of G ÐÑ KG-module
degree ÐÑ K -dimension
homomorphism of K -representations ÐÑ homomorphism of KG-modules
equivalent K -representations ÐÑ isomorphism of KG-modules
subrepresentation ÐÑ KG-submodule
direct sum of representations ρV1

‘ ρV2
ÐÑ direct sum of KG-modules V1 ‘ V2

irreducible representation ÐÑ simple (“ irreducible) KG-module
the trivial representation ÐÑ the trivial KG-module K
the regular representation of G ÐÑ the regular KG-module KG˝

completely reducible K -representation ÐÑ semisimple KG-module
(= completely reducible)

every K -representation of G is ÐÑ KG is semisimple
completely reducible
. . . . . .

3 Operations on Groups and Modules
Next we see how to construct new KG-modules from old ones using standard module operations such
as tensor products, Hom-functors, duality, or using subgroups or quotients of the initial group.

Remark 3.1 (Tensors, Hom’s and duality)
Let M and N be KG-modules.

(a) The tensor product M bK N of M and N balanced over K becomes a KG-module via the
diagonal action of G. In other words, the external composition law is defined by the G-action

¨ : G ˆ pM bK Nq ÝÑ M bK N
pg,mb nq ÞÑ g ¨ pmb nq :“ gmb gn

extended by K -linearity to the whole of KG.

(b) The abelian group HomK pM,Nq becomes a KG-module via the so-called conjugation action
of G. In other words, the external composition law is defined by the G-action

¨ : G ˆHomK pM,Nq ÝÑ HomK pM,Nq
pg, fq ÞÑ g ¨ f : M ÝÑ N,m ÞÑ pg ¨ fqpmq :“ g ¨ fpg´1 ¨mq

extended by K -linearity to the whole of KG.

(c) Specifying Definition 3.1 to N “ K yields a KG-module structure on the K -dual M˚ “

HomK pM,K q, that is, M˚ becomes a KG-module via the external composition law is defined
by the map
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¨ : G ˆM˚ ÝÑ M˚

pg, fq ÞÑ g ¨ f : M ÝÑ K,m ÞÑ pg ¨ fqpmq :“ fpg´1 ¨mq

extended by K -linearity to the whole of KG.

On the other hand, we may define new module structures from known ones for subgroups, overgroups
and quotients. This leads to standard operations called restriction, inflation, and induction.

Remark 3.2
(a) If H ď G is a subgroup, then the inclusion H ÝÑ G, h ÞÑ h can be extended by K -linearity

to an injective algebra homomorphism ı : KH ÝÑ KG,
ř

hPH λhh ÞÑ
ř

hPH λhh. Hence KH is
a K -subalgebra of KG.

(b) Similarly, if U E G is a normal subgroup, then the quotient homomorphism G ÝÑ G{U ,
g ÞÑ gU can be extended by K -linearity to an algebra homomorphism π : KG ÝÑ K rG{Us.

It is clear that we can always perform changes of the base ring using the above homomorphism in order
to obtain new module structures. This yields:

Definition 3.3 (Restriction)
Let H ď G be a subgroup. If M is a KG-module, then M may be regarded as a KH-module through
a change of the base ring along ı : KH ÝÑ KG, which we denote by ResGHpMq or simply M ÓGH and
call the restriction of M from G to H .

Definition 3.4 (Inflation)
Let U E G be a normal subgroup. If M is a K rG{Us-module, then M may be regarded as a
KG-module through a change of the base ring along π : KG ÝÑ K rG{Us, which we denote by
InfGG{UpMq and call the inflation of M from G{U to G.

Lemma 3.5

(a) If H ď G and M1,M2 are two KG-modules, then pM1 ‘M2q Ó
G
H “ M1Ó

G
H ‘M2Ó

G
H . If U E G

and M1,M2 are two K rG{Us-modules, then InfGG{UpM1 ‘M2q “ InfGG{UpM1q ‘ InfGG{UpM2q.

(b) (Transitivity of restriction) If L ď H ď G and M is a KG-module, then M ÓGHÓHL “ M ÓGL .

(c) If H ď G and M is a KG-module, then pM˚q ÓGH– pM ÓGHq˚. If U E G and M is a K rG{Us-
module, then InfGG{UpM˚q – pInfGG{U Mq˚.

A third natural operation comes from extending scalars from a subgroup to the initial group.

Definition 3.6 (Induction)
Let H ď G be a subgroup and let M be a KH-module. Regarding KG as a pKG,KHq-bimodule,
we define the induction of M from H to G to be the left KG-module

M ÒGH“ IndGHpMq :“ KG bKH M .
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Example 3

(a) If H “ t1u and M “ K , then K ÒG
t1u“ KG bK K – KG.

(b) Transitivity of induction: clearly L ď H ď G and M is a KL-module, then M ÒGL “ pM ÒHL qÒGH
by the associativity of the tensor product.

First, we analyse the structure of an induced module in terms of the left cosets of H .

Remark 3.7
Writing rG{Hs p“ tg1, . . . , g|G:H|q for a set of representatives of the left cosets, given a KH-
module M , we have

KG bKH M “ p
à

gPrG{Hs
gKHq bKH M “

à

gPrG{Hs
pgKH bKH Mq “

à

gPrG{Hs
pgbMq ,

where we set
gbM :“ tgbm | m P Mu Ď KG bKH M .

Clearly, each gbM – M as a K -space via the K -isomorphism gbM ÝÑ M,gbm ÞÑ m, so

dimK pIndGHpMqq “ |G : H| ¨ dimK pMq .

Theorem 3.8 (Adjunction / Frobenius reciprocity / Nakayama relations)
Let H ď G. Let N be a KG-module and let M be a KH-module. Then, there are K -isomorphisms:

(a) HomKHpM,HomKGpKG,Nqq – HomKGpKG bKH M,Nq,
or in other words, HomKHpM,N ÓGHq – HomKGpM ÒGH , Nq ;

(b) HomKHpN ÓGH ,Mq – HomKGpN,M ÒGHq .

Proposition 3.9
Let H ď G be a subgroup. Let N be a KG-module and let M be a KH-module. Then, there are
KG-isomorphisms:

(a) pM bK N ÓGHqÒGH – M ÒGH bKN; and

(b) HomK pM,N ÓGHqÒGH – HomK pM ÒGH , Nq.

Finally, if H and L are subgroups of G, we wish to describe what happens if we induce a KL-module
from L to G and then restrict it to H .
Now if M is a KL-module, we will also write gM for gbM , which is a left K p gLq-module with

pglg´1q ¨ pgbmq “ gb lm

for each l P L and each m P M .
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Theorem 3.10 (Mackey formula)
Let H, L ď G and let M be a KL-module. Then, as KH-modules,

M ÒGLÓGH –
à

gPrHzG{Ls
p gM Ó gLHX gLqÒ

H
HX gL .

Proof : We need to examine KG seen as a pKH,KLq-bimodule (i.e. with left and right external laws given
by multiplication in G). Since G “

Ů

gPrHzG{Ls HgL, we have

KG “
à

gPrHzG{Ls

K xHgLy

as pKH,KLq-bimodule, where K xHgLy denotes the K -vector space with K -basis the double coset HgL.
Also

K xHgLy – KH bK pHX gLq pgb KLq ,

where hgl P HgL corresponds to hb gb l. It follows that as left KH-modules we have

M ÒGLÓGH – pKG bKL MqÓGH –
à

gPrHzG{Ls

K xHgLy bKL M

–
à

gPrHzG{Ls

KH bK pHX gLq pgb KLq bKL M

–
à

gPrHzG{Ls

KH bK pHX gLq pgbMqÓ
gL
HX gL

–
à

gPrHzG{Ls

p gM Ó gL
HX gLqÒ

H
HX gL .



Tuesday. Chapter 2. Semisimplicity and Simplicity

The aim of this chapter is to study two important classes of modules over the group algebra, namely
simple modules and semisimple modules. In particular, our first aim is to understand what the general
theory of semisimple rings and the Artin-Wedderburn theorem bring to the theory of representations of
finite groups over a field of arbitrary characteristic.

Notation. From now on, we let IrrpRq :“ tisomorphism classes of simple R-modulesu.

4 Schur’s Lemma
Schur’s Lemma is one of the most basic result, which lets us understand homomorphisms between simple
modules, and, more importantly, endomorphisms of such modules. It is

Theorem 4.1 (Schur’s Lemma)

(a) Let V ,W be simple R-modules. Then:

(i) EndRpV q is a skew-field, and
(ii) if V fl W , then HomRpV ,W q “ 0.

