Conventions! Unless otherwise stated:

* groups are finite
* rings are assoc. with a 1
* modules are finitely generated left modules
* G is a group
* R is an arbitrary assoc. ring with a 1, and R^{0} is the regular module on R
* K is a field with char (K) arbitrary $k \quad n-\quad$ with $\operatorname{chon}(k)=: p>0 \quad m \in \mathbb{P}$
* A is a finite-dimensional K-algebra

Monday's lecture

Chapter 1
Representations of finite groups
§1. Linear Representations

DEF ${ }^{N}$: $A K$-representation of G is a group homomorphism

$$
\rho: G \longrightarrow G L(V):=\operatorname{Aut}_{k}(V)
$$

where $V \cong k^{n} \quad\left(n \in \mathbb{Z}_{\geqslant 0}\right)$ is a k-vector space.
Moreover: $* n$ is the degree of ρ;

* ρ is $\left|\begin{array}{c}\text { an ordinary } \\ \text { a modular }\end{array}\right|$ representation if $\left\lvert\, \begin{aligned} & \operatorname{chan}(k) \nmid|\sigma| \\ & \operatorname{chan}(k)| | \sigma \mid\end{aligned}\right.$

Note: choosing a

$$
K \text {-basis of }
$$

$$
V \text { yields: }
$$

Hence: any k-representation defines a "matrix representation" and conversely.

Examples:
(a) $\quad \rho: \quad \begin{aligned} G & \mapsto G L(K) \approx K^{X} \quad \text { is a } k \text {-representation of } G \\ g & \mapsto d_{k}\end{aligned}$

- the trivial representation of G
(b) $\left\{\begin{array}{l}X \text { finite } G \text {-set } \quad \text { (with }:: G \times X \rightarrow X, g r g \cdot x \text { left action) } \\ V \text { K-vector space with } K \text {-basis }\left\{e_{x} \mid x \in X\right\}\end{array}\right.$

$$
\begin{aligned}
\Rightarrow \quad \rho_{x}: \quad G & \longrightarrow G L(V) \\
& \mapsto \rho_{x}(g): V \longrightarrow V, e_{x} \mapsto e_{g \cdot x}
\end{aligned}
$$

is a k-representation of G - the permutation representation of G on X
Two particular cases:
(1) $G=S_{n}, X=\{1,2, \ldots, n\}, \cdot=$ natural action m $\quad P_{x}=$ natural representation of S_{n}
(2) $X=G, \dot{ }=$ mut. in G, then β is called the regular representation of G. We write $f_{x}=$ Pres

MorphisMs Let $\rho_{i}: G \rightarrow G L\left(V_{i}\right)$ (ie $\left.\{1,2\}\right)$ be k-repres.

* A morphs between ρ_{1} and ρ_{2} is a K-homomorphism $\alpha: V_{1} \rightarrow V_{2}$ st.

$$
\begin{aligned}
& V_{1} \xrightarrow{V_{1}(g)}{ }_{\alpha} V_{1} \\
& V_{2} \xrightarrow{\downarrow_{2}} \xrightarrow{p_{2}(q)} V_{2}
\end{aligned} \text { commutes } \forall g \in G \text {. }
$$

* If α is a K-iso. then ρ_{1} and ρ_{2} are sad to be equivalent and we write $\rho_{1} \sim \rho_{2}$.
\sim is an equivalence relation
\longrightarrow enough to study K-representations up to equivalence!

Substructures

* A K-subspace $W \subseteq V$ is G-invariant inf

$$
p(g)(W) \subseteq W \quad \forall g \in G .
$$

* ρ is irreducible if it has exactly two G-invariant subspaces, i.e. O and V.
* $0 \subsetneq W \subsetneq V$ G-invariant K-subspace
$\Rightarrow \rho_{N}: G \longrightarrow G L(W) \quad K$-subrepresentation of ρ assoc. to W
§2. The Group Algebra and Its Modules
From now on, we want to see K-representations as modules.
$D E F^{N}$: The group algebra of G over K is the K-algebra

$$
K G:=\left\{\sum_{g \in G} \lambda_{g} g \mid \lambda_{g} \in K \forall g \in G\right\}
$$

with addition

$$
\sum_{g \in G} \lambda_{g} g+\sum_{g ; 6} \lambda_{g} g g=\sum_{g \in G}\left(\lambda_{g}+\lambda_{g}\right) g
$$

and multiplication

$$
\left(\sum_{g \in G} \lambda_{g} g\right) \cdot\left(\sum_{h \in G} \mu_{h} h\right)=\sum_{g h \in G}\left(\lambda_{g} \mu_{h}\right) g h .
$$

