WEDNESDAY'S LECTURE

Chapter 4 BRAMER CHARACTERS

Chapter 5
BLOCK THEORY

3 Main approaches to representation theory of finite groups

(1.) Representations

$$
\rho: G \rightarrow G L(v)
$$

and:

- their characters

$$
\begin{aligned}
& x_{p}: G \longrightarrow K \\
& g \mapsto \operatorname{Tr}(\rho(g)) \\
& \text { if } \operatorname{chan}(K)=0
\end{aligned}
$$

- their Braves characters

$$
\varphi_{p}: G_{p}=\{g \in G \mid p \not o(g)\} \longrightarrow \mathbb{C}
$$

if $\operatorname{chan}(k)>0$
(2.) $k G$-modules
\rightarrow study of the indecomposable/simple/ projective/... modules
\rightarrow properties of the module category
(3.) p-Block theory / algebra approach

$$
\rightarrow k G=B_{0} \oplus B_{1} \oplus \cdots \oplus B_{n}
$$

\rightarrow study of the k-algebra structure of $k G$, reap. of the $B_{i} s$

Parametrize many equivalences to chan zero $m \rightarrow$ associate chanctions

CHAPTER 4

BRAUER CHARACTERS
§ 15 P-MODULAR SYSTEMS
DEF^{N} : Let $p \in \mathbb{P}$.
(a) A p-modular system is a triple of rings ($F, O_{,}, k$) sit:
(a) \mathcal{C} is a complete discrete valuation ring of chanacteristic zero
(2) $F=\operatorname{Frac}\left(\theta^{*}\right)$

$$
\left(\operatorname{chon}(F)=0, t_{\text {too }}\right)
$$

(3) $k=\Theta / \gamma\left(\Theta^{\prime}\right)$ is st. char $(k)=P$
(the residue field of $\mathcal{*}$)
(b) If both F and k are spiting fields for G, then (F, G, k) is called a spitting p-modular system for G.

Assumption (3) : From now on we assume that a p-modular system (F, σ, k) is given and is s.t.
F contains an $\exp (6)$ - th root of unity.
Set $k:=f(\theta)$.
$\stackrel{\text { Brawer }}{\Rightarrow}(F, G, k)$ is splitting for $G \&$ all its subgroups

ExAMPLE: $\cdot\left(\mathbb{Q}_{p}, \mathbf{Z}_{p}, F_{p}\right)$ is a p-modular system

- (3) is satisfied if we adjoin an exp (6)-th root of 1 to \mathbb{Z}_{P}

The situation is

§ extend to ring homomorphisms
and get functors

$$
\begin{aligned}
& F G \lll C^{\text {can }} \xrightarrow{\text { can }} k G
\end{aligned}
$$

$$
\begin{aligned}
& F \otimes_{g} L \longleftrightarrow L \longmapsto k \otimes_{G} L \\
& \text { (always possible!) }
\end{aligned}
$$

$$
\begin{aligned}
& F G-\bmod \stackrel{F g_{5}}{ } C^{6} G-\text { lat } \xrightarrow{k q-} k G-\bmod \\
& F \otimes_{g} L \longleftrightarrow L \longmapsto k \otimes_{C} L \\
& \text { reduction modialo } \text { pl }^{\prime} \\
& \text { (always possible!) }
\end{aligned}
$$

The other way around:
DEF N: A bG-module M is called liftable (to \mathcal{O}, to characterstic 0) L if \exists an $\mathcal{C G}$-lattice \vec{M} st. $k \otimes_{\boldsymbol{O}} \hat{M} \cong M$.
\triangle This is rare! But:
THM: (a) Projective $k G$-modules are liftable.
(b) p-permutation $k G$-modules are liftable
(c) $\left[L\right.$.-Thervenaz, $\left.{ }^{11 F}\right] \mathrm{kG}$-modules whose k-endomorphism ring is a p-permutation module are liftable.

Consequence: If M is a P-permutation $k G$-module, then it affords an F-chanacter:

REM: These ordinary chanacters x_{y} contain a lot of information about the p-permutation $k G$-modules!
§16. BravER CHARACTERS
Recall: k-characters are not good! Egg.: $W=k \oplus \cdots \cdots$ ($p+1$ times)
$\Rightarrow k$-character of $W=$ trivial k-chasactor
\rightarrow need to replace them with different functions in order to obtain a "good chanacten theory' for kG -modules: the 'Braver characters'.
 where $a:=l . c . m .\left(o(g) \mid g \in G_{p^{\prime}}\right)$.

