
Wednesday. Chapter 4. �-Modular Systems and Brauer Characters

R. Brauer started in the late 1920’s a systematic investigation of group representations over fields of
positive characteristic. In order to relate group representations over fields of positive characteristic to
character theory in characteristic zero, Brauer worked with a triple of rings pF � �� �q, called a �-modular
system, and consisting of a complete discrete valuation ring � with a residue field � :“ �{Jp�q of
prime characteristic � and fraction field F :“ Fracp�q of characteristic zero. These are used to gain
information about �G and its modules (which is/are extremely complicated) from the group algebra FG,
which is semisimple and therefore much better understood, via the group algebra �G. This explains
why we considered arbitrary associative rings (resp. algebras / fields) in the previous chapters rather
than immediately focusing on fields of positive characteristic.

Notation. Throughout this chapter, unless otherwise specified, we let � be a prime number and let
Λ P tF � �� �u.

15 �-Modular Systems
Recall that a commutative ring � is local iff �z�ˆ “ Jp�q, i.e. Jp�q is the unique maximal ideal of �.
Moreover, by the commutativity assumption this happens if and only if �{Jp�q is a field. In such a
situation, we write � :“ �{Jp�q and call this field the residue field of the local ring �. To ease up
notation, we will often write p :“ Jp�q. This is because our aim is a situation in which the residue field
is a field of positive characteristic �. Moreover, a commutative ring � is called a discrete valuation
ring if � is a local principal ideal domain such that Jp�q ‰ 0. Such a discrete valuation ring is called
complete if it is complete in the Jp�q-adic topology.

Definition 15.1 (�-modular systems)
Let � be a prime number.

(a) A triple of rings pF � �� �q is called a �-modular system if:

(1) � is a complete discrete valuation ring of characteristic zero,
(2) F “ Fracp�q is the field of fractions of � (also of characteristic zero), and
(3) � “ �{Jp�q is the residue field of � and has characteristic �.

(b) If G is a finite group, then a �-modular system pF � �� �q is called a splitting �-modular
system for G, if both F and � are splitting fields for G.

31
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It is often helpful to visualise �-modular systems and the condition on the characteristic of the rings
involved through the following commutative diagram of rings and ring homomorphisms:

Q Z F�

F � �

where the hook arrows are the canonical inclusions and the two-head arrows the quotient morphisms.
Clearly, these morphisms also extend naturally to ring homomorphisms

FG �G �G

between the corresponding group algebras (each mapping an element � P G to itself).

Example 13
One usually works with a splitting �-modular system for all subgroups of G, because it allows us
avoid problems with field extensions. By a theorem of Brauer on splitting fields such a �-modular
system can always be obtained by adjoining a primitive �-th root of unity to Q�, where � is the
exponent of G. (Notice that this extension is unique.) So we may as well assume that our situation
is as given in the following commutative diagram:

Q� Z� F�

F � �

More generally, we have the following result, which we mention without proof. The proof can be found
in §17A of Volume 1 of Curtis and Reiner’s book.

Theorem 15.2
Let pF � �� �q be a �-modular system. Let G be a finite group of exponent � :“ ���pGq. Then the
following assertions hold.

(a) The field F contains all �-th roots of unity if and only if F contains the cyclotomic field of
�-th roots of unity;

(b) If F contains all �-th roots of unity, then so does � and F and � are splitting fields for G
and all its subgroups.

Remark 15.3
If pF � �� �q is a �-modular system, then it is not possible to have F and � algebraically closed,
while assuming � is complete. (Depending on your knowledge on discrete valuation rings, you can
try to prove this as an exercise!)

Let us now investigate changes of the coefficients given in the setting of a �-modular system for group
algebras involved.
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Definition 15.4
Let � be a commutative local ring. A finitely generated �G-module L is called an �G-lattice if it
is free (= projective) as an �-module.

Remark 15.5 (Changes of the coefficients)
Let pF � �� �q be a �-modular system and write p :“ Jp�q. If L is an �G-module, then:

¨ setting LF :“ F b� L defines an FG-module, and

¨ reduction modulo p of L, that is L :“ L{pL – � b� L defines a �G-module.

