
Modules over Rings and Algebras: Basics

These notes provides you with a short recap of the notions of the theory of modules, which I will assume
as known throughout this mini-course. The text is thought, so that you can refer to it if you have doubts
about some elementary definitions and results, but proofs are omitted. For details I recommend Rotman’s
book below.

References:

[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American Mathematical
Society (AMS), 2010.

Notation: throughout these notes R and S denote rings. Unless otherwise specified, all rings are
assumed to be unital and associative.

A Modules, submodules, morphisms

Definition A.1 (Left R-module, right R-module, pR � Sq-bimodule)

(a) A left R-module is an ordered triple pM� `� ¨q, where pM� `q is an abelian group and
¨ : R ˆ M ›Ñ M�p�� �q fiÑ � ¨ � is a binary operation such that the map

λ : R ›Ñ EndpMq
� fiÑ λp�q :“ λ� : M ›Ñ M� � fiÑ � ¨ �

is a ring homomorphism. The operation ¨ is called a scalar multiplication or an external

composition law.

(b) A right R-module is defined analogously using a scalar multiplication ¨ : M ˆ R ›Ñ M�
p�� �q fiÑ � ¨ � on the right-hand side.

(c) An pR � Sq-bimodule is an abelian group pM� `q which is both a left R-module and a right
S-module, and which satisfies the axiom

� ¨ p� ¨ �q “ p� ¨ �q ¨ � @ � P R � @ � P S� @ � P M �
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Convention: Unless otherwise stated, in this lecture we always work with left modules. When no
confusion is to be made, we will simply write "R-module" to mean "left R-module", denote R-modules
by their underlying sets and write �� instead of � ¨ �.

Definitions/properties for/of right modules and bimodules are similar to those for left modules, hence
in the sequel we omit them.

Definition A.2 (R-submodule)

An R-submodule of an R-module M is a subgroup U § M such that � ¨ � P U @ � P R , @ � P U .

Definition A.3 (Morphisms)

A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map of R-
modules � : M ›Ñ N such that:

(i) � is a group homomorphism; and

(ii) �p� ¨ �q “ � ¨ �p�q @ � P R , @ � P M .

Furthermore:

¨ An injective (resp. surjective) morphism of R-modules is sometimes called a monomorphism

(resp. an epimorphism) and we often denote it with a hook arrow "ãÑ" (resp. a two-head
arrow "⇣").

¨ A bijective morphism of R-modules is called an isomorphism (or an R-isomorphism), and we
write M – N if there exists an R-isomorphism between M and N .

¨ A morphism from an R-module to itself is called an endomorphism and a bijective endomor-
phism is called an automorphism .

Notation A.4

We let RMod denote the category of left R-modules (with R-linear maps as morphisms), we let
ModR denote the category of right R-modules (with R-linear maps as morphisms), and we let
RModS denote the category of pR � Sq-bimodules (with pR � Sq-linear maps as morphisms).

Remark A.5

(a) It is easy to check that Definition A.1(a) is equivalent to requiring that pM� `� ¨q satisfies the
following axioms:

(M1) pM� `q is an abelian group;
(M2) p�1 ` �2q ¨ � “ �1 ¨ � ` �2 ¨ � for each �1� �2 P R and each � P M;
(M3) � ¨ p�1 ` �2q “ � ¨ �1 ` � ¨ �2 for each � P R and all �1� �2 P M;
(M4) p��q ¨ � “ � ¨ p� ¨ �q for each �� � P R and all � P M .
(M5) 1R ¨ � “ � for each � P M .



3

In other words, modules over rings satisfy the same axioms as vector spaces over fields. Hence:
Vector spaces over a field K are K -modules, and conversely.

(b) Abelian groups are Z-modules, and conversely.

(c) If the ring R is commutative, then any right module can be made into a left module, and
conversely.

(d) Change of the base ring.

If � : S ›Ñ R is a ring homomorphism, then every R-module M can be endowed with the
structure of an S-module with external composition law given by

¨ : S ˆ M ›Ñ M� p�� �q fiÑ � ¨ � :“ �p�q ¨ � �

(e) If � : M ›Ñ N is a morphism of R-modules, then the kernel kerp�q :“ t� P M | �p�q “ 0Nu
of � is an R-submodule of M and the image Imp�q :“ �pMq “ t�p�q | � P Mu of � is an
R-submodule of N .
If M “ N and � is invertible, then the inverse is the usual set-theoretic inverse map �´1 and
is also an R-homomorphism.

