Modules over Rings and Algebras: Basics

These notes provides you with a short recap of the notions of the theory of modules, which I will assume
as known throughout this mini-course. The text is thought, so that you can refer to it if you have doubts
about some elementary definitions and results, but proofs are omitted. For details | recommend Rotman’s
book below.

References:

[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, Rl: American Mathematical
Society (AMS), 2010.

Notation: throughout these notes R and S denote rings. Unless otherwise specified, all rings are
assumed to be wnital and associative.

A Modules, submodules, morphisms

Definition A.1 (Left R-module, right R-module, (R, S)-bimodule)

(a) A left R-module is an ordered triple (M, +,-), where (M, +) is an abelian group and
- Rx M — M,(r,m) — r-mis a binary operation such that the map

A R — EndM)
ro— A=A M—Mm-—r-m

is a ring homomorphism. The operation - is called a scalar multiplication or an external
composition law.

(b) A right R-module is defined analogously using a scalar multiplication - : M x R — M,
(m, r) — m-r on the right-hand side.

(c) An (R, S)-bimodule is an abelian group (M, +) which is both a left R-module and a right
S-module, and which satisfies the axiom

r-(m-s)y=(r-m)-s VreR,¥YseS VmeM.




Convention: Unless otherwise stated, in this lecture we always work with left modules. When no
confusion is to be made, we will simply write "R-module" to mean "left R-module', denote R-modules
by their underlying sets and write rm instead of r - m.

Definitions/properties for/of right modules and bimodules are similar to those for left modules, hence
in the sequel we omit them.

Definition A.2 (R-submodule)
An R-submodule of an R-module M is a subgroup U < M such that r-ue UV reR, Y uel.

Definition A.3 (Morphisms)

A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map of R-
modules ¢ : M — N such that:

(1) ¢ is a group homomorphism; and
(it) @(r-m)=r-@m)¥YreR, Y meM.
Furthermore:

- An injective (resp. surjective) morphism of R-modules is sometimes called a monomorphism
(resp. an epimorphism) and we often denote it with a hook arrow "—" (resp. a two-head
arrow "—").

- A bijective morphism of R-modules is called an isomorphism (or an R-isomorphism), and we
write M = N if there exists an R-isomorphism between M and N.

- A morphism from an R-module to itself is called an endomorphism and a bijective endomor-
phism is called an automorphism .

Notation A.4

We let RMod denote the category of left R-modules (with R-linear maps as morphisms), we let
Modgr denote the category of right R-modules (with R-linear maps as morphisms), and we let
rRMods denote the category of (R, S)-bimodules (with (R, S)-linear maps as morphisms).

Remark A.5

(a) It is easy to check that Definition A.1(a) is equivalent to requiring that (M, +, -) satisfies the
following axioms:
(M1) (M, +) is an abelian group;
(M2) (r1+r2)-m=r1-m+ry-mfor each ri,r; € R and each m € M;
(M3) r-(m1+ my) =r-mq+r-myfor each r e R and all my, my e M;
(M4) (rs)-m =r-(s-m) for each r,s e R and all m e M.
(M5) 1gr - m = m for each m € M.




In other words, modules over rings satisfy the same axioms as vector spaces over fields. Hence:

Vector spaces over a field K are K-modules, and conversely.
(b) Abelian groups are Z-modules, and conversely.

(c) If the ring R is commutative, then any right module can be made into a left module, and
conversely.

(d) Change of the base ring.
If ¢ : S — R is a ring homomorphism, then every R-module M can be endowed with the
structure of an S-module with external composition law given by

i SXM—M,(s,m)—s-m:=¢(s) -m.

(e) If ¢ : M — N is a morphism of R-modules, then the kernel ker(¢) := {m e M | ¢(m) = On}
of ¢ is an R-submodule of M and the image Im(¢) := (M) = {@(m) | m € M} of ¢ is an
R-submodule of N.

If M = N and ¢ is invertible, then the inverse is the usual set-theoretic inverse map ¢~"' and
is also an R-homomorphism.

Notation A.6
Given R-modules M and N, we set Homg(M, N) := {¢ : M — N | ¢ is an R-homomorphism}.
This is an abelian group for the pointwise addition of maps:
+: Homg(M,N) x Homg(M,N) — Homg(M, N)
(¢, ) = gt M— N, m— p(m)+¢(m).