(b) If K is an algebraically closed field, A is a K -algebra, and V is a simple A-module, then

EndApV q “ tλ IdV | λ P K u – K .

Remark 4.2
In (b) the assumption that the field K is algebraically closed is in general too strong and we often
replace this hypothesis by the hypothesis that the algebra A is split, meaning that

EndApSq – K for every simple A-module S .

In this respect, the field K is a splitting field for G if the group algebra KG is split. This will be
one of our standard assumptions.

From now on, we assume that K is a
splitting field for G.

14
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5 The Artin-Wedderburn Structure Theorem
The next step is to analyse semisimple rings and modules, sorting simple modules into isomorphism
classes and relate these to a direct summand of the regular module.

Definition 5.1
If M is a semisimple R-module and S is a simple R-module, then the S-homogeneous component
of M , denoted SpMq, is the sum of all simple R-submodules of M isomorphic to S.

Theorem 5.2 (Wedderburn)
If R is a semisimple ring, then the following assertions hold.

(a) If S P IrrpRq, then SpR˝q ‰ 0. Furthermore, | IrrpRq| ă 8.

(b) We have
R˝ “

à

SPIrrpRq
SpR˝q ,

where each homogenous component SpR˝q is a two-sided ideal of R and SpR˝qT pR˝q “ 0 if
S ‰ T P IrrpRq.

(c) Each SpR˝q is a simple left Artinian ring, the identity element of which is an idempotent
element of R lying in Z pRq.

Remark 5.3
Remember that if R is a semisimple ring, then the regular module R˝ admits a composition series.
Therefore it follows from the Jordan-Hölder Theorem that

R˝ “
à

SPIrrpRq
SpR˝q –

à

SPIrrpRq

nS
à

i“1
S

for uniquely determined integers nS P Zą0.

Theorem 5.4 (Artin-Wedderburn)
If R is a semisimple ring, then, as a ring,

R –
ź

SPIrrpRq
MnS pDSq ,

where DS :“ EndRpSqop is a division ring.

Let us now assume that R “ A is a
split K -algebra.

We obtain the following Corollary to Wedderburn’s and Artin-Wedderburn’s Theorems.
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Theorem 5.5
Assume A is semisimple and let S P IrrpAq be a simple A-module. Then the following statements
hold:

(a) SpA˝q – MnS pK q and dimK pSpA˝qq “ n 2
S ;

(b) dimK pSq “ nS ;

(c) dimK pAq “
ř

SPIrrpAq dimK pSq2 ;

(d) | IrrpAq| “ dimK pZ pAqq.

Exercise 5.6
Prove Thm. 5.5.

Corollary 5.7
Up to isomorphism, the number of simple A-modules is | IrrpAq| “ dimK pZ pA{JpAqqq.

Proof : Since A and A{JpAq have the same simple modules | IrrpAq| “ | IrrpA{JpAqq|. Moreover, the quotient
A{JpAq is J-semisimple, hence semisimple because finite-dimensional algebras are left Artinian rings.
Therefore it follows from Theorem 5.5(d) that

| IrrpAq| “ | IrrpA{JpAqq| “ dimK
`

Z pA{JpAqq
˘

.

Corollary 5.8
If A is commutative, then any simple A-module has K -dimension 1.

Proof : First assume that A is semisimple. As A is commutative, A “ Z pAq. Hence parts (d) and (c) of
Theorem 5.5 yield

| IrrpAq| “ dimK pAq “
ÿ

SPIrrpAq

dimK pSq2
loooomoooon

ě1

,

which forces dimK pSq “ 1 for each S P IrrpAq.
Now, if A is not semissimple, then again we use the fact that A and A{JpAq have the same simple
modules. Because A{JpAq is semisimple and also commutative, the argument above tells us that all
simple A{JpAq-modules have K -dimension 1. The claim follows.

Applying these results to the group algebra KG, we obtain for example that:

Corollary 5.9
There are only finitely many isomorphism classes of simple KG-modules.

Proof : The claim follows directly from Corollary 5.7.

Corollary 5.10
If G is an abelian group then any simple KG-module is one-dimensional.

Proof : Since KG is commutative the claim follows directly from Corollary 5.8.
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Corollary 5.11
Let p be a prime number. If G is a p-group, and charpK q “ p, then the trivial module is the unique
simple KG-module, up to isomorphism.

Proof : Because G is a p-group, we have JpKGq “ t
ř

gPG λgg P KG |
ř

gPG λg “ 0u “: IpKGq (the
augmentation ideal (see definition in Exercise 6.3), so KG{JpKGq – K as K -algebras. Now, as K is
commutative, Z pK q “ K , and it follows from Corollary 5.7 that

| IrrpKGq| “ dimK Z pKG{JpKGqq “ dimK K “ 1 .

6 Semisimplicity of the Group Algebra
The semisimplicity of the group algebra depends on both the characteristic of the field and the order
of the group. This is Maschke’s Theorem and its converse.

Theorem 6.1 (Maschke)
If charpK q - |G|, then KG is a semisimple K -algebra.

Example 4
If K “ C is the field of complex numbers, then CG is a semisimple C-algebra, since charpCq “ 0.

It turns out that the converse to Maschke’s theorem also holds. This follows from elementary properties
of the augmentation ideal.

Theorem 6.2 (Converse of Maschke’s Theorem)
If KG is a semisimple K -algebra, then charpK q - |G|.

This result can be proved using the Artin-Wedderburn Theorem and elementary properties of augmen-
tation ideal through the following exercices.

Exercise 6.3 (The augmentation ideal)
The map ε : KG ÝÑ K,

ř

gPG λgg ÞÑ
ř

gPG λg is an algebra homomorphism, called augmentation
homomorphism (or map). Its kernel kerpεq “: IpKGq is an ideal, called the augmentation ideal
of KG. Prove that:

(a) IpKGq “ t
ř

gPG λgg P KG |
ř

gPG λg “ 0u “ annKGpK q and IpKGq Ě JpKGq ;

(b) KG{IpKGq – K as K -algebras;

(c) IpKGq is a free K -vector space of dimension |G|-1 with K -basis tg´ 1 | g P Gzt1uu.
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Exercise 6.4 (Proof of the Converse of Maschke’s Theorem.)
Assume K is a field of positive characteristic p with p | |G|. Set T :“ x

ř

gPG gyK .

(a) Prove that we have a series of KG-submodules given by KG˝ Ľ IpKGq Ě T Ľ 0.

(b) Deduce that KG˝ has at least two composition factors isomorphic to the trivial module K .

(c) Deduce that KG is not a semisimple K -algebra.

Corollary 6.5
If charpK q - |G|, then |G| “

ř

SPIrrpKGq dimK pSq2.

Proof : Since charpK q - |G|, the group algebra KG is semisimple by Maschke’s Theorem. Thus
ÿ

SPIrrpKGq

dimK pSq2 “ dimK pKGq “ |G| .

7 Clifford Theory
We now turn to Clifford’s theorem, which we present in a weak and a strong form. Broadly speaking,
Clifford theory is a collection of results about induction and restriction of simple modules from/to normal
subgroups.

Theorem 7.1 (Clifford’s Theorem, weak form)
If U E G is a normal subgroup and S is a simple KG-module, then S ÓGU is semisimple.

Theorem 7.2 (Clifford’s Theorem, strong form)
Let U E G be a normal subgroup and let S be a simple KG-module. Then we may write

S ÓGU“ Sa1
1 ‘ ¨ ¨ ¨ ‘ Sarr

where r P Zą0 and S1, . . . , Sr are pairwise non-isomorphic simple KU-modules, occurring with
multiplicities a1, . . . , ar respectively. Moreover, the following statements hold:

(i) the group G permutes the homogeneous components of S ÓGU transitively;

(ii) a1 “ a2 “ ¨ ¨ ¨ “ ar and dimK pS1q “ ¨ ¨ ¨ “ dimK pSrq; and

(iii) S – pSa1
1 qÒ

G
H1

as KG-modules, where H1 “ StabGpSa1
1 q.

One application of Clifford’s theory is for example the following Corollary:

Corollary 7.3
Assume K is a field of arbitrary characteristic. (Still splitting for G.) If p is a prime number and
G is a p-group, then every simple KG-module has the form X ÒGH , where X is a 1-dimensional
KH-module for some subgroup H ď G.
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Remark 7.4
This result is extremely useful, for example, to construct the complex character table of a p-group.
Indeed, it says that we need look no further than induced linear characters. In general, a KG-
module of the form N ÒGH for some subgroup H ď G and some 1-dimensional KH-module is called
monomial. A group all of whose simple CG-modules are monomial is called an M-group. (By the
above p-groups are M-groups.)