We note that, when seen as an �-module, an �G-module L may have torsion, which is lost on
passage to F . In order to avoid this issue, we usually only work with �G-lattices. In this way, we
obtain functors

FG-mod �G-lat �G-mod

between the corresponding categories of finitely generated �G-lattices and finitely generated FG-,
�G-modules.

A natural question to ask is: which FG-modules, respectively �G-modules, come from �G-lattices? In
the case of FG-modules we have the following answer.

Proposition-Definition 15.6
Let � be a complete discrete valuation ring and let F :“ Fracp�q be the fraction field of �. Then,
for any finitely generated FG-module V there exists an �G-lattice L which has an �-basis which
is also an F-basis. In this situation V – LF and we call L an �-form of V .

Proof : Choose an F-basis t�1� � � � � ��u of V and set L :“ �G�1 ` ¨ ¨ ¨ ` �G�� Ñ V .

On the other hand, the question has a negative answer for �G-modules.

Definition 15.7 (liftable �G-module)
Let � be a commutative local ring with unique maximal ideal p :“ Jp�q and residue field � :“ �{p.
A �G-module M is called liftable if there exists an �G-lattice pM whose reduction modulo p of M
is isomorphic to M , that is

pM{p pM – M �

(Alternatively, it is also said that M is liftable to an �G-lattice, or liftable to �, or liftable to
characteristic zero.)

Even though every �G-lattice can be reduced modulo p to produce a �G-module, not every �G-module
is liftable to an �G-lattice.
Being liftable for a �G-module is a rather rare property. However, some classes of �G-modules do lift.

Example 14
It follows from the lifting of idempotents theorem that projective indecomposable �G-modules are
liftable to projective indecomposable �G-lattices:
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Any (projective) indecomposable �G-module is liftable to a (projective) indecomposable �G-lattice.
More generally, any trivial source �G-module M is liftable to an �G-lattice. More precisely, among
all lifts of M a unique one is again trivial source and we denote it by rM .
The F-character of F b� rM is called the ordinary character of M .

16 Brauer Characcters
Recall that we have fixed a splitting �-modular system pF � �� �q such that F contains an exppGq-th
root of unity. Since F is a field of characteristic zero, FG-modules are isomorphic if and only if their
characters are equal. Also, the character of an FG-module provides complete information about its
composition factors, including multiplicities, provided that the irreducible characters of G are known.
All this does not hold for fields � of characteristic � ° 0. For instance, if W is a �-vector space on
which G acts trivially and dim�pW q “ �� ` 1 for some non-negative integer �, then the �-character of
W is the trivial character. This implies that a �-character can only give information about multiplicities
of composition factors modulo �. In view of these issues, the aim of this chapter is to define a slightly
different kind of character theory for modular representations of finite groups and to establish links
with ordinary character theory.

Recall that an element � P G is called a �-regular element (or a �1-element) if � - �p�q. We write

G�1 :“ t� P G | � - �p�qu
for the set of all �-regular elements of G.

Since F contains all exppGq-th roots of unity, both F and � contain a primitive �-th root of unity,
where � is the l.c.m. of the orders of the �-regular elements. Set

µF :“ t�-th roots of 1 in Fu and µ� :“ t�-th roots of 1 in �u �

Then µF Ñ � and, as both µF and µ� are finite groups, it follows that the quotient morphism � ⇣ �{p
restricted to µF induces a group isomorphism

µF
–›Ñ µ� �

We write the underlying bijection as pξ fiÑ ξ , so that if ξ is an �-th root of unity in � then pξ is the
unique �-th root of unity in � which maps onto it.

Lemma 16.1 (Diagonalisation lemma)
Let ρ : G ›Ñ GLpUq be a �-representation of G. Then, for every �-regular element � P G�1 , the
�-linear map ρp�q is diagonalisable and the eigenvalues of ρp�q are �p�q-th roots of unity and lie
in µ� . In other words, there exists an ordered �-basis B of U with respect to which

`
ρp�q

˘
B “

»

————–

ξ1 0 0
0 ξ2

0
0 0 ξ�

fi

����fl
�
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where � :“ dim�pUq and each ξ� (1 § � § �) is an �p�q-th root of unity in � .

