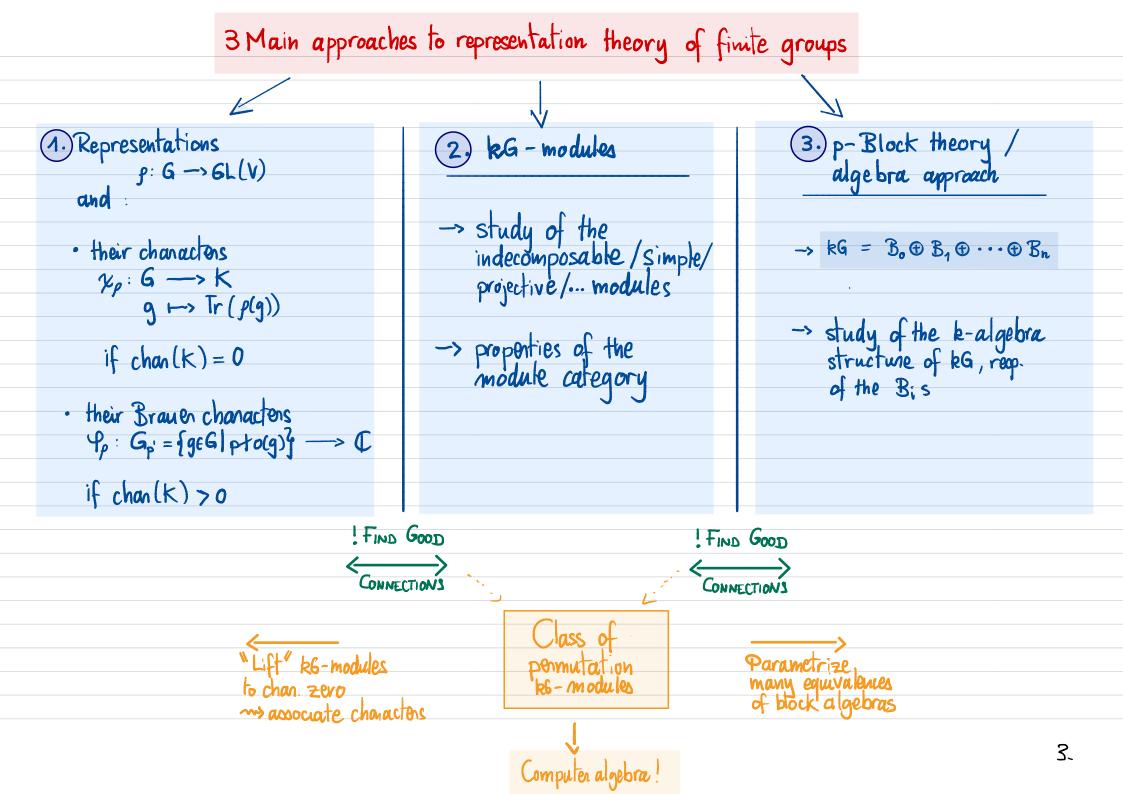
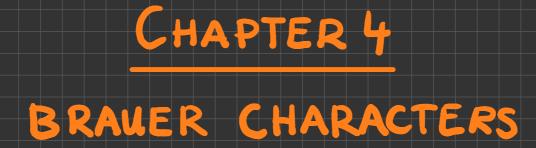
WEDNESDAY'S LECTURE

BRAUER CHARACTERS

CHAPTER 5

BLOCK THEORY





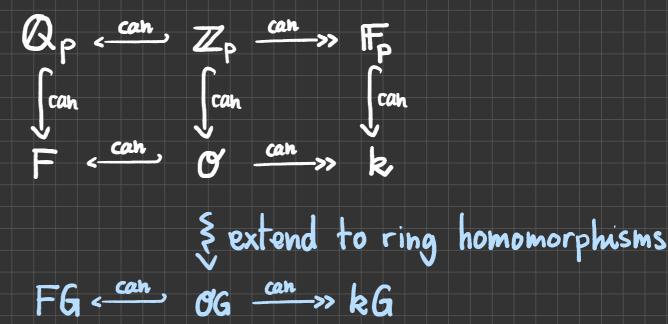
DEFN: Let pEP.