Tuesday. Chapter 3. Indecomposable Modules

After simple and semisimple modules, the goal of this chapter is to understand indecomposable modules
in general. Apart for exceptions, the group algebra is of wild representation type, which, roughly speak-
ing, means that it is not possible to classify the indecomposable modules over such algebras. However,
representation theorists have developed tools which enable us to organise indecomposable modules
in packages parametrised by parameters that are useful enough to understand essential properties of
these modules. In this respect, we will generalise the idea of a projective module by defining what
is called relative projectivity. This will lead us to introduce the concepts of vertices and sources of
indecomposable modules, which are two typical examples of parameters bringing us useful information
about indecomposable modules in general.

8 Existence and Uniqueness of Direct Sum Decompositions
First, we take a look at the concept of decomposability over general rings.

Definition 8.1 (indecomposable module)
An R-module M is called decomposable if M possesses two non-zero proper submodules M1,M2
such that M “ M1 ‘ M2. An R-module M is called indecomposable if it is non-zero and not
decomposable.

First, we want to be able to decompose R-modules into direct sums of indecomposable submodules.
The Krull-Schmidt Theorem then provide us with certain uniqueness properties of such decompositions.

Proposition 8.2
Let M be an R-module. If M satisfies either A.C.C. or D.C.C., then M admits a decomposition into

a direct sum of finitely many indecomposable R-submodules.

Exercise 8.3
Prove Proposition 8.2.

Theorem 8.4 (Krull–Schmidt)
Let M be an R-module which has a composition series. If

M “ M1 ‘ ¨ ¨ ¨ ‘Mn “ M 1
1 ‘ ¨ ¨ ¨ ‘M 1

n1 pn, n1 P Zą0q

20
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are two decomposition of M into direct sums of finitely many indecomposable R-submodules, then
n “ n1, and there exists a permutation π P Sn such that Mi – M 1

πpiq for each 1 ď i ď n.

Thus the number n is uniquely determined by the module M , and the submodules M1, . . . ,Mn are
unique, up to isomorphism and ordering. They are sometimes called the components of M .

9 Indecomposability Criteria
The proof of the Krull-Schmidt theorem relies on the following general indecomposability criterion.

Proposition 9.1 (Indecomposability criterion)
Let M be an R-module which has a composition series. Then:

M is indecomposable ðñ EndRpMq is a local ring.

For modules over the group algebra, we have the following important indecomposability criterion due
to J. A. Green. The proof is rather involved.

Theorem 9.2 (Green’s indecomposability criterion, 1959)
Assume that K is an algebraically closed field of characteristic p ą 0. Let H ď G be a subnormal
subgroup of G of index a power of p and let M be an indecomposable KH-module. Then M ÒGH is
an indecomposable KG-module.

Remark 9.3
Green’s indecomposability criterion remains true over an arbitrary field of characteristic p, provided
we replace indecomposability with absolute indecomposability. (A KG-module M is called abso-
lutely indecomposable iff its endomorphism algebra EndKGpMq is a split local algebra, that is, if
EndKGpMq{JpEndKGpMqq – K .)

Example 5
Assume that K is an algebraically closed field of characteristic p ą 0. If P is a p-group, Q ď P and
M is an indecomposable KQ-module, then M ÒPQ is an indecomposable KP-module. In particular,
the permutation module K rP{Qs – K ÒPQ is indecomposable.

Indeed, since P is a p-group, by the Sylow theory any subgroup Q ď P can be plugged in a
subnormal series where each quotient is cyclic of order p, hence is a subnormal subgroup of P . The
claim follows immediately from Green’s indecomposability criterion.

10 Projective Modules for the Group Algebra
We have seen that over a semisimple ring, all simple modules appear as direct summands of the regular
module with multiplicity equal to their dimension. For non-semisimple rings this is not true any more,
but replacing simple modules by the projective modules, we will obtain a similar characterisation.
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To begin with we review a series of properties of projective KG-modules with respect to the operations
on groups and modules we have introduced in Chapter 1, i.e. induction/restriction, tensor products, . . .

Proposition 10.1
Assume K is an arbitrary commutative ring. Then the following assertions hold.

(a) If P is a projective KG-module and M is an arbitrary KG-module, then P bK M is projective.

(b) If P is a projective KG-module and H ď G, then P ÓGH is a projective KH-module.

(c) If H ď G, then KH ÒGH– KG and P is a projective KH-module, then P ÒGH is a projective
KG-module. [Hint: Prove that KH ÒGH– KG.]

Exercise 10.2
Prove Proposition 10.1.

We now want to prove that the PIMs of KG can be labelled by the simple KG-modules, and hence
that there are a finite number of them, up to isomorphism. We will then be able to deduce from this
bijection that each of them occurs in the decomposition of the regular module with multiplicity equal
to the dimension of the corresponding simple module.

Theorem 10.3

(a) If P is a projective indecomposable KG-module, then P{ radpPq is a simple KG-module.

(b) If M is a KG-module and M{ radpMq – P{ radpPq for a projective indecomposable KG-
module P , then there exists a surjective KG-homomorphism φ : P ÝÑ M . In particular, if M
is also projective indecomposable, then M{ radpMq – P{ radpPq if and only if M – P .

(c) There is a bijection
!

projective indecomposable
KG-modules

)

{ –
„
ÐÑ

!

simple
KG-modules

)

{ –

P ÞÑ P{ radpPq

and hence the number of pairwise non-isomorphic PIMs of KG is finite.

Definition 10.4 (Projective cover of a simple module)
If S is a simple KG-module, then we denote by PS the projective indecomposable KG-module
corresponding to S through the bijection of Theorem 10.3(c) and call this module the projective
cover of S.
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Corollary 10.5
In the decomposition of the regular module KG into a direct sum of indecomposable KG-submodules,
each isomorphism type of projective indecomposable KG-module occurs with multiplicity dimK pP{ radpPqq.
In other words,

KG –
à

SPIrrpKGq
pPSqns

(where nS “ dimK S).

Proof : Let KG “ P1 ‘ ¨ ¨ ¨ ‘ Pr (r P Zą0) be such a decomposition. In particular, P1, . . . Pr are PIMs. Then

JpKGq “ JpKGqKG “ JpKGqP1 ‘ ¨ ¨ ¨ ‘ JpKGqPr “ radpP1q ‘ ¨ ¨ ¨ ‘ radpPrq .

Therefore,
KG{JpKGq – P1{ radpP1q ‘ ¨ ¨ ¨ ‘ Pr{ radpPrq

where each summand is simple by Theorem 10.3(a). Now as KG{JpKGq is semisimple, by Theorem 5.5,
any simple KG{JpKGq-module occurs in this decomposition with multiplicity equal to its K -dimension.
Thus the claim follows from the bijection of Theorem 10.3(c).

The Theorem also leads us to the following important dimensional restriction on projective modules,
which we will see again later.

Exercise 10.6
Assume K is a splitting field for G of characteristic p ą 0.

(a) Prove that if G is a p-group, then the projective cover of the trivial module is the regular
module.

(b) Use (a) and restriction to a Sylow p-subgroup to prove that if P is a projective KG-module,
then

|G|p
ˇ

ˇ dimK pPq .

(Here |G|p is the p-part of |G|, i.e. the exact power of p that divides the order of G.)



Wednesday. Chapter 3 (Continued). Indecomposable Modules

11 Relative Projectivity
Definition 11.1

Let H ď G. A KG-module M is called relatively H-projective, or simply H-projective, if it is
isomorphic to a direct summand of a KG-module induced from H , i.e. if M | V ÒGH for some KH-
module V .

Example 6
Clearly, H-projectivity is a generalisation of projectivity. Indeed, if M P modpKGq, then:

M is projective ðñ Dn P Zą0 such that M | pKGqn – pK ÒGt1uq
n – pK nqÒGt1u

ðñ M is t1u-projective

We can actually characterise relative projectivity in a similar way as we characterised projectivity.

Proposition 11.2 (Characterisation of relative projectivity)
Let H ď G and let M be a KG-module. TFAE:

(a) M is relatively H-projective;

(b) M | M ÓGHÒGH ;

(c) D a KG-module N such that M | K ÒGH bKN ;

(d) if ψ P HomKGpM,W q, φ P HomKGpV ,W q is surjective and D αH P
HomKHpMÓGH , VÓGHq such that φ˝αH “ ψ, then D αG P HomKGpM,V q
such that φ ˝ αG “ ψ ;

M

V W

ψ
ö

DαG

φ

(e) A surjective KG-homomorphism φ : V � M is KG-splits provided it is KH-split.