Notation A.6

Given R-modules M and N , we set HomR pM� Nq :“ t� : M ›Ñ N | � is an R-homomorphismu.
This is an abelian group for the pointwise addition of maps:

` : HomR pM� Nq ˆ HomR pM� Nq ›Ñ HomR pM� Nq
p�� ψq fiÑ � ` ψ : M ›Ñ N� � fiÑ �p�q ` ψp�q .

In case N “ M , we write EndR pMq :“ HomR pM� Mq for the set of endomorphisms of M and
AutR pMq for the set of automorphisms of M , i.e. the set of invertible endomorphisms of M .

Lemma-Definition A.7 (Quotients of modules)

Let U be an R-submodule of an R-module M . The quotient group M{U can be endowed with the
structure of an R-module in a natural way via the external composition law

R ˆ M{U ›Ñ M{U
`�� � ` U˘

fi›Ñ � ¨ � ` U
The canonical map π : M ›Ñ M{U� � fiÑ � ` U is R-linear and we call it the canonical (or
natural) (ho)momorphism or the quotient (ho)momorphism.

Definition A.8 (Cokernel, coimage)

Let � P HomR pM� Nq. The cokernel of � is the quotient R-module cokerp�q :“ N{ Im �, and the
coimage of � is the quotient R-module M{ ker �.
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Theorem A.9 (The universal property of the quotient and the isomorphism theorems)

(a) Universal property of the quotient: Let � : M ›Ñ N be a homomorphism of R-modules.
If U is an R-submodule of M such that U Ñ kerp�q, then there exists a unique R-module
homomorphism � : M{U ›Ñ N such that � ˝ π “ �, or in other words such that the following
diagram commutes:

M N

M{U
π

�
ö

D! �

Concretely, �p� ` Uq “ �p�q @ � ` U P M{U .

(b) 1st isomorphism theorem: With the notation of (a), if U “ kerp�q, then

� : M{ kerp�q ›Ñ Imp�q

is an isomorphism of R-modules.

(c) 2nd isomorphism theorem: If U1� U2 are R-submodules of M , then so are U1XU2 and U1`U2,
and there is an isomorphism of R-modules

pU1 ` U2q{U2 – U1{pU1 X U2q �

(d) 3rd isomorphism theorem: If U1 Ñ U2 are R-submodules of M , then there is an isomorphism
of R-modules

pM{U1q {pU2{U1q – M{U2 �
(e) Correspondence theorem: If U is an R-submodule of M , then there is a bijection

tR-submodules X of M | U Ñ Xu –Ñ tR-submodules of M{Uu
X fiÑ X{U

π´1pZ q –[ Z .

B Free modules and projective modules

Free modules

Definition B.1 (Generating set / R-basis / finitely generated/free R-module)

Let M be an R-module and let X Ñ M be a subset. Then:

(a) M is said to be generated by X if every element � P M may be written as an R-linear
combination � “ ∞

�PX λ�� , i.e. where λ� P R is almost everywhere 0. In this case we write
M “ xXyR or M “ ∞

�PX R� .
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(b) M is said to be finitely generated if it admits a finite set of generators.

(c) X is an R-basis (or simply a basis) if X generates M and if every element of M can be written
in a unique way as an R-linear combination

∞
�PX λ�X (i.e. with λ� P R almost everywhere 0).

(d) M is called free if it admits an R-basis X , and |X | is called the R-rank of M .
Notation: In this case we write M “ À

�PX R� – À
�PX R .

Remark B.2

(a) Warning: If the ring R is not commutative, then it is not true in general that two different
bases of a free R-module have the same number of elements.

(b) Let X be a generating set for M . Then, X is a basis of M if and only if S is R-linearly
independent.

(c) If R is a field, then every R-module is free. (R-modules are R-vector spaces in this case!)

Proposition B.3 (Universal property of free modules)

Let M be a free R-module with R-basis X . If N is an R-module and � : X ›Ñ N is a map (of
sets), then there exists a unique R-homomorphism p� : M ›Ñ N such that the following diagram
commutes:

X N

M
inc

�
ö

D!p�

We say that p� is obtained by extending � by R-linearity.