(a) A p-modular system is a triple of rings (F, O', k) s.t.:
(a) O' is a complete discrete valuation ring of characteristic zero
(b) F = Frac(O) (char(k)=p) (the residue field of O')
(c) F = G/J(O') is s.t. char(k)=p (the residue field of O')
(c) If both F and k are splitting fields for G, then (F, O', k) is called a splitting p-modular system for G.

Assumption \mathfrak{E} : From now on we assume that a p-modular system (F,O, k) is given and is s.t. F contains an $\exp(G)$ -th root of unity. Set $\mathcal{P} := \mathcal{P}(O)$. Braver $\mathbb{E} = \mathcal{P}(O)$ is splitting for G & all its subgroups EXAMPLE: • (Qp, Zp, Fp) is a p-modular system

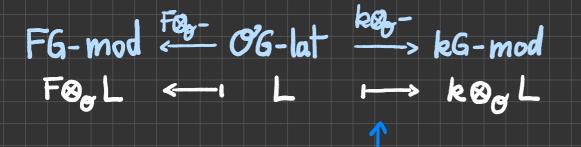
· 🖲 is satisfied if we adjoin an exp(6)-th root of 1 to Zp

The situation is



and get functors

FG-mod Fog L Fog L (always possible !)



Treduction modulo pr' (always possible!)

The other way around: $D \in F^{N}$: A kG-module M is called liftable (to O, to characteristic)) if I an OG-lattice M s.t. $k \otimes_{O} M \cong M$.

A This is rare! But:

THM: (a) Projective kG-modules are liftable. (b) p-permutation kG-modules are liftable. (c) [L.-Thévenaz,'17] kG-modules whose k-endomorphism ring is a p-permutation module are liftable. Consequence: If M is a p-permutation k6-module, then it affords an F-chanacter:

again p-permutation

REM: These ordinary characters χ_{M} contain a lot of information about the p-permutation k6-modules!

§16. BRAVER CHARACTERS

<u>Recall:</u> k-chanacters are not good ! <u>E.g.</u>: W = k @...@k (p+1 times) => k-chanacter of W = trivial k-chanacter

--> need to replace them with different functions in order to obtain a "good chanacter theory" for kG-modules : the "Braver characters".

$$\underbrace{NoTE}: \mathcal{O} \xrightarrow{can} \mathcal{O}/_{\#} = k \text{ induces a bijection } \begin{cases} a-th roots \\ of 1 \text{ in } F \end{cases} \xrightarrow{\sim} \begin{cases} a-th roots \\ of 1 \text{ in } k \end{cases}$$

where $a := l.c.m.(o(g) | g \in G_{p'})$.

DIAGONALISATION LEMMA: If ME mod(k6) and PM: G->GL(M) is the assoc.

k-repres., then tyge Gp Jak-basis B of M s.t.

 $[P(g)]_{B} = \begin{bmatrix} g_{1} \\ g_{2} \end{bmatrix}$ with $n = \dim_{k} M$ and the g_{i} 's are o(g) - th roots of 1.

Back to reduction modulo #:

LEM: Let Ve mod (FG) with F-character 2v: G-->F, g->Tr (p(g)). Then: (1) \exists an $\mathcal{O}G$ -lattice L s.t. $V \cong F \otimes_{\mathcal{O}} L$ (`L is an \mathcal{O} -form of V) (2) $\mathcal{X}_{V}|_{G_{p'}} = \mathcal{P}_{k \otimes_{\mathcal{O}} L}$ (`the reduction modulo μ of \mathcal{X}_{v}) (3) If $V \in Irr(FG)$, then $\exists integens d_{\chi,\varphi} \ge 0$ s.t. $\chi_{\mu}|_{G_{p'}} = \sum_{\substack{\varphi \in IB_{p}(G)}} a_{\chi_{\varphi}\varphi} \varphi$ * $\operatorname{Dec}_{P}(6) := (d_{X}\varphi)_{X \in \operatorname{Tr}_{F}(6)}_{\mathcal{Y} \in \operatorname{Tr}_{k}(6)}$ is the p-decomposition matrix of G $C := C_p(G) := Dec_p(G)^{tr} Dec_p(G)$ ✻ is the Cartan matrix of G

Assume: $\Delta \in \{F, \sigma, k\}$; G, H are finite groups.