Projectivity relative to a subgroup can be generalised as follows to projectivity relative to a KG-module:

24
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Remark 11.3 (Projectivity relative to KG-modules)

(a) Let V be a KG-module. A KG-module M is termed projective relative to the module V or
relatively V -projective, or simply V -projective if there exists a KG-module N such that M is
isomorphic to a direct summand of V bK N , i.e. M | V bK N .

(b) Proposition 11.2(c) shows that projectivity relative to a subgroup H ď G is in fact projectivity
relative to the KG-module V :“ K ÒGH .

The concept of projectivity relative to a subgroup is proper to the group algebra, but the concept of
projectivity relative to a module is not and makes sense in general over algebras/rings.

Next we see that any indecomposable KG-module can be seen as a relatively projective module with
respect to some subgroup of G.

Theorem 11.4
Let H ď G.

(a) If |G : H| is invertible in K , then every KG-module is H-projective.

(b) In particular, if K is a field of characteristic p ą 0 and H contains a Sylow p-subgroup of G,
then every KG-module is H-projective.

Part (b) follows immediately from (a). Indeed, if P P SylppGq and H Ě P , then p - |G : H|, so
|G : H| P Kˆ. Moreover, considering the case H “ t1u shows that Theorem 11.4 is a generalisation of
Maschke’s Theorem.

Example 7
Assume that charpK q “: p ą 0 and H “ t1u. If H contains a Sylow p-subgroup of G then the
Sylow p-subgroups of G are trivial, so p - |G|. The theorem then says that all KG-modules are
t1u-projective, that is, projective.
We know this already, however! If p - |G| then KG is semisimple by Maschke’s Theorem, and so
all KG-modules are projective.

Corollary 11.5
Let H ď G and suppose that |G : H| is invertible in K . Then a KG-module M is projective if and
only if M ÓGH is projective.

Proof : The necessary condition is given by Proposition 10.1(b). To prove the sufficient condition, suppose
that M ÓGH is projective. Then, on the one hand,

M ÓGH | pKHqn for some n P Zą0 .

On the other hand, M is H-projective by Theorem 11.4, and it follows from Proposition 11.2(e) that

M | M ÓGHÒGH .

Hence
M | M ÓGHÒGH | pKHqn ÒGH – pKGqn ,

so M is projective.



Short Introduction to Modular Representation Theory YAC ’21 26

12 Vertices and Sources
As in the case in which KG is semisimple, relative projectivity is just projectivity, we now focus on the
non-semiminple case.

For the remainder of this chapter, we as-
sume that charpK q “: p ą 0 and p | |G|.

As said before, we now want to explain some techniques that are available to understand indecompos-
able modules better. Vertices and sources are two parameters making this possible.

Theorem 12.1
Let M be an indecomposable KG-module.

(a) There is a unique conjugacy class of subgroups Q of G which are minimal subject to the
property that M is Q-projective.

(b) Let Q be a minimal subgroup of G such that M is Q-projective. Then, there exists an
indecomposable KQ-module T which is unique, up to conjugacy by elements of NGpQq, such
that M is a direct summand of T ÒGQ . Such a KQ-module T is necessarily a direct summand
of M ÓGQ .

This characterisation leads us to the following definition:

Definition 12.2
Let M be an indecomposable KG-module.

(a) A vertex of M is a minimal subgroup Q of G such that M is relatively Q-projective.
The set of all vertices of M is denoted by vtxpMq.

(b) Given a vertex Q of M , a KQ-source, or simply a source of M is a KQ-module T such that
M | T ÒGQ .

Remark 12.3

(a) A vertex Q of an indecomposable KG-module M is not uniquely defined, in general. However,
the vertices of M are unique up to G-conjugacy, so in particular are all isomorphic. For this
reason, in general, one (i.e. you!) should never talk about the vertex of a module (of course,
unless a vertex has been fixed). We either say that Q is a vertex of M , or talk about the
vertices of M . (Unfortunately many textbooks/articles are very sloppy with this terminology,
inducing errors.)

(b) For a fixed vertex Q of M , a source of M is defined up to conjugacy by elements of NGpQq.

Warning! Vertices and sources are very useful theoretical tools in general, but extremely difficult to
compute concretely. However, the following properties are useful.
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To begin with, by Theorem 11.4, we know that every KG-module is projective relative to a Sylow p-
subgroup of G. Therefore, by minimality, vertices are contained in Sylow p-subgroups. Hence:

Proposition 12.4
The vertices of an indecomposable KG-module are p-subgroups of G.

Proposition 12.5
Let U be an indecomposable KG-module and let Q P vtxpUq. If P P SylppGq is such that Q Ď P ,
then

|P : Q| | dimK pUq .

In particular if U is a PIM of KG, then |P| “ |G|p | dimK pUq.

Example 8

(a) The trivial subgroup t1u is a vertex of an indecomposable KG-module U ðñ U is a PIM
of KG.

(b) The vertices of the trivial KG-module are the Sylow p-subgroups of G, i.e. vtxpK q “ SylppGq,
and all sources are trivial.

Exercise 12.6
Prove that the vertices of any KG-module with K -dimension coprime to p are the Sylow p-subgroups
of G.

Conceptually, the closer the vertices of a module are to the trivial subgroup, the closer this module is
to being projective.

Finally, we give a name to the modules which have a trivial source. We will see in Lecture 4 that these
module play a particularly important role in block theory.

Definition 12.7 (trivial source module)
A KG-module is called a trivial source KG-module if it is a finite direct sum of KG-modules with
a trivial source K .

Warning! Some texts (books/articles/. . . ) require that a trivial source module is indecomposable, others
do not.

13 The Green Correspondence
The Green correspondence is a correspondence which relates the indecomposable KG-modules with
a fixed vertex with the indecomposable KL-modules with the same vertex for well-chosen subgroups
L ď G. It is used to reduce questions about indecomposable modules to a situation where a vertex of
the given indecomposable module is a normal subgroup.
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Theorem 13.1 (Green Correspondence)
Let Q be a p-subgroup of G and let L be a subgroup of G containing NGpQq.

(a) If U is an indecomposable KG-module with vertex Q, then

U ÓGL “ fpUq ‘ X

where fpUq is the unique indecomposable direct summand of U ÓGL with vertex Q and every
direct summand of X is LX xQ-projective for some x P GzL.

(b) If V is an indecomposable KL-module with vertex Q, then

V ÒGL “ gpV q ‘ Y

where gpV q is unique indecomposable direct summand of V ÒGL with vertex Q and every direct
summand of Y is Q X xQ-projective for some x P GzL.

(c) With the notation of (a) and (b), we then have gpfpUqq – U and fpgpV qq – V . In other words,
f and g define a bijection

!isomorphism classes of indecomposable
KG-modules with vertex Q

)

„
ÐÑ

! isomorphism classes of indecomposable
KL-modules with vertex Q

)

U ÞÑ fpUq

gpV q Ð [ V .

Moreover, corresponding modules have a source in common.

Terminology: fpUq is called the KL-Green correspondent of U (or simply the Green correspondent)
and gpV q is called the KG-Green correspondent of V (or simply the Green correspondent of V ).

Warning! When working with the Green correspondence it is essential that a vertex Q is fixed and not
considered up to conjugation, because the G-conjugacy class of Q and the L-conjugacy class of Q do
not coincide in general.

Example 9
The Green correspondent of the trivial module is the trivial module, for K ÓGL “ K .

14 p-Permutation Modules
Definition 14.1 (Permutation module)

A KG-module is called a permutation KG-module if it admits a K -basis X which is invariant under
the action of the group G. We denote this module by KX .

Permutation KG-modules and, in particular, their indecomposable direct summands have remarkable
properties, which we investigate in this section.
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Remark 14.2
If KX is a permutation KG-module on X , then a decomposition of the basis X as a disjoint union
of G-orbits, say X “

Ůn
i“1 Xi , yields a direct sum decomposition of KX as a KG-module as

KX “
n
à

i“1
KXi .

Thus, we can assume that X is a transitive G-set, in which case we have a direct sum decomposition
as a K -vector space

KX “
à

gPrG{Hs
Kgx

where H :“ StabGpxq, the stabiliser in G of some x P X , and G acts transitively on the summands.
Hence,

KX – K ÒGH .

It follows that an arbitrary permutation KG-module is isomorphic to a direct sum of KG-modules of
the form K ÒGH for various H ď G.

Conversely, an induced module of the form K ÒGH (H ď G) is always a permutation KG-module.
Indeed, as K ÒGH “ KG bKH K “

À

gPrG{Hs gb K as K -vector space, it has on obvious G-invariant

K -basis given by the set
tgb 1K | g P rG{Hsu .