(ie. mut. in G is extended by $K-b / l i n$. to $K G$)
NotICE: $-1_{k G}=1_{G}$

- $K G$ is commutative $\Leftrightarrow G$ is abelian
- $\operatorname{dim}_{k}(\mathrm{KG})=\mid \mathrm{GI}$. sided ness of modules not an issue: $m \cdot g:=g^{-1} \cdot m$
- K field $\Rightarrow K G$ left Artinian \Rightarrow Hopkins' the holds: Memod (kG) is $f . g$. \Leftrightarrow M has a composition series

PROP *

$$
\begin{aligned}
& \text { * } \rho: G \rightarrow G L(V) \quad \Longrightarrow \quad V \text { is a } K G \text {-module via } \\
& K \text {-representation } \\
& *(V,+,) K G \text {-module } \longrightarrow \rho_{V}: G \longrightarrow G L(V) \\
& (g, v) \longmapsto g \cdot v:=\rho(g)(v) \\
& g \longmapsto \rho_{V}(g): V \rightarrow V \\
& v \mapsto>p_{u}(q)=g \cdot v
\end{aligned}
$$

Via the PROP the trivial representation of G corresponds to the "trivial KG-module", i.e. K itself seen as a KG-module via the G-action $\quad \because G \times K \longrightarrow K \quad$ extended by K-linearity to $K G$. $(g, \lambda) \mapsto g \cdot \lambda=\lambda$

$$
\text { Preg } \longleftrightarrow \text { regular module }(K G)^{\circ}
$$

(In the sequel, we drop the ""s smoke!)

K-Representations

KG-Modules

K-representation of G		$K G$-module
degree	\longleftrightarrow	K-dimension
homomorphism of K-representations	\longleftrightarrow	homomorphism of $K G$-modules
equivalent K-representations	\longleftrightarrow	isomorphism of $K G$-modules
subrepresentation	\longleftrightarrow	$K G$-submodule
direct sum of representations $\rho_{V_{1}} \oplus \rho_{V_{2}}$		direct sum of $K G$-modules $V_{1} \oplus V_{2}$
irreducible representation	\longleftrightarrow	simple ($=$ irreducible) $K G$-module
the trivial representation	\longleftrightarrow	the trivial $K G$-module K
the regular representation of G	\longleftrightarrow	the regular $K G$-module $K G^{\circ}$
completely reducible K-representation	\longleftrightarrow	semisimple $K G$-module (= completely reducible)
every K-representation of G is completely reducible	\longleftrightarrow	$K G$ is semisimple

§3. OpERATIONS ON GROUPS AND MODULES
Q.? How can we construct new $K G$-modules from old ones?

Tensors, Hon's, duals Let M,N be KG-modules.
(a) $M \otimes_{k} N$ becomes a $K G$-module via the diagonal action of G, i.e.

$$
\begin{aligned}
: G \times\left(M \otimes_{K} N\right) & \longmapsto M \otimes_{K} N \\
(g, m \otimes n) & \longmapsto g \cdot(m \otimes n):=g m \otimes g n
\end{aligned}
$$

(b) $\operatorname{Hom}_{K}(M, N)$ becomes a $K G$-module via the conjugation action of G, ie.

$$
\begin{aligned}
\because 6 \times \operatorname{Hom}_{K}(M, N) & \longrightarrow \operatorname{Hom}_{K}(M, N) \\
(g, f) & \longmapsto g \cdot f: M \longrightarrow N \not \equiv(g \cdot f)(m):=g \cdot f(\dot{g} \cdot m)
\end{aligned}
$$

(c) $M^{*}:=\operatorname{Hom}_{K}(M, K)$ is a $K G$-module via (b) (ie. with $N=K$, the trivial $K G$-module)

One can also let the group vary! Using 'changes of the base ring', we obtain:
(1) Restriction
$H \leqslant G \Longrightarrow H \longrightarrow G, h \mapsto h$ extends K-linearly to a K-algebra homomaphen

$$
i: K H \longrightarrow K G
$$

If $M \in \bmod (K G)$, then M becomes a $K H$-module via a change of the base ring along i, which we denote by $\operatorname{Res}_{M}^{G}(M)$ or $M V_{H}{ }^{G}$.
(2) InFLATION
$U \leftrightarrows G \Rightarrow G \longrightarrow G / U, g \mapsto g U$ extends K-linearly to a K-algebra homomaphere

$$
\pi: K G \longrightarrow K[G / u]
$$

Hence: any $K[G / u]$-module becomes a $K G$-module via a change of the base ring along π, which we denote by $\operatorname{Inf}^{-G} /(M)$.