§17. p-BLOCKS

BLOCKS OF AG :

* ΔG has a unique decomposition $\Delta G = B_0 \oplus \cdots \oplus B_n$ into indecomposable ($\Delta G, \Delta G$)-subbimodules. These are called the blocks of ΔG .

* Decomposing $1_{SG} = e_0 + \dots + e_n$ Bo B_n We have $e_i = 1_{B_i}$ and $B_i = AGe_i$ $\forall o \le i \le n$, where each e_i is a primitive idempotent in Z(AG) and $e_ie_j = J_{ij}$ $\forall o \le i, j \le n$.

BELONGING TO A BLOCK:

Each indecomposable ΔG -module can be assigned to a block: $M = 1_{\Delta G} \cdot M = e_0 \cdot M \oplus \cdots \oplus e_n \cdot M$ $\implies \exists o \le i \le n \quad s.t.$ $\begin{cases} e_i M = M \\ e_j M = 0 \end{cases}$ if $j \neq i$ $\implies Me$ say that M belongs to the block B_i .

THE PRINCIPAL BLOCK: is the block of ΔG containing the the trivial module Δ . Nota: $B_0(\Delta G)$.

BLOCKS OF FG ?

FG is semisimple => the block decomposition of FG is given by the Artin-Weddenburn thm. So, the blocks are matrix algebras and can be labelled by Irr(FG).

BLOCKS OF OG and kg?

The lifting-of-idempotents the tells us that OG ->> kG induces a bijection { primitive, idem potents } <--> { primitive, idem potents } <--> { idem potents } of ±106) }

=> I a byjection between the blocks of 06 and the blocks of kG

Now: A p-block of G is the specification of a block of OG, or of the corresponding block of kG. NOTA: Blp(kG) = { p-block of kG? / Blp(OG) = { p-blocks of OG}

DEFECT GROUPS: A defect group of a p-block $B \in Bl_p(OG)$ is a vertex of B seen as a left $O'[G \times G]$ -module. (Or equiv. a vertex of B as a left $k[G \times G]$ -module.)

DEFECT GROUPS: A defect group of a p-block $B \in Bl_p(OG)$ is a vertex of B seen as a left $O[G \times G]$ -module. (Or equiv. a vertex of B as a left $k[G \times G]$ -module.)

DEFECT GROUPS: A defect group of a p-block BEBlp(OG) a vertex of B seen as a left O[G×G]-module. (Or equiv. a vertex of B as a left h[G×G]-module.)

PROPERTIES: (1) Defect groups form a conjugacy class of p-subgroups of G (2) If D is a defect group of B ∈ Blp(kG), then any indec. kG-module belonging to B is D-projective, hence has a vertex contained in D. DEFECT GROUPS: A defect group of a p-block $B \in Bl_p(OG)$ a vertex of B seen as a left O[G×G]-module. (Or equiv. a vertex of B as a left k[G×G]-module.)

PROPERTIES:
(1) Defect groups form a conjugacy class of p-subgroups of G
(2) If D is a defect group of B ∈ Blp(kG), then any indec. kG-module belonging to B is D-projective, hence has a vertex contained in D.
(3) (z) => the defect groups of B₀(kG) are precisely Sylp(G). DEF^N: Let H ≤ G and let b ∈ Blp(kH). A p-block B ∈ Blp(k6) corresponds to b :<=> b| B J^{6×6}_{H×H} and b is the unique block of k6 with this property. <u>NOTA</u>: B = b⁶ If such a block exists, we say that b⁶ is defined. THM: [Brauen's correspondence]

Let $D \leq G$ be a p-subgroup and let $H \leq G$ s.t. $H \geq N_G(D)$. Then \exists a bijection

S blocks of left with? <----> S blocks of left with? defect group D S <----> defect group D S

Proof: This is just a particular case of the Green correspondence!