Proof : Let � P G�1 . It is enough to consider the restriction of ρ to the cyclic subgroup x�y. Since � - |x�y|,
�x�y is semisimple by Maschke’s Theorem. Moreover, as � is a splitting field for x�y, it follows from
Corollary 5.10 that all irreducible �-representations of x�y have degree 1. Hence ρ|x�y can be decomposed
as the direct sum of degree 1 subrepresentations. As a consequence ρp�q “ ρ|x�yp�q is diagonalisable
and there exists a �-basis B of U satisfying the statement of the lemma. It follows immediately that
the eigenvalues are �p�q-th roots of unity because ρUp��p�qq “ ρUp1Gq “ IdU . They all lie in µ� , being
�p�q-th roots of unity, hence �-th roots of unity.

This leads to the following definition.

Definition 16.2 (Brauer characters)
Let U be a �G-module of dimension � P Z•0 and let ρU : G Ñ GLpUq be the associated �-
representation. The �-Brauer character or simply the Brauer character of G afforded by U (resp.
of ρU ) is the F-valued function

�U : G�1 Ñ � Ñ F
� fiÑ pξ1 ` ¨ ¨ ¨ ` pξ� �

where ξ1� � � � � ξ� P µ� are the eigenvalues of ρUp�q. The integer � is also called the degree of �U .
Moreover, �U is called irreducible if U is simple (resp. if ρU is irreducible), and it is called linear
if � “ 1. We denote by IBr�pGq the set of all irreducible Brauer characters of G and we write 1G�1
for the Brauer character of the trivial �G-module.

In the sequel, we want to prove that Brauer characters of �G-modules have properties similar to C-
characters.

Remark 16.3

(a) Warning: �p�q P � Ñ F even though ρUp�q is defined over the field � of characteristic � ° 0.

(b) Often the values of Brauer characters are considered as complex numbers, i.e. sums of complex
roots of unity. Of course, in that case then �Up�q depends on the choice of embedding of
µF into C. However, for a fixed embedding, �Up�q is uniquely determined up to similarity
of ρUp�q.

Immediate properties of Brauer characters are as follows.

Exercise 16.4
Let U� V � W be non-zero �G-modules. Prove the following assertions:

(a) �Up1q “ dim�pUq .

(b) �U is a class function on G�1 .

(c) �Up�´1q “ �U˚p�q @ � P G�1 .
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(d) If 0 U V W 0 is a s.e.s. of �G-modules, then

�V “ �U ` �W �

(e) If the composition factors of U are S1� � � � � S� (� P Z•1) with multiplicities �1� � � � � �� re-
spectively, then

�U “ �1�S1 ` � � � ` ���S� �

In particular, if two �G-modules have isomorphic composition factors, counting multiplicities,
then they have the same Brauer character.

(f ) �U‘V “ �U ` �V and �Ub� V “ �U ¨ �V .

(g) Assume U is a liftable and pU is a lift, i.e. pU{ppU – U . Write χpU
be the F-character of F b� pU .

Then �Up�q “ χpU
p�q on all �-regular elements � P G.

Brauer proved that Brauer characters can be counted using conjugacy classes as well:

Theorem 16.5
The set IBr�pGq of irreducible Brauer characters of G forms an F-basis of the F-vector space
ClF pG�1q of class functions on G�1 and

| IBr�pGq| “ dimF ClF pG�1q “ number of conjugacy classes of �-regular elements in G �

We note that the second equality is obvious, because the indicator functions on the conjugacy classes
of �-regular elements form an F-basis.

17 Back to reduction modulo p

We now want to investigate the connections between representations of G over F (or C) and represen-
tations of G over � through the connections between their F-characters and Brauer characters.