Properties: - Res and Inf commute with \oplus and $(-)^{*}$

- Res is transitive

A 3^{n} operation is given by extending the scalars from a subgroup:
(3) Induction

Let $H \leqslant G$ and $M \in \bmod (K H)$. Seeing $K G$ as a $(K G, K H)$-bimodule, we may define $\operatorname{Ind}_{H}^{6}(M):=K G \Theta_{k H} M$.

Min
EXAMPLE
(a) $H=\{1\}, M=K \Rightarrow K \uparrow_{\{1\}}^{G}=K G \otimes_{K} K \cong K G$
(b) assoc. of $\otimes \Rightarrow\left(M \uparrow_{L}^{H}\right) \uparrow_{H}^{6} \cong M \uparrow_{L}^{G} \quad \forall L \leqslant H \leqslant G$

REM: $K G \otimes_{K t} M=\underset{g \in(G \mu]}{ } g \otimes M \quad$ as K-vect space

$$
\Rightarrow \operatorname{dim}_{k}\left(M \uparrow_{H}^{G}\right)=|G: H| \cdot \operatorname{dim}_{k}(M)
$$

IMPORTANT RELATIONS between the above operations are:

* FROBENIUS RECIPROCITY (= "biadjunction of Res and Ind")

$$
\begin{aligned}
& \operatorname{Hom}_{K H}\left(M, N_{1_{H}^{G}}^{G}\right) \underset{\substack{\uparrow \\
k i s o}}{\cong} \operatorname{Hom}_{k G}\left(M \uparrow_{H}^{G}, N\right) \\
& \operatorname{Hom}_{K H}\left(N_{H}^{G}, M\right) \stackrel{\substack{\text { iGBO }}}{\cong} \operatorname{Hom}_{K G}\left(N, M T_{H}^{G}\right) \\
& \text { * }\left(M \otimes_{K} N\right) \prod_{H}^{G} \underset{K G \text {-iso. }}{\cong} M \prod_{H}^{G} \otimes_{K} N \\
& \operatorname{Hom}_{K}\left(M, N N_{H}^{6}\right) \uparrow_{H}^{G} \cong \operatorname{Hom}_{K}\left(M \uparrow_{H}^{G}, N\right)
\end{aligned}
$$

* The Mackey Formula Let $H, L \leqslant G$, let $M \in \bmod (K l)$. Then, as $k H$-modules,

$$
M T_{L}^{G} \downarrow_{H}^{G} \cong{ }_{g \in[H / / G]}\left({ }^{G} M \downarrow_{H n^{2} L}\right) \uparrow_{H n^{2} L}^{H}
$$

(where $9 M$ is $g \otimes M$ seen as a left $K\left({ }^{(L L}\right)$-module with $\left(g \lg ^{-1}\right) \cdot(g \otimes m)=g \otimes l m$)

BREAK: \triangle In general $\bmod \left(K_{6}\right)$ is wild
\rightarrow not possible to classify KG-modules!!
\longrightarrow Need to restrict our attention to "reasonable" classes of KG-modules!

In the sequel, we take a closer look at :

simple
semi-Simple
projective
permutation d
P-permutation

Chapter 2 SIMPLICITY AND SEMISIMPLICITY

NotA: $\operatorname{Irr}(R):=\{$ simple R-modules $\} / \alpha$
§4. Schur's LEMMA
LEM (Schur)
(a) $V, W \in \operatorname{Irr}(R) \Rightarrow \begin{cases}(1) & E n d d_{R}(V) \text { is a skew-field } \\ (2) & V \nLeftarrow W \Rightarrow \operatorname{Hom}_{R}(V, W)=0\end{cases}$
(b) If $K=\bar{K}, A$ finate dim' \mathcal{K}-algebra and $V \in \operatorname{Irr}(A)$ s.t. $\operatorname{dim}_{K} V<\infty$, then

$$
\operatorname{End}_{A}(v)=\left\{\lambda I d_{V} \mid \lambda \epsilon K\right\} \cong K
$$

Proof:
(a) trivial!
(b) " $z^{\prime} \checkmark$; " $\varepsilon^{\prime \prime}$ given $f \in E_{n_{A}}(v)$, have $f=\lambda$.Idd for λ eigenvalue of f.

REM: In (b), the (1) that $k=\bar{k}$ is in gen. too strong!
We often replace this (11) with the (\oplus) that
A is split $: \Leftrightarrow \operatorname{End}_{A}(V) \cong K \quad \forall$ fd. simple A - module V.
This leads to the following definition:
DEF ${ }^{N}$: K is a splitting field for G of $K G$ is a split L K-algebra.