ŧ

§18. EQUIVALENCES OF BLOCK ALGEBRAS

BASIC QUESTION (Open)

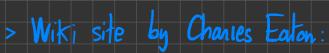
Which k-algebras occur as p-blocs of finite groups?

CONJECTURAL ANSWER: If a defect group P is fixed only finitely many ... up to a good notion of equivalence. More accurately:

DONOVAN'S (PUIG'S) CONJECTURE: ['70's / '80's] Let P be a p-group.

There are only finitely many possible splendid Morita equivalence classes for p-blocks of finite groups with defect group isomorphic to P.

`Donovan' holds for: a (fairly long) list of "small" P's. `Puig' holds for: $P \cong C_{p^n}$ (cyclic), $P \cong C_2 \times C_2$ (p=2)



https://wiki.manchester.ac.uk/blocks/index.php

Let BE Blp(RG), let CE Blp(RH) with REEØ,k) DEF^N: B and C are Morita equivalent (written B~nC) iff mod(B) and mod(C) are equivalent as (R-linean) categories.

MORITA'S THM: TFAE:

(1) $\mathbb{B} \sim_{M} \mathbb{C}$ (2) $\exists a (B,C) - bimodule M and a (C,B) - bimodule N s.t.$ $<math>M \otimes_{c} N \cong B$ as (B,B) - bimodule $N \otimes_{B} M \cong C$ as (C,C) - bimodule.

 $(NOTE: N = M^{\vee})$

DEF": Furthermore, if B~mC via a (B,C)-bimodule M, then

- the Morita of vivalence is called: * a splendid Morita equivalence (or a source-algebra equivalence) iff M viewed as a k[GxH]-module is a P-permutation module. NOTA: B~SH C
- * On endo-permutation source Morita equivalence (or a basic Morita equivalence) iff M seen has k[GxH]-modike has a source T s.t. End_R(T) is a permutation module.

NOTA: B~ERSC

NOTE :

Defect groups are preserved by splendid Morita equivalences and by endo-permutation source Morita equivalence. NOT by Morita equivalence!!

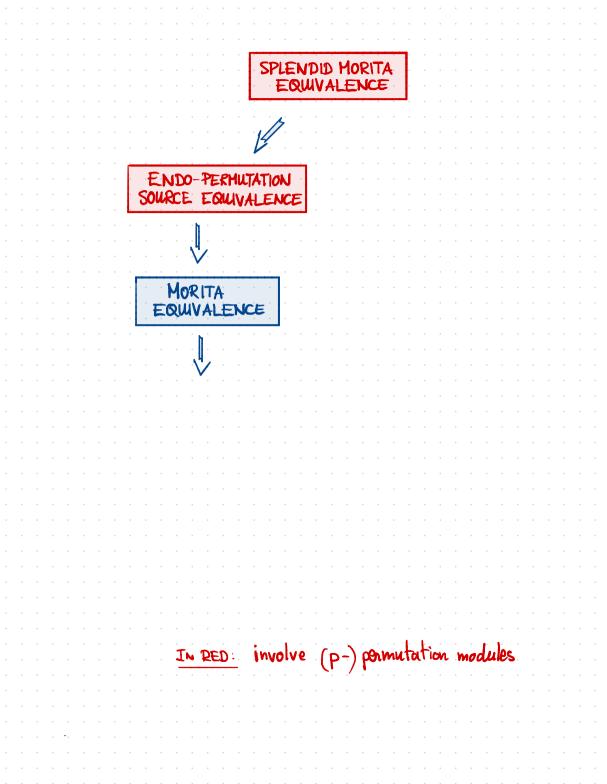
There are many variations / other types of equivalences relevant to block theory:

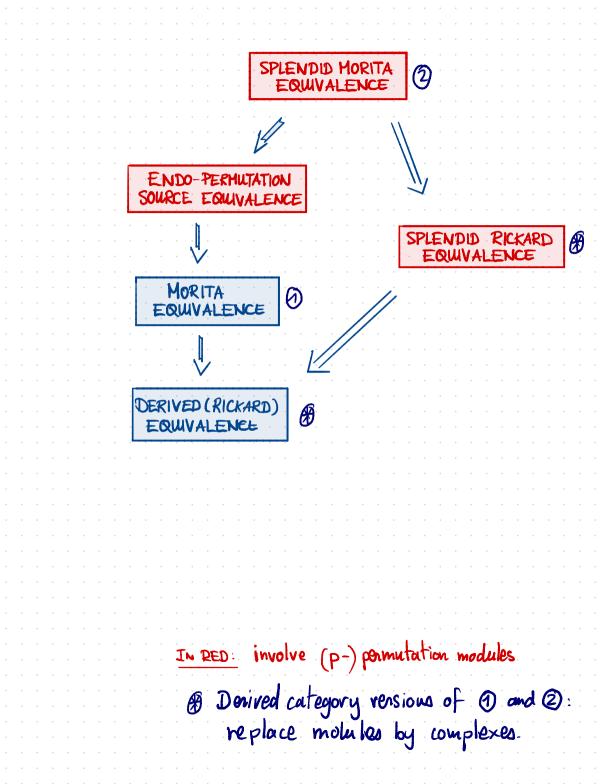
- E.g. ** Stable equiv. of Morita type: equiv. of the stable module categories ** Rickand equivalences: equiv. of the derived categories ** Splendid Rickand equivalences / p-permutation equivalences (given by tensoring with complexes of p-permutation k[6×H]-modules.

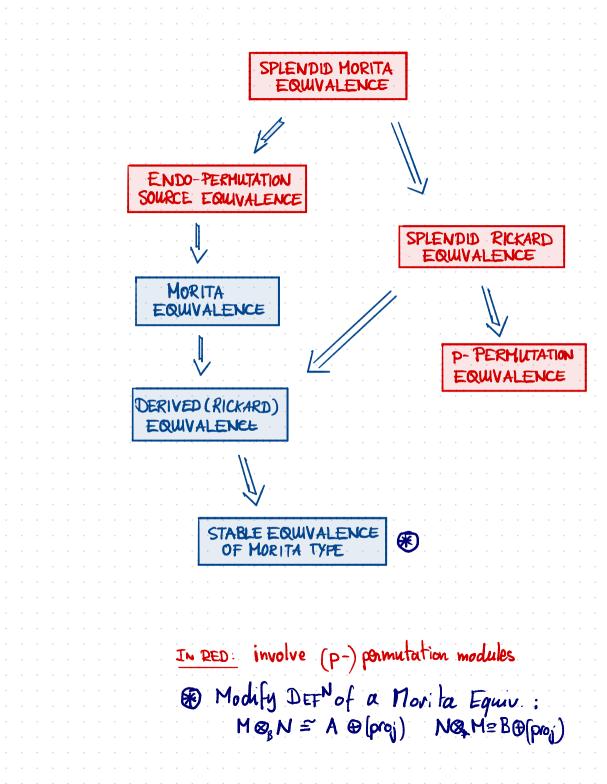
EXAMPLES :