Proof : Given an R-linear combination
∞

�PX λ�� P M , set p�p∞
�PX λ��q :“ ∞

�PX λ��p�q.

Proposition B.4 (Properties of free modules)

(a) Every R-module M is isomorphic to a quotient of a free R-module.

(b) If P is a free R-module, then HomR pP� ´q is an exact functor.

Projective modules

Proposition-Definition B.5 (Projective module)

Let P be an R-module. Then the following are equivalent:
(a) The functor HomR pP� ´q is exact.

(b) If ψ P HomR pM� Nq is a surjective morphism of R-modules, then the morphism of abelian
groups ψ˚ : HomR pP� Mq ›Ñ HomR pP� Nq is surjective.
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(c) If π P HomR pM� Pq is a surjective morphism of R-modules, then π splits, i.e., there exists
σ P HomR pP� Mq such that π ˝ σ “ IdP .

(d) P is isomorphic to a direct summand of a free R-module.

If P satisfies these equivalent conditions, then P is called projective.

Example B.6

(a) If R “ Z, then every submodule of a free Z-module is again free (main theorem on Z-modules).

(b) Let � be an idempotent in R , that is �2 “ �. Then, R – R� ‘ Rp1 ´ �q and R� is projective
but not free if � ‰ 0� 1.

(d) A direct sum of modules
À

�PI P� is projective if and only if each P� is projective.

C Direct products and direct sums

Let tM�u�PI be a family of R-modules. Then the abelian group
±

�PI M�, that is the product of tM�u�PI
seen as a family of abelian groups, becomes an R-module via the following external composition law:

R ˆ
π

�PI
M� ›Ñ

π

�PI
M�

`�� p��q�PI
˘

fi›Ñ
`� ¨ ��

˘
�PI �

Furthermore, for each � P I , we let π� :
±

�PI M� ›Ñ M� � p��q�PI fiÑ �� denotes the �-th projection from
the product to the module M� .

Proposition C.1 (Universal property of the direct product)

If t�� : L ›Ñ M�u�PI is a family of R-homomorphisms, then there exists a unique R-homomorphism
� : L ›Ñ ±

�PI M� such that π� ˝ � “ �� for every � P I .
L

¨¨¨ �� ö

��

�� ¨¨¨
ö

⌘⌘

�

✏✏±
�PI M�

π�
{{

π�
##M� M�

Thus,
HomR

´
L� π

�PI
M�

¯
›Ñ

π

�PI
HomR pL� M�q

� fi›Ñ
`π� ˝ �˘

�PI
is an isomorphism of abelian groups.
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Now let
À

�PI M� be the subgroup of
±

�PI M� consisting of the elements p��q�PI such that �� “ 0 al-
most everywhere (i.e. �� “ 0 exept for a finite subset of indices � P I). This subgroup is called the
direct sum of the family tM�u�PI and is in fact an R-submodule of the product. For each � P I , we let
η� : M� ›Ñ À

�PI M�� �� fiÑ denote the canonical injection of M� in the direct sum.

Proposition C.2 (Universal property of the direct sum)

If t�� : M� ›Ñ Lu�PI is a family of R-homomorphisms, then there exists a unique R-homomorphism
� :

À
�PI M� ›Ñ L such that � ˝ η� “ �� for every � P I .

L

À
�PI M�

�

OO

M�
η�

;;

¨¨¨ �� ö

CC

M�
η�

cc

�� ¨¨¨
ö

[[

Thus,

HomR
´ à

�PI
M�� L

¯
›Ñ

π

�PI
HomR pM�� Lq

� fi›Ñ
`� ˝ η�

˘
�PI

is an isomorphism of abelian groups.

Remark C.3

It is clear that if |I| † 8, then
À

�PI M� “ ±
�PI M�.