In fact, more generally if H ď G and KX is a permutation KH-module on X , then KX ÒGH is a
permutation KG-module with G-invariant K -basis tg b x | g P rG{Hs, x P Xu . In other words,
induction preserves permutation modules.

Exercise 14.3
Prove that direct sums, restriction, inflation and conjugation also preserve permutation modules.

In order to understand the indecomposable direct summands of the permutation KG-modules, we ob-
serve that they all have a trivial source and we will apply the Green correspondence to see that, up to
isomorphism, there are only a finite number of them.

Proposition-Definition 14.4 (p-permutation module)
Let M be a KG-module and let P P SylppGq. Then, the following conditions are equivalent:

(a) M ÓGQ is a permutation KQ-module for each p-subgroup Q ď G;

(b) M ÓGP is a permutation KP-module;

(c) M has a K -basis which is invariant under the action of P;

(d) M is isomorphic to a direct summand of a permutation KG-module;

(e) M is a trivial source KG-module.

If M fulfils one of these equivalent conditions, then it is called a p-permutation KG-module.
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Note. In fact p-permutation KG-modules and trivial source KG-modules are two different pieces of
terminology for the same concept. French/German speaking authors tend to favour the terminology p-
permutation module (and reserve the terminology trivial source module for an indecomposable module
with a trivial source), whereas English speaking authors tend to favour the terminology trivial source
module.

Exercise 14.5
Prove that p-permutation modules are preserved by the following operations: direct sums, tensor
products, restriction, inflation, conjugation, induction.

Example 10

(a) If G is a p-group, then any p-permutation module is a permutation module.

(b) The PIMs of KG are precisely the KG-modules with vertex t1u and trivial source, so any
projective KG-module is a p-permutation KG-module.

Example 11
Any KG-modules Y of K -dimension 1 is a p-permutation module.
Proof. Let Q be a vertex of Y and let fpY q be the kNGpQq-Green correspondent of Y . Then clearly
dimK fpY q “ 1 as well. Thus fpY q is a simple and therefore has a trivial KQ-source. Indeed,
fpY qÓNGpQq

Q is semisimple by the weak version of Clifford’s Theorem, and so must be a direct sum of
copies of the trivial kQ-module because Q is a p-group and therefore has only one simple module,
up to isomorphism, namely the trivial module.

Generalising these examples, we can characterise the indecomposable p-permutation KG-modules with
a given vertex Q ď G as described below.

Example 12 (Green Correspondence applied to indecomposables with a trivial source)

(1) If M is an indecomposable p-permutation KG-module with vertex Q ď G, then Q acts triv-
ially on the KNGpQq-Green correspondent fpMq of M . Thus fpMq can be viewed as a
K rNGpQq{Qs-module. As such, fpMq is indecomposable and projective.

(2) Conversely, if N is a projective indecomposable K rNGpQq{Qs-module, then InfNGpQq
NGpQq{QpNq is

an indecomposable KNGpQq-module with vertex Q and trivial source. Its KG-Green corre-
spondent is then also an indecomposable KG-module with vertex Q and trivial source, hence
is an indecomposable p-permutation KG-module

(3) In this way we obtain a bijection

! isomorphism classes of indecomposable
p-permutation KG-modules with vertex Q

)

„
ÐÑ

"

isomorphism classes of projective
indecomposable K rNGpQq{Qs-modules

*

.



Wednesday. Chapter 4. p-Modular Systems and Brauer Characters

R. Brauer started in the late 1920’s a systematic investigation of group representations over fields of
positive characteristic. In order to relate group representations over fields of positive characteristic to
character theory in characteristic zero, Brauer worked with a triple of rings pF,O, kq, called a p-modular
system, and consisting of a complete discrete valuation ring O with a residue field k :“ O{JpOq of
prime characteristic p and fraction field F :“ FracpOq of characteristic zero. These are used to gain
information about kG and its modules (which is/are extremely complicated) from the group algebra FG,
which is semisimple and therefore much better understood, via the group algebra OG. This explains
why we considered arbitrary associative rings (resp. algebras / fields) in the previous chapters rather
than immediately focusing on fields of positive characteristic.

Notation. Throughout this chapter, unless otherwise specified, we let p be a prime number and let
Λ P tF,O, ku.

15 p-Modular Systems
Recall that a commutative ring O is local iff OzOˆ “ JpOq, i.e. JpOq is the unique maximal ideal of O.
Moreover, by the commutativity assumption this happens if and only if O{JpOq is a field. In such a
situation, we write k :“ O{JpOq and call this field the residue field of the local ring O. To ease up
notation, we will often write p :“ JpOq. This is because our aim is a situation in which the residue field
is a field of positive characteristic p. Moreover, a commutative ring O is called a discrete valuation
ring if O is a local principal ideal domain such that JpOq ‰ 0. Such a discrete valuation ring is called
complete if it is complete in the JpOq-adic topology.

Definition 15.1 (p-modular systems)
Let p be a prime number.

(a) A triple of rings pF,O, kq is called a p-modular system if:

(1) O is a complete discrete valuation ring of characteristic zero,
(2) F “ FracpOq is the field of fractions of O (also of characteristic zero), and
(3) k “ O{JpOq is the residue field of O and has characteristic p.

(b) If G is a finite group, then a p-modular system pF,O, kq is called a splitting p-modular
system for G, if both F and k are splitting fields for G.
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It is often helpful to visualise p-modular systems and the condition on the characteristic of the rings
involved through the following commutative diagram of rings and ring homomorphisms:

Q Z Fp

F O k

where the hook arrows are the canonical inclusions and the two-head arrows the quotient morphisms.
Clearly, these morphisms also extend naturally to ring homomorphisms

FG OG kG

between the corresponding group algebras (each mapping an element g P G to itself).

Example 13
One usually works with a splitting p-modular system for all subgroups of G, because it allows us
avoid problems with field extensions. By a theorem of Brauer on splitting fields such a p-modular
system can always be obtained by adjoining a primitive m-th root of unity to Qp, where m is the
exponent of G. (Notice that this extension is unique.) So we may as well assume that our situation
is as given in the following commutative diagram:

Qp Zp Fp

F O k

More generally, we have the following result, which we mention without proof. The proof can be found
in [CR90, §17A].

Theorem 15.2
Let pF,O, kq be a p-modular system. Let G be a finite group of exponent m :“ exppGq. Then the
following assertions hold.

(a) The field F contains all m-th roots of unity if and only if F contains the cyclotomic field of
m-th roots of unity;

(b) If F contains all m-th roots of unity, then so does k and F and k are splitting fields for G
and all its subgroups.

Remark 15.3
If pF,O, kq is a p-modular system, then it is not possible to have F and k algebraically closed,
while assuming O is complete. (Depending on your knowledge on discrete valuation rings, you can
try to prove this as an exercise!)

Let us now investigate changes of the coefficients given in the setting of a p-modular system for group
algebras involved.
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Definition 15.4
Let O be a commutative local ring. A finitely generated OG-module L is called an OG-lattice if it
is free (= projective) as an O-module.

Remark 15.5 (Changes of the coefficients)
Let pF,O, kq be a p-modular system and write p :“ JpOq. If L is an OG-module, then:

¨ setting LF :“ F bO L defines an FG-module, and

¨ reduction modulo p of L, that is L :“ L{pL – k bO L defines a kG-module.

We note that, when seen as an O-module, an OG-module L may have torsion, which is lost on
passage to F . In order to avoid this issue, we usually only work with OG-lattices. In this way, we
obtain functors

FG-mod OG-lat kG-mod

between the corresponding categories of finitely generated OG-lattices and finitely generated FG-,
kG-modules.

A natural question to ask is: which FG-modules, respectively kG-modules, come from OG-lattices? In
the case of FG-modules we have the following answer.

Proposition-Definition 15.6
Let O be a complete discrete valuation ring and let F :“ FracpOq be the fraction field of O. Then,
for any finitely generated FG-module V there exists an OG-lattice L which has an O-basis which
is also an F-basis. In this situation V – LF and we call L an O-form of V .

Proof : Choose an F-basis tv1, . . . , vnu of V and set L :“ OGv1 ` ¨ ¨ ¨ `OGvn Ď V .

On the other hand, the question has a negative answer for kG-modules.

Definition 15.7 (liftable kG-module)
Let O be a commutative local ring with unique maximal ideal p :“ JpOq and residue field k :“ O{p.
A kG-module M is called liftable if there exists an OG-lattice pM whose reduction modulo p of M
is isomorphic to M , that is

pM{p pM – M .