Proposition 17.1
Let V be an FG-module with F-character χV . Then:

(a) there exists an �G-lattice L such that V – F b� L (called an �-form of V );

(b) χV |G�1 “ �L and is called the reduction modulo � of χV ;

(c) if V P IrrF pGq, there exist non-negative integers �χ� such that

χV |G�1 “
ÿ

�PIBr�pGq
�χ���
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Exercise 17.2
Assume G is a �-group. Prove that the reduction modulo � of any linear character is the trivial
Brauer character.

Definition 17.3
The matrix

‚ D :“ Dec�pGq “ p�χ�qχPIrrF pGq
�PIBr�pGq

is the �-decomposition matrix of G;

‚ C :“ D��D “ p��µq��µPIBr�pGq is the Cartan matrix of G.

Proposition 17.4

(a) The decomposition matrix Dec�pGq has full rank, namely | IBr�pGq|.

(b) The Cartan matrix of G is a symmetric positive definite matrix with non-negative integer
entries.

Recall now that projective �G-modules are liftable and this enables us to associate an F-character of
G to each PIM of �G, in fact in a unique way in this case.

Definition 17.5
Let � P IBr�pGq be an irreducible Brauer character afforded by a simple �G-module S. Let PS be
the projective cover of S and let pPS denote a lift of PS to �. Then, the F-character of ppPSqF is
denoted by Φ� and is called the projective indecomposable character associated to S or �.

Proposition 17.6
Let � P IBr�pGq. Then:

(a) Φ� “ ∞
χPIrrF pGq �χ�χ ; and

(b) Φ�|G�1 “ ∞
µPIBr�pGq ��µµ.

Definition 17.7 (Brauer character table)
Set � :“ |G�1 | and let �1� � � � � �� be a complete set of representatives of the �-regular conjugacy
classes of G.

(a) The Brauer character table of a finite group G is the matrix
´

�p��q
¯

�PIBr�pGq
1§�§�

P M�pF q .

(b) The Brauer projective table of a finite group G at � is the matrix
´

Φ�p��q
¯

�PIBr�pGq
1§�§�

P M�pF q .



Wednesday. Chapter 5. Block Theory

We now want to break down the representation theory of finite groups into its smallest parts: the blocks
of the group algebra. Before we proceed, I want to give the following warning: one of the confusing
things about the block theory of finite groups is that there often seems to be more than one definition of
the same concept. In fact several different definitions – and mathematical objects – are hidden behind
the word block of a group algebra. Some texts consider blocks to be algebras, or more precisely inde-
composable 2-sided ideals of the group algebra, some to be primitive central idempotents of the group
algebra, some to be the union of the sets of irreducible ordinary characters and irreducible Brauer
characters of the aforementioned algebra, some others to be an equivalence class of modules over the
group algebra (sometimes simple, sometimes indecomposable, sometimes arbitrary),. . . Important is to
keep in mind, that although different authors use different approaches, there are essentially equivalent.
We will focus here on the algebra approach.

Notation: We keep the notation and the assumptions of the previous Chapters. Throughout, G denotes
a finite group, � a prime number. We let pF � �� �q denote a �-modular system and we assume F
contains all exppGq-th roots of unity, so pF � �� �q is a splitting �-modular system for G and all its
subgroups (see Theorem 15.2). We write p :“ JpOq and we let Λ P tF � �� �u.

18 The �-Blocks of a Group
The block decomposition of the group algebra ΛG is just the the decomposition of ΛG, seen a pΛG� ΛGq-
bimodule, into indecomposable pΛG� ΛGq-bimodules. So in block theory of finite groups, by definition,
one should work with bimodules. However, bimodules over group algebras can always be made into
one-sided modules as described in the following remark.

Remark 18.1
Let G1 and G2 be finite groups. If M is a pΛG1� ΛG2q-bimodule, then M can be endowed with the
structure of a one-sided ΛrG1 ˆ G2s-module via the G1 ˆ G2-action:

¨ : pG1 ˆ G2q ˆ M ›Ñ M� � fiÑ p�� �q ¨ � :“ � ¨ � ¨ �´1

The consequence is that the one-sided module theoretic terms and results we have seen so far can
be applied to such bimodules. Thus, in the sequel, we identify bimodules with one-sided left modules
without further mention.