The direct sum as defined above is often called an external direct sum. This relates as follows with the
usual notion of internal direct sum:

Remark C.4 (“Internal” direct sums)

Let M be an R-module and N1� N2 be two R-submodules of M . We write M “ N1 ‘ N2 if every
� P M can be written in a unique way as � “ �1 ` �2, where �1 P N1 and �2 P N2, or equivalently
if M “ N1 ` N2 and N1 X N2 “ t0u. In this case,

� : M ›Ñ N1 ˆ N2 “ N1 ‘ N2 (external direct sum)
� “ �1 ` �2 fiÑ p�1� �2q ,

is an isomorphism of R-modules.
This obviously generalises to arbitrary internal finite direct sums M “ À

�PI N�.

D Exact sequences

Exact sequences constitute a very useful tool for the study of modules. Often we obtain valuable infor-
mation about modules by plugging them in short exact sequences, where the other terms are known.
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Definition D.1 (Exact sequence)

A sequence L �›Ñ M ψ›Ñ N of R-modules and R-linear maps is called exact (at M) if Im � “ ker ψ.

Remark D.2 (Injectivity/surjectivity/short exact sequences)

(a) L �›Ñ M is injective ñ 0 ›Ñ L �›Ñ M is exact at L.

(b) M ψ›Ñ N is surjective ñ M ψ›Ñ N ›Ñ 0 is exact at N .

(c) 0 ›Ñ L �›Ñ M ψ›Ñ N ›Ñ 0 is exact (i.e. at L, M and N) if and only if � is injective, ψ is
surjective and ψ induces an R-isomorphism ψ : M{ Im � ›Ñ N� � ` Im � fiÑ ψp�q.
Such a sequence is called a short exact sequence (s.e.s. for short).

(d) If � P HomR pL� Mq is an injective morphism, then there is a s.e.s.

0 ›Ñ L �›Ñ M π›Ñ cokerp�q ›Ñ 0

where π is the canonical projection.

(e) If ψ P HomR pM� Nq is a surjective morphism, then there is a s.e.s.

0 ›Ñ kerpψq �›Ñ M ψ›Ñ N ›Ñ 0 �
where � is the canonical injection.

Proposition D.3

Let Q be an R-module. Then the following holds:

(a) HomR pQ� ´q : RMod ›Ñ Ab is a left exact covariant functor. In other words, if
0 ›Ñ L �›Ñ M ψ›Ñ N ›Ñ 0 is a s.e.s of R-modules, then the induced sequence

0 // HomR pQ� Lq �˚
// HomR pQ� Mq ψ˚

// HomR pQ� Nq

is an exact sequence of abelian groups. Here �˚ :“ HomR pQ� �q, that is �˚pαq “ � ˝ α for
every α P HomR pQ� Lq and similarly for ψ˚.

(b) HomR p´� Qq : RMod ›Ñ Ab is a left exact contravariant functor. In other words, if
0 ›Ñ L �›Ñ M ψ›Ñ N ›Ñ 0 is a s.e.s of R-modules, then the induced sequence

0 // HomR pN� Qq ψ˚
// HomR pM� Qq �˚

// HomR pL� Qq

is an exact sequence of abelian groups. Here �˚ :“ HomR p�� Qq, that is �˚pαq “ α ˝ � for
every α P HomR pM� Qq and similarly for ψ˚.

Remark D.4

Notice that HomR pQ� ´q and HomR p´� Qq are not right exact in general.
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Lemma-Definition D.5 (Split short exact sequence)

A s.e.s. 0 ›Ñ L �›Ñ M ψ›Ñ N ›Ñ 0 of R-modules is called split if it satisfies one of the following
equivalent conditions:

(a) ψ admits an R-linear section, i.e. if D σ P HomR pN� Mq such that ψ ˝ σ “ IdN ;

(b) � admits an R-linear retraction, i.e. if D ρ P HomR pM� Lq such that ρ ˝ � “ IdL;

(c) D an R-isomorphism α : M ›Ñ L ‘ N such that the following diagram commutes:

0 // L �
//

IdL
✏✏

ö

M ψ
//

α
✏✏

ö

N //

IdN
✏✏

0

0 // L �
// L ‘ N �

// N // 0 �
where �, resp. �, are the canonical inclusion, resp. projection.

Remark D.6

If the sequence splits and σ is a section, then M “ �pLq ‘ σpNq. If the sequence splits and ρ is a
retraction, then M “ �pLq ‘ kerpρq.