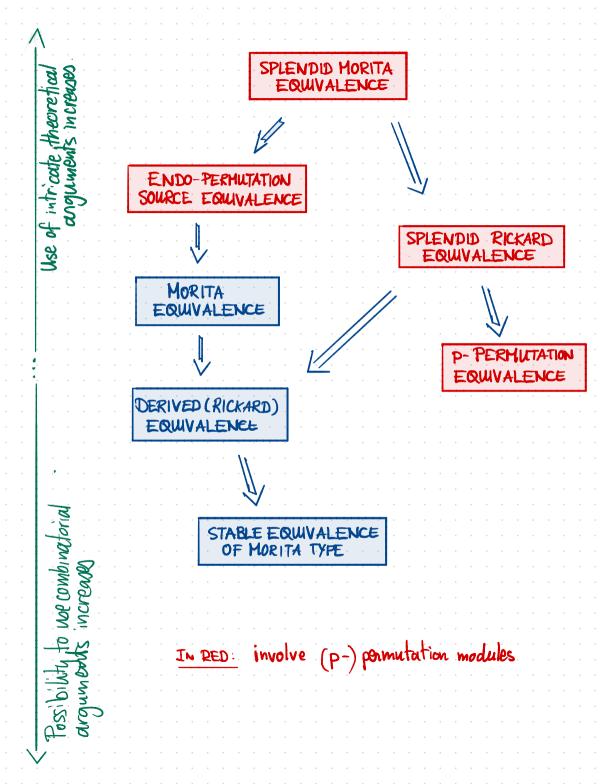
 I somorphic blocks as k-algebras are Morita equivalent.
 Blocks with a common defect group D, isomorphic as interior D-algebras are splendidly Morita equivalent. (1) In particular: Inflation from G/Op/G) to G yields $B_o(kG) \sim_{SM} B_o(k[6/0_p(6)])$ (as Op (6) always acts trivially on the principal block) ② Fong-Reynolds: Let H≤G, b∈ Blp(ktt), T:= Stabg(b), then $\exists bijection \quad Be_p(T|b) \xrightarrow{\sim} Be_p(G|b) \\ B \longmapsto B^6$ and $M := 1_{g} \cdot k_{G} \cdot 1_{B}$ realises a splendid Morita equivalence between B and B⁶.

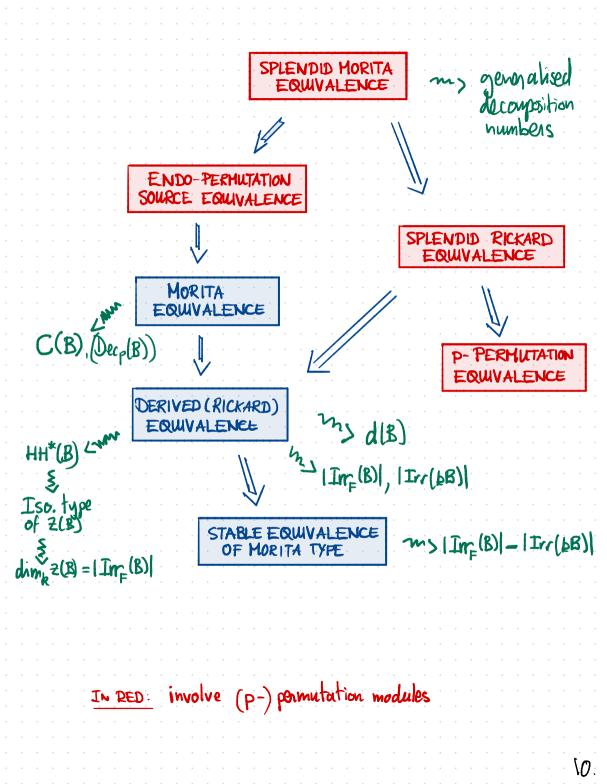
3 Fong's 2nd reduction is an endo-permutation source Morita equivalence.











Many open problems in modular representation theory are concerned with the influence of the structure of the block. E.g.

Braver's b(B)-conjecture Let $B \in Bl_p(kG)$ with defect group D. Then $\#Irr(B) \leq |D|$.

Broné's abelian defect group conjecture

Let $B \in Bl_p(kG)$ be a block with an <u>abelian</u> defect group. Then B and its Brauer correspondent in $N_G(D)$ are derived (Rickard) equivalent.