(Alternatively, it is also said that M is liftable to an OG-lattice, or liftable to O, or liftable to
characteristic zero.)

Even though every OG-lattice can be reduced modulo p to produce a kG-module, not every kG-module
is liftable to an OG-lattice.
Being liftable for a kG-module is a rather rare property. However, some classes of kG-modules do lift.

Example 14
It follows from the lifting of idempotents theorem that projective indecomposable kG-modules are
liftable to projective indecomposable OG-lattices:
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Any (projective) indecomposable kG-module is liftable to a (projective) indecomposable OG-lattice.
More generally, any trivial source kG-module M is liftable to an OG-lattice. More precisely, among
all lifts of M a unique one is again trivial source and we denote it by rM .
The F-character of F bO rM is called the ordinary character of M .

I refer to the talk of my doctoral student – Bernhard – who will tell you how one can define a character
table for the indecompoable p-permutation modules, which is a generalisation of the ordinary character
table.



Thursday. Chapter 4 (Continued). p-Modular Systems and Brauer Characters

Recall that we have fixed a splitting p-modular system pF,O, kq such that F contains an exppGq-th
root of unity. Since F is a field of characteristic zero, FG-modules are isomorphic if and only if their
characters are equal. Also, the character of a FG-module provides complete information about its
composition factors, including multiplicities, provided that the irreducible characters of G are known.
All this does not hold for fields k of characteristic p ą 0. For instance, if W is a k-vector space on
which G acts trivially and dimkpW q “ ap` 1 for some nonnegative integer a, then the k-character of
W is the trivial character. This implies that a k-character can only give information about multiplicities
of composition factors modulo p. In view of these issues, the aim of this chapter is to define a slightly
different kind of character theory for modular representations of finite groups and to establish links
with ordinary character theory.

Recall that an element g P G is called a p-regular element (or a p1-element) if p - opgq. We write

Gp1 :“ tg P G | p - opgqu

for the set of all p-regular elements of G.

Since F contains all exppGq-th roots of unity, both F and k contain a primitive a-th root of unity,
where a is the l.c.m. of the orders of the p-regular elements. Set

µF :“ ta-th roots of 1 in Fu and µk :“ ta-th roots of 1 in ku .

Then µF Ď O and, as both µF and µk are finite groups, it follows that the quotient morphism O� O{p
restricted to µF induces a group isomorphism

µF
–
ÝÑ µk .

We write the underlying bijection as pξ ÞÑ ξ , so that if ξ is an a-th root of unity in k then pξ is the
unique a-th root of unity in O which maps onto it.

Lemma 15.1 (Diagonalisation lemma)
Let ρ : G ÝÑ GLpUq be a k-representation of G. Then, for every p-regular element g P Gp1 , the
k-linear map ρpgq is diagonalisable and the eigenvalues of ρpgq are opgq-th roots of unity and lie
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in µk . In other words, there exists an ordered k-basis B of U with respect to which

`

ρpgq
˘

B “

»

—

—

—

—

–

ξ1 0 0
0 ξ2

0
0 0 ξn

fi

ffi

ffi

ffi

ffi

fl

,

where n :“ dimkpUq and each ξi (1 ď i ď n) is an opgq-th root of unity in k .

Proof : Let g P Gp1 . It is enough to consider the restriction of ρ to the cyclic subgroup xgy. Since p - |xgy|,
kxgy is semisimple by Maschke’s Theorem. Moreover, as k is a splitting field for xgy, it follows from
Corollary 5.10 that all irreducible k-representations of xgy have degree 1. Hence ρ|xgy can be decomposed
as the direct sum of degree 1 subrepresentations. As a consequence ρpgq “ ρ|xgypgq is diagonalisable
and there exists a k-basis B of U satisfying the statement of the lemma. It follows immediately that
the eigenvalues are opgq-th roots of unity because ρUpgopgqq “ ρUp1Gq “ IdU . They all lie in µk , being
opgq-th roots of unity, hence a-th roots of unity.

This leads to the following definition.

Definition 15.2 (Brauer characters)
Let U be a kG-module of dimension n P Zě0 and let ρU : G Ñ GLpUq be the associated k-
representation. The p-Brauer character or simply the Brauer character of G afforded by U (resp.
of ρU ) is the F-valued function

φU : Gp1 Ñ O Ď F

g ÞÑ pξ1 ` ¨ ¨ ¨ ` pξn ,

where ξ1, . . . , ξn P µk are the eigenvalues of ρUpgq. The integer n is also called the degree of φU .
Moreover, φU is called irreducible if U is simple (resp. if ρU is irreducible), and it is called linear
if n “ 1. We denote by IBrppGq the set of all irreducible Brauer characters of G and we write 1Gp1
for the Brauer character of the trivial kG-module.

In the sequel, we want to prove that Brauer characters of kG-modules have properties similar to C-
characters.

Remark 15.3

(a) Warning: φpgq P O Ď F even though ρUpgq is defined over the field k of characteristic p ą 0.

(b) Often the values of Brauer characters are considered as complex numbers, i.e. sums of complex
roots of unity. Of course, in that case then φUpgq depends on the choice of embedding of
µF into C. However, for a fixed embedding, φUpgq is uniquely determined up to similarity
of ρUpgq.

Immediate properties of Brauer characters are as follows.
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Exercise 15.4
Let U,V ,W be non-zero kG-modules. Prove the following assertions:

(a) φUp1q “ dimkpUq .

(b) φU is a class function on Gp1 .

(c) φUpg´1q “ φU˚pgq @ g P Gp1 .

(d) If 0 U V W 0 is a s.e.s. of kG-modules, then

φV “ φU ` φW .

(e) If the composition factors of U are S1, . . . , Sm (m P Zě1) with multiplicities n1, . . . , nm re-
spectively, then

φU “ n1φS1 ` . . .` nmφSm .

In particular, if two kG-modules have isomorphic composition factors, counting multiplicities,
then they have the same Brauer character.

(f ) φU‘V “ φU ` φV and φUbkV “ φU ¨ φV .

(g) Assume U is a liftable and pU is a lift, i.e. pU{ppU – U . Write χ
pU

be the F-character of FbO pU .
Then φUpgq “ χ

pU
pgq on all p-regular elements g P G.

Brauer proved that Brauer characters can be counted using conjugacy classes as well:

Theorem 15.5
The set IBrppGq of irreducible Brauer characters of G forms an F-basis of the F-vector space
ClF pGp1q of class functions on Gp1 and

| IBrppGq| “ dimF ClF pGp1q “ number of conjugacy classes of p-regular elements in G .

We note that the second equality is obvious, because the indicator functions on the conjugacy classes
of p-regular elements form an F-basis.

16 Back to reduction modulo p

We now want to investigate the connections between representations of G over F (or C) and represen-
tations of G over k through the connections between their F-characters and Brauer characters.

Proposition 16.1
Let V be an FG-module with F-character χV . Then:

(a) there exists an OG-lattice L such that V – F bO L (called an O-form of V );

(b) χV |Gp1 “ φL and is called the reduction modulo p of χV ;
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(c) if V P IrrF pGq, there exist non-negative integers dχφ such that

χV |Gp1 “
ÿ

φPIBrppGq
dχφφ.

Exercise 16.2
Assume G is a p-group. Prove that the reduction modulo p of any linear character is the trivial
Brauer character.

Definition 16.3
The matrix
‚ D :“ DecppGq “ pdχφqχPIrrF pGq

φPIBrppGq
is the p-decomposition matrix of G;

‚ C :“ DtrD “ pcφµqφ,µPIBrppGq is the Cartan matrix of G.

Proposition 16.4

(a) The decomposition matrix DecppGq has full rank, namely | IBrppGq|.

(b) The Cartan matrix of G is a symmetric positive definite matrix with non-negative integer
entries.

Recall now that projective kG-modules are liftable and this enables us to associate an F-character of
G to each PIM of kG, in fact in a unique way in this case.

Definition 16.5
Let φ P IBrppGq be an irreducible Brauer character afforded by a simple kG-module S. Let PS be
the projective cover of S and let pPS denote a lift of PS to O. Then, the F-character of ppPSqF is
denoted by Φφ and is called the projective indecomposable character associated to S or φ.

Proposition 16.6
Let φ P IBrppGq. Then:

(a) Φφ “
ř

χPIrrF pGq dχφχ ; and

(b) Φφ|Gp1
“

ř

µPIBrppGq cφµµ.

Definition 16.7 (Brauer character table)
Set l :“ |Gp1 | and let g1, . . . , gl be a complete set of representatives of the p-regular conjugacy
classes of G.