In case N = M, we write Endg(M) := Homg(M, M) for the set of endomorphisms of M and
Autr(M) for the set of automorphisms of M, i.e. the set of invertible endomorphisms of M.

Lemma-Definition A.7 (Quotients of modules)

Let U be an R-submodule of an R-module M. The quotient group M/U can be endowed with the
structure of an R-module in a natural way via the external composition law

(r,m+U)r—>r-m+U

The canonical map 7 : M — M/U,m — m + U is R-linear and we call it the canonical (or
natural) (ho)momorphism or the quotient (ho)momorphism.

Definition A.8 (Cokernel, coimage)

Let ¢ € Homg(M, N). The cokernel of ¢ is the quotient R-module coker(¢) := N/Im ¢, and the
coimage of ¢ is the quotient R-module M/ ker ¢.




Theorem A.9 (The universal property of the quotient and the isomorphism theorems)

(a) Universal property of the quotient: Let ¢ : M — N be a homomorphism of R-modules.
If U is an R-submodule of M such that U < ker(¢), then there exists a unique R-module
homomorphism @ : M/U — N such that @o s = ¢, or in other words such that the following
diagram commutes:

M—— N

M/U

Concretely, @(m + U) = ¢(m) V. m+ Ue M/U.

(b) 1st isomorphism theorem: With the notation of (a), if U = ker(¢), then

@ : M/ker(¢) — Im(¢)
is an isomorphism of R-modules.

(c) 2nd isomorphism theorem: If Uy, U, are R-submodules of M, then so are Ui nU, and Uy + U,
and there is an isomorphism of R-modules

(Ui + Up) /Uy = Uy J(Uy n Us) .

(d) 3rd isomorphism theorem: If U; < U, are R-submodules of M, then there is an isomorphism
of R-modules

M/ [ Uy uy) =M/ Uz

(e) Correspondence theorem: If U is an R-submodule of M, then there is a bijection

{R-submodules X of M| U< X} «— {R-submodules of M/U}
X - XU
7 (2) —  Z.

B Free modules and projective modules

Free modules

Definition B.1 (Generating set | R-basis | finitely generated/free R-module)
Let M be an R-module and let X £ M be a subset. Then:

(@) M is said to be generated by X if every element m € M may be written as an R-linear
combination m = Y] _y Acx, Le. where A, € R is almost everywhere 0. In this case we write
M={(X)rorM=7> _yRx.




(b) M is said to be finitely generated if it admits a finite set of generators.

(c) X is an R-basis (or simply a basis) if X generates M and if every element of M can be written
in a unique way as an R-linear combination ) ., A, X (i.e. with A, € R almost everywhere 0).

(d) M is called free if it admits an R-basis X, and | X]| is called the R-rank of M.
Notation: In this case we write M = @,y Rx = P,.x R.

Remark B.2

(a) Warning: If the ring R is not commutative, then it is not true in general that two different
bases of a free R-module have the same number of elements.

(b) Let X be a generating set for M. Then, X is a basis of M if and only if S is R-linearly
independent.

(c) If R is a field, then every R-module is free. (R-modules are R-vector spaces in this case!)

Proposition B.3 (Universal property of free modules)

Let M be a free R-module with R-basis X. If N is an R-module and f : X — N is a map (of
sets), then there exists a unique R-homomorphism f : M — N such that the following diagram
commutes:

X 14N
o7
Y

inc

M

We say that f is obtained by extending f by R-linearity.

Proof: Given an R-linear combination ) ,_, Ax € M, set ?(erx Ax) 1= ex At (x). |

Proposition B.4 (Properties of free modules)

(a) Every R-module M is isomorphic to a quotient of a free R-module.

(b) If P is a free R-module, then Homg (P, —) is an exact functor.

Projective modules

Proposition-Definition B.5 (Projective module)

Let P be an R-module. Then the following are equivalent:

(a) The functor Homg(P, —) is exact.

(b) If ¢ € Homg(M, N) is a surjective morphism of R-modules, then the morphism of abelian
groups ¢, : Homg(P, M) — Homg(P, N) is surjective.



(c) If 7 € Homg(M, P) is a surjective morphism of R-modules, then m splits, i.e., there exists
o € Homg(P, M) such that mo o = Idp.

(d) P is isomorphic to a direct summand of a free R-module.

If P satisfies these equivalent conditions, then P is called projective.

Example B.6

(a) If R = Z, then every submodule of a free Z-module is again free (main theorem on Z-modules).