Example D.7

The s.e.s. of Z-modules

0 // Z{2Z
�
// Z{2Z ‘ Z{2Z π

// Z{2Z // 0

defined by �pr1sq “ pr1s� r0sq and where π is the canonical projection onto the cokernel of � is
split but the sequence

0 // Z{2Z
�
// Z{4Z π

// Z{2Z // 0

defined by �pr1sq “ pr2sq and π is the canonical projection onto the cokernel of � is not split.

E Tensor products

Definition E.1 (Tensor product of R-modules)

Let M be a right R-module and let N be a left R-module. Let F be the free Z-module with basis
M ˆ N . Let G be the subgroup of F generated by all the elements

p�1 ` �2� �q ´ p�1� �q ´ p�2� �q� @�1� �2 P M� @� P N�
p�� �1 ` �2q ´ p�� �1q ´ p�� �2q� @� P M� @�1� �2 P N� and
p��� �q ´ p�� ��q� @� P M� @� P N� @� P R �

The tensor product of M and N (balanced over R ), is the abelian group M bR N :“ F{G . The
class of p�� �q P F in M bR N is denoted by � b �.
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Remark E.2

(a) M bR N “ x� b � | � P M� � P NyZ.

(b) In M bR N , we have the relations

p�1 ` �2q b � “ �1 b � ` �2 b �� @�1� �2 P M� @� P N�
� b p�1 ` �2q “ � b �1 ` � b �2� @� P M� @�1� �2 P N� and
�� b � “ � b ��� @� P M� @� P N� @� P R �

In particular, � b 0 “ 0 “ 0 b � @ � P M , @ � P N and p´�q b � “ ´p� b �q “ � b p´�q
@ � P M , @ � P N .

Definition E.3 (R-balanced map)

Let M and N be as above and let A be an abelian group. A map � : M ˆ N ›Ñ A is called
R-balanced if

�p�1 ` �2� �q “ �p�1� �q ` �p�2� �q� @�1� �2 P M� @� P N�
�p�� �1 ` �2q “ �p�� �1q ` �p�� �2q� @� P M� @�1� �2 P N�
�p��� �q “ �p�� ��q� @� P M� @� P N� @� P R �

Remark E.4

The canonical map � : M ˆ N ›Ñ M bR N� p�� �q fiÑ � b � is R-balanced.

Proposition E.5 (Universal property of the tensor product)

Let M be a right R-module and let N be a left R-module. For every abelian group A and every
R-balanced map � : M ˆ N ›Ñ A there exists a unique Z-linear map � : M bR N ›Ñ A such that
the following diagram commutes: M ˆ N �

//

�
✏✏

A

M bR N
�

ö
;;

Proof : Let � : M ˆ N ›Ñ F denote the canonical inclusion, and let π : F ›Ñ F{G denote the canonical
projection. By the universal property of the free Z-module, there exists a unique Z-linear map �̃ : F ›Ñ A
such that �̃ ˝ � “ � . Since � is R-balanced, we have that G Ñ kerp�̃q. Therefore, the universal property of
the quotient yields the existence of a unique homomorphism of abelian groups � : F{G ›Ñ A such that
� ˝ π “ �̃ :

M ˆ N �
//

�
✏✏

�

  

A

F
�̃

::

π
✏✏

M bR N – F{G
�

JJ

Clearly � “ π ˝ �, and hence � ˝ � “ � ˝ π ˝ � “ �̃ ˝ � “ � .
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Remark E.6

Let M and N be as in Definition E.1.

(a) Let tM�u�PI be a collection of right R-modules, M be a right R-module, N be a left R-module
and tN�u�PJ be a collection of left R-modules. Then, we have

à

�PI
M� bR N –

à

�PI
pM� bR Nq

M bR
à

�PJ
N� –

à

�PJ
pM bR N�q�

(This is easily proved using both the universal property of the direct sum and of the tensor
product.)

(b) There are natural isomorphisms of abelian groups given by R bR N – N via � b � fiÑ ��, and
M bR R – M via � b � fiÑ ��.

(c) It follows from (b), that if P is a free left R-module with R-basis X , then N bR P – À
�PX N ,

and if P is a free right R-module with R-basis X , then P bR M – À
�PX M .