(a) The Brauer character table of a finite group G is the matrix
´

φpgjq
¯

φPIBrppGq
1ďjďl

P MlpF q .

(b) The Brauer projective table of a finite group G at p is the matrix
´

Φφpgjq
¯

φPIBrppGq
1ďjďl

P MlpF q .



Thursday. Chapter 5. Block Theory

We now want to break down the representation theory of finite groups into its smallest parts: the blocks
of the group algebra. Before we proceed, I want to give the following warning: one of the confusing
things about the block theory of finite groups is that there often seems to be more than one definition of
the same concept. In fact several different definitions – and mathematical objects – are hidden behind
the word block of a group algebra. Some texts consider blocks to be algebras, or more precisely inde-
composable 2-sided ideals of the group algebra, some to be primitive central idempotents of the group
algebra, some to be the union of the sets of irreducible ordinary characters and irreducible Brauer
characters of the aforementioned algebra, some others to be an equivalence class of modules over the
group algebra (sometimes simple, sometimes indecomposable, sometimes arbitrary),. . . Important is to
keep in mind, that although different authors use different approaches, there are essentially equivalent.
We will focus here on the algebra approach.

Notation: We keep the notation and the assumptions of the previous Chapters. Throughout, G denotes
a finite group, p a prime number. We let pF,O, kq denote a p-modular system and we assume F
contains all exppGq-th roots of unity, so pF,O, kq is a splitting p-modular system for G and all its
subgroups (see Theorem 15.2). We write p :“ JpOq and we let Λ P tF,O, ku.

17 The p-Blocks of a Group
The block decomposition of the group algebra ΛG is just the the decomposition of ΛG, seen a pΛG,ΛGq-
bimodule, into indecomposable pΛG,ΛGq-bimodules. So in block theory of finite groups, by definition,
one should work with bimodules. However, bimodules over group algebras can always be made into
one-sided modules as described in the following remark.

Remark 17.1
Let G1 and G2 be finite groups. If M is a pΛG1,ΛG2q-bimodule, then M can be endowed with the
structure of a one-sided ΛrG1 ˆ G2s-module via the G1 ˆ G2-action:

¨ : pG1 ˆ G2q ˆM ÝÑ M, m ÞÑ pg, hq ¨m :“ g ¨m ¨ h´1

The consequence is that the one-sided module theoretic terms and results we have seen so far can
be applied to such bimodules. Thus, in the sequel, we identify bimodules with one-sided left modules
without further mention.
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Definition 17.2 (Blocks of the group algebra)
In the unique decomposition ΛG “ B1 ‘ ¨ ¨ ¨ ‘ Bn into indecomposable pΛG,ΛGq-subbimodules of
ΛG, the summands B1, . . . , Bn are called the blocks of ΛG. (Or sometimes just block algebras.)

Remark 17.3
The block decomposition ΛG “ B1 ‘ ¨ ¨ ¨ ‘ Bn is equivalent to a decomposition

1 “ e1
loomoon

PB1

` . . .` en
loomoon

PBn

of the unit of ΛG as a sum of orthogonal primitive central idempotents ei P Z pΛGq, where ei “ 1Bi
and Bi “ ΛGei @ 1 ď i ď n. We call the elements e1, . . . , en the block idempotents of ΛG.

Definition 17.4 (belonging to a block )
We say that an (indecomposable) ΛG-module M belongs to (or lies in) the block Bi “ ΛGei if
eiM “ M and ejM “ 0 for all 1 ď j ď n such that j ‰ i.

Remark 17.5
It follows from the previous remark, that every indecomposable ΛG-module M belongs to a uniquely
determined block of ΛG. Indeed, the decomposition

1 “ e1 ` . . .` en ùñ M “ 1 ¨M “ e1 ¨M ‘ . . .‘ en ¨M

but as M is indecomposable the Krull-Schmidt theorem tells us that

D! 1 ď i ď n such that eiM “ M and ejM “ 0 @ 1 ď j ď n with j ‰ i .

Definition 17.6 (Principal block )
The principal block of ΛG is the block to which the trivial module Λ belongs. Notation: B0pΛGq.

Exercise 17.7

(a) Let Bi be a block of ΛG and let ei be the corresponding block idempotent. Prove that a
ΛG-module M belongs to Bi if and only if external multiplication by ei is a ΛG-isomorphism
on that module.

(b) Let 0 L M N 0 be a short exact sequence of ΛG-modules and ΛG-homomorphisms.
Prove that, for each 1 ď i ď n:

M belong to the block Bi of ΛG if and only L and N belong to Bi .

[Hint: use (a) and the 5-Lemma.]

(c) Deduce that if a ΛG-module M lies in a block B of ΛG, then so do all of its submodules and
all of its factor modules.



Short Introduction to Modular Representation Theory YAC ’21 41

Example 15 (Blocks of FG)
Since FG is semisimple, the block decomposition of FG is given by the Artin-Wedderburn Theorem.
In particular, the blocks are matrix algebras and can be labelled by IrrpFGq. (Or IrrF pGq if you
prefer!)

Remark 17.8 (Blocks of OG and kG)
The Lifting of Idempotents tells us that the quotient morphism OG � rO{psG “ kG, x ÞÑ x induces
a bijection

tprimitive idempotents of Z pOGqu „
ÐÑ tprimitive idempotents of Z pkGqu

e ÞÑ e .

Thus a decomposition 1OG “ e1 ` ¨ ¨ ¨ ` er of the identity element of OG into a sum of primitive
central idempotents corresponds to a decomposition 1kG “ e1 ` ¨ ¨ ¨ ` er of the identity element of
kG into a sum of primitive central idempotents of kG. Therefore, by Proposition 17.3, there is a
bijection between the blocks of OG and the blocks of kG:

OG B1 ‘ ¨ ¨ ¨ ‘ Bn

kG B1 ‘ ¨ ¨ ¨ ‘ Bn

¨ ¨ ¨

We define a p-block of G to be the specification of a block of OG, understanding also the corre-
sponding block of kG. We write BlppGq for the set of all p-blocks of G when it is clear from the
context/unimportant whether we work over O or over k , resp. BlppOGq for the set of all blocks of
OG and BlppkGq for the set of all blocks of kG.

The division of the simple kG-modules into blocks can be achieved in a purely combinatorial fashion,
knowing the Cartan matrix of kG. The connection with a block matrix decomposition of the Cartan
matrix is probably the origin of the use of the term block in representation theory.

Remark 17.9
On listing the simple kG-modules so that modules in each block occur together, the Cartan matrix of
kG has a block diagonal form, with one block matrix for each p-block of the group. Up to permutation
of simple modules within p-blocks and permutation of the p-blocks, this is the unique decomposition
of the Cartan matrix into block diagonal form with the maximum number of block matrices.

18 Defect Groups
From now on we will only discuss the blocks of kG. (Analogous results hold for the corresponding
blocks of OG.) We write ∆ : G ÝÑ G ˆ G, g ÞÑ pg, gq for the diagonal embedding of G in G ˆ G.

We start with a result, which lets us identify the vertices of a block with a conjugacy class of p-
subgroups of G.
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Theorem 18.1
If B P BlppkGq, then every vertex of B, considered as an indecomposable krG ˆ Gs-module, has
the form ∆pDq for some p-subgroup D ď G. Moreover, D is uniquely determined up to conjugation
in G.

Definition 18.2 (Defect group, defect)
Let B P BlppkGq.

(a) A defect group of B is a p-subgroup D ď G such that ∆pDq is a vertex of B considered as
an indecomposable krG ˆ Gs-module.

(b) If |D| “ pd (d P Zě0) then d is called the defect of B.

Note. As the vertices of a module form a a conjugacy class of subgroups, so do the defect groups of a
block and it is clear that in fact all defect groups have the same order.

Defect groups are useful and important because in some sense they measure how far a p-block is from
being semisimple (see Exercise 18.5 below). In general they are very difficult to determine concretely.
However, the following properties (mostly due to Green) are useful.

Properties 18.3
Let B P BlppkGq with defect group D ď G. Then the following assertions hold.

(a) If B is a block of kG with defect group D, then every indecomposable kG-module belonging
to B is relatively D-projective, and hence has a vertex contained in D.

(b) D contains every normal p-subgroup of G ;

(c) D is the largest normal p-subgroup of NGpDq, i.e. Q “ OppNGpQqq.

Example 16
Since the vertices of the trivial kG-module k are the Sylow p-subgroups of G, so are the defect
groups of the principal group B0pkGq.

Exercise 18.4 (p-block(s) of a p-group)
Prove that if G is a p-group, then G has a unique p-block.