(b) Let e be an idempotent in R, that is e = e. Then, R =~ Re ® R(1 — e) and Re is projective
but not free if e #£ 0, 1.

(d) A direct sum of modules @, P; is projective if and only if each P; is projective.

C Direct products and direct sums

Let {M;}ic/ be a family of R-modules. Then the abelian group [ [,c; M, that is the product of {M;}c
seen as a family of abelian groups, becomes an R-module via the following external composition law:

R x 1_[ M[ I 1—[ M,'
iel iel
(. (miier) — (r-mi) g,

Furthermore, for each j e /, we let o : []
the product to the module M;.

et Mi — M;, (m;)ie; — m; denotes the j-th projection from

Proposition C.1 (Universal property of the direct product)

If {¢; : L —> M}/ is a family of R-homomorphisms, then there exists a unique R-homomorphism
@ : L —> [,y Mi such that ;0 @ = ¢; for every j e I.

Thus,
Homg (L,H/Vh) — [ [ Home(L, M)
iel el
fr— (ﬂi © f)ie/

is an isomorphism of abelian groups.




Now let @, M; be the subgroup of [ [,.; M; consisting of the elements (m;);; such that m; = 0 al-
most everywhere (i.e. m; = 0 exept for a finite subset of indices i € /). This subgroup is called the
direct sum of the family {M;},c; and is in fact an R-submodule of the product. For each j € /, we let
nj: M — Py Mi, m; — denote the canonical injection of M; in the direct sum.

Proposition C.2 (Universal property of the direct sum)

If {fi : M; — L}/ is a family of R-homomorphisms, then there exists a unique R-homomorphism
@ : @ Mi — L such that fon; = f; for every je /.

Thus,
Homg (@D M, L) — [ ] Homg(M:, 1)

iel iel
f— (fO I]l)

i€l

is an isomorphism of abelian groups.

Remark C.3
It is clear that if |/| < 00, then @;c; M; = [ [;c; M.

The direct sum as defined above is often called an external direct sum. This relates as follows with the
usual notion of internal direct sum:

Remark C.4 (“Internal” direct sums)

Let M be an R-module and Ny, N, be two R-submodules of M. We write M = N3 @ N if every
m € M can be written in a unique way as m = nq + n, where n1 € Ny and n € N, or equivalently
if M = N7+ Ny and Ny n Ny = {0}. In this case,

@: M —> Ny x Np = N1 @ N> (external direct sum)
m=ny+ny — (n,n2),

is an isomorphism of R-modules.
This obviously generalises to arbitrary internal finite direct sums M = @,.; N;.

D Exact sequences

Exact sequences constitute a very useful tool for the study of modules. Often we obtain valuable infor-
mation about modules by plugging them in short exact sequences, where the other terms are known.



Definition D.1 (Exact sequence)

A sequence L 2 MY N of R-modules and R-linear maps is called exact (at M) if Im ¢ = ker .

Remark D.2 (Injectivity/surjectivity/short exact sequences)

(@) L s Mis injective <= 0 — L %5 M is exact at L.
(b) M Y Nis surjective <= M YN — 0is exact at N.

) 0— LM YN — 0is exact (Le. at L, M and N) if and only if ¢ is injective, ¢ is
surjective and ¢ induces an R-isomorphism ¢y : M/Im @ — N, m + Im ¢ — ¢(m).
Such a sequence is called a short exact sequence (s.e.s. for short).

(d) If ¢ € Homg(L, M) is an injective morphism, then there is a s.e.s.
0— L% M-Zs coker(p) — 0

where s is the canonical projection.

(e) If g € Homg(M, N) is a surjective morphism, then there is a s.es.

0 — ker(¢)) —> M- N0,

where i is the canonical injection.

Proposition D.3

Let Q be an R-module. Then the following holds:
(a) Homg(Q, —) : RMod — Ab is a left exact covariant functor. In other words, if

0—L-%MYN-—0isasesof R-modules, then the induced sequence

0 —— Homg(Q, L) —= Homg(0, M) —*~ Homg (0, N)

is an exact sequence of abelian groups. Here ¢, := Homg(Q, ¢), that is ¢.(a) = ¢ o a for
every a € Homg(Q, L) and similarly for (.