38
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Definition 18.2 (Blocks of the group algebra)
In the unique decomposition ΛG “ B1 ‘ ¨ ¨ ¨ ‘ B� into indecomposable pΛG� ΛGq-subbimodules of
ΛG, the summands B1� � � � � B� are called the blocks of ΛG. (Or sometimes just block algebras.)

Remark 18.3
The block decomposition ΛG “ B1 ‘ ¨ ¨ ¨ ‘ B� is equivalent to a decomposition

1 “ �1loomoon
PB1

` � � � ` ��loomoon
PB�

of the unit of ΛG as a sum of orthogonal primitive central idempotents �� P Z pΛGq, where �� “ 1B�

and B� “ ΛG�� @ 1 § � § �. We call the elements �1� � � � � �� the block idempotents of ΛG.

Definition 18.4 (belonging to a block )
We say that an (indecomposable) ΛG-module M belongs to (or lies in) the block B� “ ΛG�� if
��M “ M and ��M “ 0 for all 1 § � § � such that � ‰ �.

Remark 18.5
It follows from the previous remark, that every indecomposable ΛG-module M belongs to a uniquely
determined block of ΛG. Indeed, the decomposition

1 “ �1 ` � � � ` �� ùñ M “ 1 ¨ M “ �1 ¨ M ‘ � � � ‘ �� ¨ M

but as M is indecomposable the Krull-Schmidt theorem tells us that

D! 1 § � § � such that ��M “ M and ��M “ 0 @ 1 § � § � with � ‰ � �

Definition 18.6 (Principal block )
The principal block of ΛG is the block to which the trivial module Λ belongs. Notation: B0pΛGq.

Exercise 18.7

(a) Let B� be a block of ΛG and let �� be the corresponding block idempotent. Prove that a
ΛG-module M belongs to B� if and only if external multiplication by �� is a ΛG-isomorphism
on that module.

(b) Let 0 L M N 0 be a short exact sequence of ΛG-modules and ΛG-homomorphisms.
Prove that, for each 1 § � § �:

M belong to the block B� of ΛG if and only L and N belong to B� .

[Hint: use (a) and the 5-Lemma.]

(c) Deduce that if a ΛG-module M lies in a block B of ΛG, then so do all of its submodules and
all of its factor modules.
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Example 15 (Blocks of FG)
Since FG is semisimple, the block decomposition of FG is given by the Artin-Wedderburn Theorem.
In particular, the blocks are matrix algebras and can be labelled by IrrpFGq. (Or IrrF pGq if you
prefer!)

Remark 18.8 (Blocks of �G and �G)
The Lifting of Idempotents tells us that the quotient morphism �G ⇣ r�{psG “ �G� � fiÑ � induces
a bijection

tprimitive idempotents of Z p�Gqu „–Ñ tprimitive idempotents of Z p�Gqu
� fiÑ � .

Thus a decomposition 1�G “ �1 ` ¨ ¨ ¨ ` �� of the identity element of �G into a sum of primitive
central idempotents corresponds to a decomposition 1�G “ �1 ` ¨ ¨ ¨ ` �� of the identity element of
�G into a sum of primitive central idempotents of �G. Therefore, by Proposition 18.3, there is a
bijection between the blocks of �G and the blocks of �G:

�G B1 ‘ ¨ ¨ ¨ ‘ B�

�G B1 ‘ ¨ ¨ ¨ ‘ B�

¨ ¨ ¨

We define a �-block of G to be the specification of a block of �G, understanding also the corre-
sponding block of �G. We write Bl�pGq for the set of all �-blocks of G when it is clear from the
context/unimportant whether we work over � or over � , resp. Bl�p�Gq for the set of all blocks of
�G and Bl�p�Gq for the set of all blocks of �G.

The division of the simple �G-modules into blocks can be achieved in a purely combinatorial fashion,
knowing the Cartan matrix of �G. The connection with a block matrix decomposition of the Cartan
matrix is probably the origin of the use of the term block in representation theory.