Exercise 18.5
Let B be a block of kG with a trivial defect group. Prove that B is a semisimple algebra.
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Finally we present a fundamental result due to Brauer.

Definition 18.6

Let H ď G, let b P BlppkHq. Then a block B P BlppkGq corresponds to b if and only if b | BÓGˆGHˆH
and B is the unique block of kG with this property. We then write B “ bG . If such a block B exists,
then we say that bG is defined.

Theorem 18.7 (Brauer’s First Main Theorem)
Let D ď G be a p-subgroup and let H ď G containing NGpDq. Then, there is a bijection

tBlocks of kH with defect group Du „
ÝÑ tBlocks of kG with defect group Du

b ÞÑ bG

Moreover, in this case bG is called the Brauer correspondent of b (and conversely).

Proof (Sketch) : This is a particular case of the Green correspondence (i.e. when viewing blocks as one-sided
left modules).

Many of the results and open problems in modular representation theory of finite groups are concerned
with the influence of the structure of the defect group on the structure of the block. For example, by
a result of Brauer, |D| is the largest elementary divisor of the Cartan matrix of a block B with defect
group D, and it appears with multiplicity 1. We mention here two major open problems in this spirit.

Conjecture 18.8 (Brauer’s kpBq-Conjecture)
Let B P BlppkGq with defect group D. Then | IrrF pBq| ď |D|.

Conjecture 18.9 (Broué’s Abelian Defect Group Conjecture)
Let B P BlppGq with abelian defect group D and let b P BlppNGpDqq be the Brauer correspondent
of B. Then, the derived categories DbpmodpBqq and Dbpmodpbqq of bounded complexes of finitely
generated modules over B and b are equivalent as triangulated categories.

19 Equivalences of Block Algebras
Basic Question 19.1 (Open!!)

Which k-algebras (resp. O-algebras) occur as p-blocks of finite groups?

Conjectural Answer 19.2
If a defect group is fixed, only finitely many . . . up to a good notion of equivalence!

In this respect, Donovan’s and Puig’s Conjectures are further good examples of open problems concerned
with the influence of the structure of the defect group on the structure of the block.
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Conjecture 19.3 (Donovan’s/Puig’s Conjecture, ’70’s/’80’s)
Let D be a finite p-group. Then, there exists only finitely many (splendid) Morita equivalence
classes of p-blocks of finite groups with a defect group isomorphic to D.

Donovan’s Conjuecture is known to hold over O and over k for a fairly long list of small defect groups.
The status of this conjecture is kept up-to-date by Charles Eaton on the Wiki page of his block library.
See https://wiki.manchester.ac.uk/blocks/index.php/Main´Page.

On the other hand, not much is known towards Puig’s Conjecture. It is known to hold if D – Cpn , that is,
is a cyclic p-group (Linckelmann, 1996) and if D – C2ˆC2 if p “ 2 (Craven-Eaton-Kessar-Linckelmann,
2012).

Here:

Definition 19.4 (Morita equivalence)
Let G and G1 be two finite groups. Two block algebras A P BlppGq and B P BlppG1q are called
Morita equivalent iff modpAq and modpBq are equivalent as (k-linear, resp. O-linear) categories. If
this is the case, then we write A „M B.

The following result on Morita equivalences is often useful in order to verify that such an equivalence
exists.

Theorem 19.5 (Morita’s Theorem)
With the assumptions and notation of the previous definition, TFAE:

(a) A „M B ; and

(b) there exists an pA,Bq-bimodule M and a pB, Aq-bimodule N such that M bB N – A (as
pA, Aq-bimodules) and N bA M – B (as pB,Bq-bimodules).

In fact in the case of block algebras, N is the dual of M . Therefore, we often say that the Morita
equivalence is induced of realised by the bimodule M of Assertion (b) of Morita’s Theorem.

Definition 19.6 (Morita equivalence)
Let G and G1 be two finite groups. Assume M is an pA,Bq-bimodule realising a Morita equivalence
bewtween A P BlppkGq and B P BlppkG1q. This Morita equivalence is called:

¨ a splendid Morita equivalence (or also a source-algebra equivalence or a Puig equivalence)
iff the bimodule M , seen as a left krG ˆ G1s-module, is a p-permutation module, and if it is
the case we write A „SM B

¨ an endo-permutation source equivalence (or also a basic equivalence) iff the bimodule M ,
seen as a left krG ˆ G1s-module, has a source T such that EndkpT q – permutation module.

Morita and splendid Morita equivalences of occur naturally in the modular representation theory of
finite groups. Standard examples are as follows:

https://wiki.manchester.ac.uk/blocks/index.php/Main_Page
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Example 17 (Examples of (splendid) Morita equivalences in the block theory of finite groups)

(a) Isomorphic blocks (i.e. as k-algebras) are always Morita equivalent.

(b) B0pkGq „SM B0pkrG{Op1pGqsq because Op1pGq always acts trivially on the principal block.

(c) “Alperin/Dade”. If G E rG and there is a Sylow p-subgroup P of G such that rG “ GC
rGpPq,

then
B0pk rGq „SM B0pkGq .

In fact in this case the two principal blocks are isomorphic.

(d) “Fong-Reynolds”. If H E G, b P BlppHq, T :“ StabGpbq, then there exists a bijection

BlppT | bq
„
ÝÑ BlppB | bq, B ÞÑ BG

where the bimodule M :“ 1BG ¨ kG ¨ 1B realises a splendid Morita equivalence between B
and BG .

Remark 19.7
It can be proved that splendidly Morita equivalent blocks and basically equivalent blocks necessarily
have isomorphic defect groups.
Whether Morita equivalent blocks necessarily have isomorphic defect groups was an open question
for a long time. However, as mentioned by Claudio in his talk, a special case is the modular
isomorphism problem, which has recently (July 2021) been shown to have a negative answer by
Garcia-Margolis-Del Rio. More precisely, they prove that there are non-isomorphic finite 2-groups
G and G1 such that the group rings of G and G1 over any field of characteristic 2 are isomorphic.

Finally we mention that the notions of a Morita and a splendid Morita equivalence can be weakened
in different flavours to equivalences between the stable module categories or of the bounded derived
categories of the blocks.

Definition 19.8 (Rickard equivalence / Stable equivalence of Morita type)
Let G and G1 be two finite groups. Two block algebras A P BlppGq and B P BlppG1q are called:

(a) Rickard (or derived) equivalent if the derived categories DbpmodpAqq and DbpmodpBqq of
bounded complexes of finitely generated modules over A and B are equivalent as triangulated
categories.

(b) “stably equivalent à la Morita” (or say that there is a stable equivalence of Morita type
between A and B) if there exist an pA,Bq-bimodule M which is projective as an A-module and
as a B-module and a pB, Aq-bimoduleN which is projective as a B-module and as an A-module
such that M bB N – A ‘ pprojectivesq as pA, Aq-bimodules and N bA M – B ‘ pprojectivesq
as pB,Bq-bimodules.

Remark 19.9

(a) A derived version of Morita’s theorem asserts that A and B are Rickard equivalent if and only
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if the equivalence of triangulated categories between DbpmodpAqq and DbpmodpBqq can be
realised by tensoring over B with a bounded complex M‚ of pA,Bq-bimodules in which each
term is both projective as an A-module and as B-module. When all terms in this complex
(seen as one-sided left modules) are p-permutation modules, then the equivalence is called a
splendid Rickard equivalence.

(b) A stable equivalence of Morita type between A and B induces an equivalence of triangulated
categories between the stable categories stmodpAq and stmodpBq.

See the HANDOUT of my Beamer presentation for relations between these equivalences.

Finally, we mention that blocks with cyclic defect groups are a very nice playground to play around
with several notions of equivalences – mentioned in this section – and more concepts such as the Green
correspondence, Clifford theory or perfect isometries of characters.

Remark 19.10 (Blocks with cyclic defect groups)
Let B P BlppkGq be a block with a cyclic defect group D. Let D1 be the unique cyclic subgroup
of D of order p. As D is cyclic, NGpD1q ě NGpDq, so we may consider the Brauer correspondent
b P BlppNGpD1qq of B, let c P BlppCGpD1qq be a block of CGpD1q covered by b and let b1 P
BlppStabNGpD1qpcqq be the Fong-Reynolds correspondent of c. Then, we have the following situation:

G B ´ mod

N1 b´ mod

StabNGpD1qpcq b1 ´ mod

CGpD1q c ´ mod

stable equivalence of Morita type, induced by the Green correspondence
(+ a perfect isometry)

splendid Morita equivalence (given by the Fong-Reynolds correspondence, induced by IndN1
T )

Clifford theory (induced by IndTCGpD1q
)
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