(b) Homg(—, Q) : kMod — Ab is a left exact contravariant functor. In other words, if

0—L- MY N-—0isasesof R-modules, then the induced sequence

0 —— Homg(N, 0) —“> Homr(M, Q) —*~ Homg(L, O)

is an exact sequence of abelian groups. Here ¢* := Homg(¢, Q), that is ¢*(a) = a o ¢ for
every a € Homg(M, Q) and similarly for ¢*.

Remark D.4
mhat Homg(Q, —) and Homg(—, Q) are not right exact in general.



Lemma-Definition D.5 (Split short exact sequence)

Ases 0— L% M- N—0 of R-modules is called split if it satisfies one of the following
equivalent conditions:

(a) ¢ admits an R-linear section, i.e. if 30 € Homg(N, M) such that yo o = Idn;
(b) @ admits an R-linear retraction, i.e. if 3 p € Homg(M, L) such that po ¢ = Id;;

(c) 4 an R-isomorphism a : M — L@ N such that the following diagram commutes:

0 [~ mM—Y N 0
ldLl O \La O \L|d/\/
0—>L—>ILaNL>N—s0,

where i, resp. p, are the canonical inclusion, resp. projection.

Remark D.6

If the sequence splits and ¢ is a section, then M = ¢(L) ® o(N). If the sequence splits and p is a
retraction, then M = (L) @ ker(p).

Example D.7

The s.e.s. of Z-modules

0 z/22-Y~7p2702/22—"~7/27 0

defined by ¢([1]) = ([1],[0]) and where 7 is the canonical projection onto the cokernel of ¢ is
split but the sequence

0——>2z/22-Y~7/47 "+ 7/27 0

defined by ¢([1]) = ([2]) and 7 is the canonical projection onto the cokernel of ¢ is not split.

E Tensor products

Definition E.1 (Tensor product of R-modules)

Let M be a right R-module and let N be a left R-module. Let F be the free Z-module with basis
M x N. Let G be the subgroup of F generated by all the elements

(my +my,n)— (mq,n)—(my,n), Ymy,myeM,VneN,
(m,n1+ny)— (m,ny)—(m,nz), VYmeM,¥ny,ne N, and
(mr,n)—(m,rn), ¥YmeM,Vne N,VreR.

The tensor product of M and N (balanced over R), is the abelian group M ®g N := F/G. The
class of (m,n) € F in M®g N is denoted by m ® n.




Remark E.2
(@) MRrN={m®n|meM,ne N)z.
(b) In M®gr N, we have the relations

(m+m)®n=mn+my®n, Ymiy,myeM,¥neN,
m®(n1+n)=mn +mny, YmeM,Vni,neN, and
mrn=m®rn, YmeM,Yne N,VreR.

VmeM,V ne N.

Definition E.3 (R-balanced map)

R-balanced if

f(my + my,n) =f(mqy,n)+f(my,n), VYmq,myeM,¥neN,
f(m,ny +n2) =f(m,ny)+f(m,n2), YmeM,¥ny,npeN,
f(mr,n) =f(m,rn), Yme M,Vne N,V¥reR.

Remark E.4
The canonical map t : M x N — M®g N, (m,n) — m® n is R-balanced.

Proposition E.5 (Universal property of the tensor product)

the following diagram commutes: MxN—fona

7
v
P
_ f

M®r N

Proof: Let t : M x N — F denote the canonical inclusion, and let 7 : F — F/G denote the canonical
projection. By the universal property of the free Z-module, there exists a unique Z-linear map 7 : F — A
such that for = f. Since f is R-balanced, we have that G < ker(f). Therefore, the universal property of
the quotient yields the existence of a unique homomorphism of abelian groups f : F/G — A such that
for=F:

N— A

M x
74
<\L o
_ -7 /
F- /
v
s
l -~ f
M®g N~ F/G

Clearly t = mo1, and hence fot=fomor=Ffor=f.

In particular, m®0=0=0®nVmeM,VneNand (—m)®n=—-(m®n) =m® (—n)

Let M and N be as above and let A be an abelian group. A map f : M x N — A is called

Let M be a right R-module and let N be a left R-module. For every abelian group A and every
R-balanced map f : M x N — A there exists a unique Z-linear map f : M®gr N — A such that
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Remark E.6
Let M and N be as in Definition E.1.

(a) Let {M;}ic/ be a collection of right R-modules, M be a right R-module, N be a left R-module
and {N;}i) be a collection of left R-modules. Then, we have

PM; @ N =P (M Qr N)

iel iel
jel jel

(This is easily proved using both the universal property of the direct sum and of the tensor
product.)