Remark 18.9
On listing the simple �G-modules so that modules in each block occur together, the Cartan matrix of
�G has a block diagonal form, with one block matrix for each �-block of the group. Up to permutation
of simple modules within �-blocks and permutation of the �-blocks, this is the unique decomposition
of the Cartan matrix into block diagonal form with the maximum number of block matrices.

19 Defect Groups
From now on we will only discuss the blocks of �G. (Analogous results hold for the corresponding
blocks of �G.) We write ∆ : G ›Ñ G ˆ G� � fiÑ p�� �q for the diagonal embedding of G in G ˆ G.

We start with a result, which lets us identify the vertices of a block with a conjugacy class of �-
subgroups of G.
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Theorem 19.1
If B P Bl�p�Gq, then every vertex of B, considered as an indecomposable �rG ˆ Gs-module, has
the form ∆pDq for some �-subgroup D § G. Moreover, D is uniquely determined up to conjugation
in G.

Definition 19.2 (Defect group, defect)
Let B P Bl�p�Gq.

(a) A defect group of B is a �-subgroup D § G such that ∆pDq is a vertex of B considered as
an indecomposable �rG ˆ Gs-module.

(b) If |D| “ �� (� P Z•0) then � is called the defect of B.

Note. As the vertices of a module form a a conjugacy class of subgroups, so do the defect groups of a
block and it is clear that in fact all defect groups have the same order.

Defect groups are useful and important because in some sense they measure how far a �-block is from
being semisimple (see Exercise 19.5 below). In general they are very difficult to determine concretely.
However, the following properties (mostly due to Green) are useful.

Properties 19.3
Let B P Bl�p�Gq with defect group D § G. Then the following assertions hold.

(a) If B is a block of �G with defect group D, then every indecomposable �G-module belonging
to B is relatively D-projective, and hence has a vertex contained in D.

(b) D contains every normal �-subgroup of G ;

(c) D is the largest normal �-subgroup of NGpDq, i.e. Q “ O�pNGpQqq.

Example 16
Since the vertices of the trivial �G-module � are the Sylow �-subgroups of G, so are the defect
groups of the principal group B0p�Gq.

Exercise 19.4 (�-block(s) of a �-group)
Prove that if G is a �-group, then G has a unique �-block.

Exercise 19.5
Let B be a block of �G with a trivial defect group. Prove that B is a semisimple algebra.
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Finally we present a fundamental result due to Brauer.

Definition 19.6

Let H § G, let � P Bl�p�Hq. Then a block B P Bl�p�Gq corresponds to � if and only if � | BÓGˆG
HˆH

and B is the unique block of �G with this property. We then write B “ �G . If such a block B exists,
then we say that �G is defined.

Theorem 19.7 (Brauer’s First Main Theorem)
Let D § G be a �-subgroup and let H § G containing NGpDq. Then, there is a bijection

tBlocks of �H with defect group Du „›Ñ tBlocks of �G with defect group Du
� fiÑ �G

Moreover, in this case �G is called the Brauer correspondent of � (and conversely).

Proof (Sketch) : This is a particular case of the Green correspondence (i.e. when viewing blocks as one-sided
left modules).

Many of the results and open problems in modular representation theory of finite groups are concerned
with the influence of the structure of the defect group on the structure of the block. For example, by
a result of Brauer, |D| is the largest elementary divisor of the Cartan matrix of a block B with defect
group D, and it appears with multiplicity 1. We mention here two major open problems in this spirit.

Conjecture 19.8 (Brauer’s kpBq-Conjecture)
Let B P Bl�p�Gq with defect group D. Then | IrrF pBq| § |D|.

Conjecture 19.9 (Broué’s Abelian Defect Group Conjecture)
Let B P Bl�pGq with abelian defect group D and let � P Bl�pNGpDqq be the Brauer correspondent
of B. Then, the derived categories D�pmodpBqq and D�pmodp�qq of bounded complexes of finitely
generated modules over B and � are equivalent as triangulated categories.

20 Equivalences of Block Algebras
Basic Question 20.1 (Open!!)

Which �-algebras (resp. �-algebras) occur as �-blocks of finite groups?