Diagonalisation Lemma: If $M \in \bmod (k G)$ and $\rho_{n}: G \rightarrow G L(M)$ is the assoc. k-repress., then $\forall g \in G_{p^{\prime}} \exists a k$-basis B of M s.t.
$[\rho(g)]_{B}=\left[\begin{array}{lll}\zeta_{n} & & \\ & \ddots & \varphi_{n}\end{array}\right]$ with $n:=\operatorname{dim}_{k} M$ and the Ψ_{i}^{\prime} s are org) -th roots of 1 .
$\operatorname{DEF}^{N}: \cdot$ Let $M \in \bmod (k 6)$ Set $n:=\operatorname{dim}_{k} M$.
The Brouer character afforded by M is the F-valued function $\quad \varphi_{M}: G_{p^{\prime}} \rightarrow F=\operatorname{Frac}^{\prime}(\theta)$

$$
g \mapsto \hat{\xi}_{1}+\cdots+\hat{\xi}_{n}
$$

where the ξ_{i} are as in the $D L$.

- φ_{M} is irreducible of M is simple.
- $\operatorname{IBr_{p}}(6)=\{$ inced. Braver characters of 6$\}$.

Back to reduction modulo $\boldsymbol{\mu}$:
LEM: Let $V \in \bmod (F G)$ with F-character $x_{v}: G \rightarrow F, g \mapsto \operatorname{Tr}\left(\rho_{v}(g)\right)$.
Then: (1) \exists an $C G$-lattice L st. $V \cong F \otimes_{0} L \quad$ (L is an $(\theta$-form of V)
(2) $\left.x_{v}\right|_{G_{r}}=\varphi_{\text {keg } L}$
(thereduction modulo $\neq 0$ of x_{0})
(3) If $V \in \operatorname{Irr}(F 6)$, then \exists integers $d_{x v} \varphi \geqslant 0$ st.

$$
\begin{aligned}
& x_{\psi \mid \varepsilon_{p^{\prime}}}=\sum_{\varphi \in \pm \varepsilon_{p}(6)} d_{x_{G \varphi}} \varphi \\
& \text { * } \operatorname{Dec}_{p}(6):=\left(d_{x \varphi}\right)_{\substack{x \in \operatorname{Tr}_{f}(6) \\
\varphi \in \operatorname{Er}_{k}(G)}}
\end{aligned}
$$

is the p-decomposition matrix of G

$$
\text { * } \quad C:=C_{p}(6):=\operatorname{Dec}(6)^{t r} \cdot \operatorname{Dec}(6)
$$

is the Cartan matrix of G

CHAPTER 5

BLOCK THEORY

Assume: $\Delta \in\{F, \Theta, k\} ; G, H$ are finite groups

OBSERVE: If M is a $(\Lambda G, \Lambda H)$ - bimodule, then M can be seen as a left $\Delta[G \times H]$-module via

$$
(g, h) \cdot m:=g \cdot m \cdot h^{-1} \quad \forall g \in G, \forall h \in H, \forall m \in M .
$$

§ 17. p-BLOCKS
BLocks OF $\triangle G$:

* ΔG has a unique decomposition $\quad \Delta G=B_{0} \oplus \cdots B_{n}$ into indecomposable $(\Delta G, \Delta G)$-subbimodules. These are called the block's of ΔG.
* Decomposing $1_{A G}=e_{0}+\ldots+e_{n}$

$$
\begin{array}{lll}
\widehat{B}_{0} & \widehat{B}_{n}
\end{array}
$$

we have $e_{i}=1_{B_{i}}$ and $B_{i}=\Delta G e_{i} \quad \forall 0 \leqslant i \leqslant n$, where each e_{i} is a primitive idempotent in $Z(\Delta G)$ and $e_{i} e_{j}=\delta_{i j} \forall 0 \leqslant i, j \leqslant n$.
Belonging to a block:
Each indecomposable $\triangle G$-module can be assigned to a block:

$$
\begin{aligned}
& M=1_{\Delta s} \cdot M=e_{0} \cdot M \oplus \cdots \oplus e_{n} \cdot M \\
\Rightarrow \quad & \exists 0 \leqslant i \leqslant n \text { st. }\left\{\begin{array}{l}
e_{i} M=M \\
e_{j} M=0
\end{array} \text { if } j \neq i\right.
\end{aligned}
$$

m We say that M belongs to the block B_{i}.