(d) Let Q be a third ring. Then we obtain module structures on the tensor product as follows:

(i) If M is a pQ� Rq-bimodule and N a left R-module, then M bR N can be endowed with
the structure of a left Q-module via

� ¨ p� b �q “ � ¨ � b � @� P Q� @� P M� @� P N�
(ii) If M is a right R-module and N an pR � Sq-bimodule, then M bR N can be endowed with

the structure of a right S-module via

p� b �q ¨ � “ �� b � ¨ � @� P S� @� P M� @� P N�
(iii) If M is a pQ� Rq-bimodule and N an pR � Sq-bimodule. Then M bR N can be endowed

with the structure of a pQ� Sq-bimodule via the external composition laws defined in (i)
and (ii).

(e) Assume R is commutative. Then any R-module can be viewed as an pR � Rq-bimodule. Then,
in particular, M bR N becomes an R-module (both on the left and on the right).

(f ) For instance, it follows from (e) that if K is a field and M and N are K -vector spaces with
K -bases t��u�PI and t��u�PJ resp., then M bK N is a K -vector space with a K -basis given by
t�� b ��up���qPIˆJ .

(g) Tensor product of morphisms: Let � : M ›Ñ M 1 be a morphism of right R-modules and
� : N ›Ñ N 1 be a morphism of left R-modules. Then, by the universal property of the
tensor product, there exists a unique Z-linear map � b � : M bR N ›Ñ M 1 bR N 1 such that
p� b �qp� b �q “ �p�q b �p�q.
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Proposition E.7 (Right exactness of the tensor product)

(a) Let N be a left R-module. Then ´ bR N : ModR ›Ñ Ab is a right exact covariant functor.

(b) Let M be a right R-module. Then M bR ´ :R Mod ›Ñ Ab is a right exact covariant functor.

Remark E.8

The functors ´ bR N and M bR ´ are not left exact in general.

F Algebras

Definition F.1 (Algebra)

Let R be a commutative ring.

(a) An R-algebra is an ordered quadruple pA� `� ¨� ˚q such that the following axioms hold:

(A1) pA� `� ¨q is a ring;
(A2) pA� `� ˚q is a left R-module; and
(A3) � ˚ p� ¨ �q “ p� ˚ �q ¨ � “ � ¨ p� ˚ �q @ �� � P A, @ � P R .

(b) A map � : A Ñ B between two R-algebras is called an algebra homomorphism iff:

(i) � is a homomorphism of R-modules;
(ii) � is a ring homomorphism.

Example F.2 (Algebras)

(a) The commutative ring R itself is an R-algebra.
[The internal composition law "¨" and the external composition law "˚" coincide in this case.]

(b) For each � P Z•1 the set M�pRq of � ˆ �-matrices with coefficients in R is an R-algebra for
its usual R-module and ring structures.
[Note: in particular R-algebras need not be commutative rings in general!]

(c) Let K be a field. Then for each � P Z•1 the polynom ring K rX1� � � � � X�s is a K -algebra for
its usual K -vector space and ring structure.

(d) R and C are Q-algebras, C is an R-algebra, . . .

(e) Rings are Z-algebras.

Example F.3 (Modules over algebras)

(a) A “ M�pRq ñ R� is an A-module for the external composition law given by left matrix
multiplication A ˆ R� ›Ñ R�� pB� �q fiÑ B� .
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(b) If K is a field and V a K -vector space, then V becomes an A-algebra for A :“ EndK pV q
together with the external composition law

A ˆ V ›Ñ V � p�� �q fiÑ �p�q �

(c) An arbitrary A-module M can be seen as an R-module via a change of the base ring since
R ›Ñ A� � fiÑ � ˚ 1A is a homomorphism of rings by the algebra axioms.

Remark F.4

Let R be a commutative ring.

(a) Let M� N be R-modules. Prove that:

(1) EndR pMq, endowed with the pointwise addition of maps and the usual composition of
maps, is a ring. (Note that the commutativity of R is not necessary!)

(2) The abelian group HomR pM� Nq is a left R-module for the external composition law
defined by

p��qp�q :“ �p��q “ ��p�q @ � P R � @� P HomR pM� Nq� @� P M �
It follows that EndR pMq is an R-algebra.

(b) Let now A be an R-algebra and M be an A-module. Then EndR pMq and EndApMq are
R-algebras.