From now on, we assume that

K is a spiting field for G
(and all other groups involved)
§5. Artin-Wedderburn
$D_{E F}{ }^{N}$: Let $S_{c} \operatorname{Irr}(R)$. If M is a semisimple R-module, then the IB S-homogeneous part of M, written $S(M)$, is the sum of all simple R-submodules of M isomorphic to S.
THM: [Wedderburn]
If R is a semisimple ring, then:
(1) $S \in \operatorname{Ir}(R) \Rightarrow S\left(R^{0}\right) \neq 0$ and $s_{0}|\operatorname{Ir}(R)|<\infty$;
(2) $R^{0}=\oplus_{\text {SEIrr(R) }} S\left(R^{0}\right)$, where each $S\left(R^{0}\right)$ is a simple lett Artinuan ring
Note: R semisimple $\Rightarrow R^{0}$ has a composition series

$$
R^{0}=\bigoplus_{S \in \operatorname{Ir}(R)} S\left(R^{0}\right)=\oplus_{S \in \operatorname{Ircr}(R)} \bigoplus_{i=1}^{n_{s}} S
$$

for uniquely determined $n_{s} \in \mathbb{Z}_{>0}$.

THM: [Artin-Wedderbwn]
R is a semisimple ring $\Rightarrow R \cong \prod_{s \in \operatorname{Ir}(\mathrm{R})} M_{n}\left(D_{s}\right)$ where $D_{S}:=E n d_{R}(S)^{\text {opp }}$ is a division ring.
Assuming now that $R=A$ is a split K-algebra we obtain as a corollary:

THM: If A is semisimple and $S \in \operatorname{Ir}(A)$, then:
(a) $S\left(A^{\circ}\right) \cong M_{n_{s}}(K)$ and $\operatorname{dim}_{k}\left(S\left(A^{\circ}\right)\right)=n_{s}^{2}$
(b) $\operatorname{dim}_{K}(S)=n_{s}$
(c) $\operatorname{dim}_{k}(A)=\sum_{S \in \operatorname{Irc}(A)} \operatorname{dim}_{k}(S)^{2}$
(d) $|\operatorname{Irr}(A)|=\operatorname{dim}_{k}(Z(A))$

COR 1: $|\operatorname{Irr}(A)|=\operatorname{dim}_{k}(Z(A / J(A)))$
Proof: A and $\underbrace{A / J(A)}_{j-s s \Rightarrow s s .}$ have the same simple modules so (d) of the TAM yields the claim!

COR 2: A commutative $\Rightarrow \operatorname{dim}_{k}(S)=1 \quad \forall S \in \operatorname{Ir}(A)$ Proof: $A=Z(A) \Rightarrow|\operatorname{Irr}(A)| \stackrel{(4)}{=} \operatorname{dim}_{k}(A) \stackrel{(S)}{=} \sum_{\sin \operatorname{sir}(A)} \underbrace{\operatorname{dim}_{k}(S)^{2}}_{\geqslant 1}$ \#

Applying these results to $A=K G$, we obtain for example:

* $|\operatorname{Irr}(K G)|<\infty \quad(\operatorname{CoR} 1)$
* G abelian $\xrightarrow{(\operatorname{CosR} 2)} \quad \operatorname{dim}_{k}(S)=1 \quad \forall s \in \operatorname{Ir}(k G)$
and also :
COR 3: Let $p \in \mathbb{P}$. If G is a p-group and $\operatorname{chan}(K)=p$, then $\operatorname{Irr}(K G)=\{K\}$.

Proof: " 2 " Clear: the trivial $K G$-module is simple.

$$
\begin{aligned}
& " \varsigma^{\prime} \quad|\operatorname{Irr}(k G)|=\operatorname{dim}_{k} Z(\underbrace{k G / J(k G)}) \\
& =\operatorname{dim}_{k}(K)=1
\end{aligned}
$$

§6. SEMIIIMPLICITY OF THE GROUP ALGEBRA
Q.? When is KG semisimple?

THM: [Maschke and its Converse]
L Char $(K) \nmid|G| \Leftrightarrow K G$ is semisimple
Proof: $\Rightarrow s^{\prime \prime}$: standard!
"E": can be proved using Artin-Wedderburn!

COR: $\operatorname{Chan}(K) \nmid|G| \Rightarrow|G|=\sum_{S G \operatorname{Irr}(G)} \operatorname{dim}_{k}(S)^{2}$
Proof: $\sum_{s \in \operatorname{Irr}(G)} \operatorname{dim}_{k}(s)^{2}=\operatorname{dim}_{k}(K G)=|G|$