THE PRINCIPNL BLock: is the block of $A G$ containing the the trivial module A. Not: $B_{0}(A G)$.

BLOCKS OF PG?
FG is semisimple \Rightarrow the block decomposition of FG is given by the Artin-Weddenbunn the.
So, the blocks are matrix algebras and can be labelled by $\operatorname{Irr}(F G)$.

BLocks of $C G$ and $k G$?
The lifting-of-idempotents the tells us that $O G \rightarrow k G$ induces a bijection
$\Rightarrow \exists$ a bijection between the blocks of OG and the blocks of $k G$

$$
\begin{aligned}
& C^{C} G=B_{0} \oplus \cdots \oplus B_{n} \\
& \text { col } \\
& k G=\overline{\mathrm{B}}_{0} \oplus \cdots \oplus \overline{\mathrm{~B}}_{w} \quad\left(\text { with } \overline{\mathrm{B}}_{i}=k G \bar{e}_{i}\right)
\end{aligned}
$$

Now: A p-block of G is the specification of a block of $O G$, or of the corresponding block of $k G$.
NOTA: $B \ell_{p}(k G)=\{p$-block of $k G\} / B l_{p}(\sigma \sigma)=\{p$-black of $\theta \sigma\}$

DEFECT GRoups: A defect group of a p-block $B \in \mathcal{B l}_{p}(G G)$ is a vertex of B seen as a left $G[G \times G]$-module. (Or equiv. a vertex of \bar{B} as a left $k[G \times G]$-module)

DEFECT GRoups: A defect group of a p-block $B \in B l_{p}(G G)$ is a vertex of B seen as a left $G[G \times G]$-module. (Or equiv. a vertex of \bar{B} as a left $k[G \times G]$-module.)

Properties:
(1) Defect groups form a conjugacy class of p-subgroups of G

DEFECT GROUPS:
A defect group of a p-block $B \in \mathbb{B l}_{p}(G G)$ a vertex of B seen as a left $\sigma[G \times G]$-module. (Or equiv. a vertex of \bar{B} as a left $k[G \times G]$-module)

Properties:
(1) Defect groups form a conjugacy class of p-subgroups of G
(2) If D is a defect group of $B \in B l_{P}(k G)$, then any indec. $k G$-module belonging to B is D-projective, hence has a vertex contained in D.

DEFECT GROUPS:
A defect group of a p-block $B \in \mathbb{B l}_{p}(G G)$ a vertex of B seen as a left $\sigma[6 \times G]$-module. (Or equiv. a vertex of \bar{B} as a left $k[G \times G]$-module)

Properties:
(1) Defect groups form a conjugacy class of P-subgroups of G
(2) If D is a defect group of $B \in B l_{P}(k G)$, then any indec. $k G$-module belonging to B is D-projective, hence has a vertex contained in D.
(3) (2) \Rightarrow the defect groups of $B_{0}(k G)$ are precisely $S_{y} l_{p}(G)$.

DEF N: Let $H \leqslant G$ and let $b \in B l_{p}(k H)$
A p-block $B \in B l_{p}(k 6)$ corresponds to b
$: s \Rightarrow b \mid B \|_{H \times H}^{G \times 6}$ and b is the unique block of $k G$ with this property.
NOTE: $B=b^{6}$
If such a block exists, we say that b^{6} is defined.
THM: [Brave's correspondence]
Let $D \leqslant G$ be a P-subgroup and let $H \leqslant G$ s.t. $H \geqslant N_{G}(D)$.
Then \exists a bijection

$$
\begin{aligned}
\left\{\begin{array}{l}
\text { block of bHt with } \\
\text { defect group D }
\end{array}\right\} & \longrightarrow\left\{\begin{array}{l}
\text { blocks of tH with } \\
\text { defect group D }
\end{array}\right\} \\
b & \longmapsto b^{6}
\end{aligned}
$$

Proof: This is just a panticulan case of the Green correspondence!
§18. Equivalences of Block Algebras
Basic Question: (open)
Which k-algebras occur as p-blocs of finite groups?
Conjectural Answer: If a defect group P is fixed only finitely many up to a good notion of equivalence. More accurately:

Donovan's (Pug's) Conjecture: [770's/80's] Let P be a p-group
There ane only finitely many possible splendid d Morita equivalence classes for p-blocks of finite groups with defect group isomorphic to P.
'Donovan' holds for: a (fairly long) list of "small" P 's
'Prig' holds for: $P \cong C_{p}^{*}$ (cache), $P \cong C_{2} \times C_{2}(p=2)$
Wiki site by Charles Eaten:

Let $B \in B l_{p}(R G)$, let $C \in B l_{p}(R H)$ with $R \in\{\theta, k)$
$D E F^{N}$: B and C are Morita equivalent (writiten $B \sim_{M} C$) iff $L \bmod (B)$ and $\bmod (C)$ are equivalent as $(R$-linean) categories.

Morita's ThM: TFAE:
(1) $B \sim_{M} C$
(2) ヨa (B, C)-bimodule M and a (C, B)-binodule N s.t.
$M \otimes_{c} N \cong B$ as (B, B)-bimodule
$N \otimes_{B} M \cong C$ as (C,C)-bimodule.
(NOTE: $N=M^{v}$)

DEF ${ }^{N}$: Furthermore, if $B \sim_{M} C$ via a (B, C)-bimodule M, then the Morita of uivalence is called:

* a splendid Morita equivalence (or a sonnce-alge brae equivalence) iff M viewed as a $k\left[G_{x H}\right]$-module is a p-permutation module. NOTA: $B \sim_{s M} C$
* an endo-permuntation source Morita equivalence (or a basic Morita equivalence) of M seen has $k[G \times H]$-mooch has a sounce T s.t. End (T) is a permutation module.

Note: $B \sim_{\mathrm{sk}} C$

NOTE:
Defect groups are preserved by splendid Morita equivalences and by endo-permutation some Morita equivalence.
NOT by Morita equivalence!!

There ane many vaviations/othertypes of equivalences relevant to black theory:
E.g.: * stable equiv. of Morita type: equiv. of the stable module categories

* Rickand equivalences: equiv. of the derived categories
* Splendid Rickand equivalences / p-permutation equivalences (given by tensoring with complexes of P-penmutato $k[6 \times H]$-modules.

Examples:
(1) - Isomorphic blocks as k-algebras are Morita eqquvalent.

- Blocks with a common defect group D, isomorphic as interior D-algebros are splendidly Morita equivalent.
(1) In particular: Inflation from $G / O_{p}(6)$ to G yields

$$
B_{0}(k G) \sim_{S M} B_{0}\left(k\left[G / Q_{p}(6)\right]\right)
$$

(as $O_{p}(G)$ always acts trivially on the principal block)
(2) "Fong-Reynolds": Let $H \& G, b \in B l_{p}(k+1), T:=S_{t a b}(b)$, then Abjection $\begin{aligned} B l_{p}(T \mid b) & \sim \operatorname{Bl}_{p}(G \mid b) \\ B & \longmapsto B^{G}\end{aligned}$
and $M_{i}=1_{\mathrm{E}^{6}} \cdot k 6 \cdot 1_{B}$ readies a splendid Morita equivalence between $B^{\delta^{6}}$ and B^{f}.
(3) 'Fong's 2nd reduction' is an endo-permutation somuce Morita equivalence.

ENDO-PERMUTATION SOURCE EQUIVALENCE

MORITA EquIVALENCE

In RED: involve (P^{-}) permutation modules

IN RED: involve (P^{-}) permutation modules

* Derived category versions of (1) and (2): replace molules by complexes.

IN RED: involve (P^{-}) permutation modules

* Modify Def of a Morita Equiv. $M \otimes_{B} N \cong A \oplus(p r o j) \quad N \otimes_{7} M \equiv B \oplus(p r o j)$

IN RED involve $\left(P^{-}\right)$permutation modules

Many open problems in modular representation theory are concerned with the influence of the structure of the defect groups on the structure of the block. E.g.

Braver's b(B)-conjecture
Let $B \in B l_{p}(k 6)$ with defect group D. Then $\# \operatorname{Irr}(B) \leq|D|$.

Bronés abelian defect group conjecture
Let $B \in B l_{p}(66)$ be a block with an abehian defect group. Then B and its Brawer comopoondent in $N_{G}(D)$ are derived (Rickand) equivalent.