(b) There are natural isomorphisms of abelian groups given by R®r N = N via r®n — rn, and
MRPprR=Mviam@r— mr.

(c) It follows from (b), that if P is a free left R-module with R-basis X, then N®r P =~ (—Dxex N,
and if P is a free right R-module with R-basis X, then PQpr M = @ M.

(d) Let Q be a third ring. Then we obtain module structures on the tensor product as follows:

(i) f Mis a (Q, R)-bimodule and N a left R-module, then M ®g N can be endowed with
the structure of a left Q-module via

g-(m®n)=qg-m®n VYqge Q,VmeM,VneN.

(i) If M is a right R-module and N an (R, S)-bimodule, then M®g N can be endowed with
the structure of a right S-module via

(m®n)-s=gm®n-s VYseS,VYmeM,Vne N.

(iit) If M is a (Q, R)-bimodule and N an (R, S)-bimodule. Then M ®gr N can be endowed
with the structure of a (Q, S)-bimodule via the external composition laws defined in (i)
and (ii).

(e) Assume R is commutative. Then any R-module can be viewed as an (R, R)-bimodule. Then,
in particular, M ®g N becomes an R-module (both on the left and on the right).

(f) For instance, it follows from (e) that if K is a field and M and N are K-vector spaces with
K-bases {x;}ic/ and {y;} e/ resp., then M®x N is a K-vector space with a K-basis given by

{(Xi ®yj}ijerxs -

(g) Tensor product of morphisms: Let f : M — M’ be a morphism of right R-modules and
g : N — N’ be a morphism of left R-modules. Then, by the universal property of the
tensor product, there exists a unique Z-linear map f ® g : M®r N — M’ ®g N’ such that
(f®g)(m®@n) = f(m)®g(n).
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Proposition E.7 (Right exactness of the tensor product)

(a) Let N be a left R-module. Then —®gr N : Modr — Ab is a right exact covariant functor.

(b) Let M be a right R-module. Then M ®r — :gMod — Ab is a right exact covariant functor.

Remark E.8

The functors — ®r N and M ®g — are not left exact in general.

F Algebras

Definition F.1 (Algebra)

Let R be a commutative ring.

(a) An R-algebra is an ordered quadruple (A, +, -, %) such that the following axioms hold:
(A1) (A +,) is a ring;
(A2) (A, +,%) is a left R-module; and
(A3) r«(a-b)=(rxa)-b=a-(r«b)Va,beAVreR.

(b) A map f: A— B between two R-algebras is called an algebra homomorphism iff:

(i) f is a homomorphism of R-modules;

(it) f is a ring homomorphism.

Example F.2 (Algebras)

(@) The commutative ring R itself is an R-algebra.

[The internal composition law "" and the external composition law "+" coincide in this case.]

(b) For each n € Z> the set M,(R) of n x n-matrices with coefficients in R is an R-algebra for
its usual R-module and ring structures.
[Note: in particular R-algebras need not be commutative rings in general!]

(c) Let K be a field. Then for each n € Z>4 the polynom ring K[Xj,..., X,] is a K-algebra for
its usual K-vector space and ring structure.

(d) R and C are Q-algebras, C is an R-algebra, ...

(e) Rings are Z-algebras.

Example F.3 (Modules over algebras)

(@) A = M,(R) = R" is an A-module for the external composition law given by left matrix
multiplication A x R" — R", (B, x) — Bx.
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(b) If K is a field and V a K-vector space, then V becomes an A-algebra for A := Endg(V)
together with the external composition law

A X V—»\/,((p,v)n—>(p(v).

(c) An arbitrary A-module M can be seen as an R-module via a change of the base ring since
R — A,r— rx14 is a homomorphism of rings by the algebra axioms.

&emark F.4

Let R be a commutative ring.
(a) Let M, N be R-modules. Prove that:

(1) Endr(M), endowed with the pointwise addition of maps and the usual composition of
maps, is a ring. (Note that the commutativity of R is not necessary!)

(2) The abelian group Homg(M, N) is a left R-module for the external composition law
defined by

(rf)(m) := f(rm) = rf(m) VreR,YfeHomg(M,N), Yme M.
It follows that Endg(M) is an R-algebra.

(b) Let now A be an R-algebra and M be an A-module. Then Endg(M) and Enda(M) are
R-algebras.