Conjectural Answer 20.2
If a defect group is fixed, only finitely many . . . up to a good notion of equivalence!

In this respect, Donovan’s and Puig’s Conjectures are further good examples of open problems concerned
with the influence of the structure of the defect group on the structure of the block.
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Conjecture 20.3 (Donovan’s/Puig’s Conjecture, ’70’s/’80’s)
Let D be a finite �-group. Then, there exists only finitely many (splendid) Morita equivalence
classes of �-blocks of finite groups with a defect group isomorphic to D.

Donovan’s Conjuecture is known to hold over � and over � for a fairly long list of small defect groups.
The status of this conjecture is kept up-to-date by Charles Eaton on the Wiki page of his block library.
See https://wiki.manchester.ac.uk/blocks/index.php/Main´Page.

On the other hand, not much is known towards Puig’s Conjecture. It is known to hold if D – C�� , that is,
is a cyclic �-group (Linckelmann, 1996) and if D – C2ˆC2 if � “ 2 (Craven-Eaton-Kessar-Linckelmann,
2012).

Here:

Definition 20.4 (Morita equivalence)
Let G and G1 be two finite groups. Two block algebras A P Bl�pGq and B P Bl�pG1q are called
Morita equivalent iff modpAq and modpBq are equivalent as (�-linear, resp. �-linear) categories. If
this is the case, then we write A „M B.

The following result on Morita equivalences is often useful in order to verify that such an equivalence
exists.

Theorem 20.5 (Morita’s Theorem)
With the assumptions and notation of the previous definition, TFAE:

(a) A „M B ; and

(b) there exists an pA� Bq-bimodule M and a pB� Aq-bimodule N such that M bB N – A (as
pA� Aq-bimodules) and N bA M – B (as pB� Bq-bimodules).

In fact in the case of block algebras, N is the dual of M . Therefore, we often say that the Morita
equivalence is induced of realised by the bimodule M of Assertion (b) of Morita’s Theorem.

Definition 20.6 (Morita equivalence)
Let G and G1 be two finite groups. Assume M is an pA� Bq-bimodule realising a Morita equivalence
bewtween A P Bl�p�Gq and B P Bl�p�G1q. This Morita equivalence is called:

¨ a splendid Morita equivalence (or also a source-algebra equivalence or a Puig equivalence)
iff the bimodule M , seen as a left �rG ˆ G1s-module, is a �-permutation module, and if it is
the case we write A „SM B

¨ an endo-permutation source equivalence (or also a basic equivalence) iff the bimodule M ,
seen as a left �rG ˆ G1s-module, has a source T such that End�pT q – permutation module.

Morita and splendid Morita equivalences of occur naturally in the modular representation theory of
finite groups. Standard examples are as follows:
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Example 17 (Examples of (splendid) Morita equivalences in the block theory of finite groups)

(a) Isomorphic blocks (i.e. as �-algebras) are always Morita equivalent.

(b) B0p�Gq „SM B0p�rG{O�1pGqsq because O�1pGq always acts trivially on the principal block.

(c) “Alperin/Dade”. If G E rG and there is a Sylow �-subgroup P of G such that rG “ GCrGpPq,
then

B0p� rGq „SM B0p�Gq �

In fact in this case the two principal blocks are isomorphic.

(d) “Fong-Reynolds”. If H E G, � P Bl�pHq, T :“ StabGp�q, then there exists a bijection

Bl�pT | �q „›Ñ Bl�pB | �q� B fiÑ BG

where the bimodule M :“ 1BG ¨ �G ¨ 1B realises a splendid Morita equivalence between B
and BG .

Remark 20.7
It can be proved that splendidly Morita equivalent blocks and basically equivalent blocks necessarily
have isomorphic defect groups.
Whether Morita equivalent blocks necessarily have isomorphic defect groups was an open question
for a long time. However, as mentioned by Claudio in his talk, a special case is the modular
isomorphism problem, which has recently (July 2021) been shown to have a negative answer by
Garcia-Margolis-Del Rio. More precisely, they prove that there are non-isomorphic finite 2-groups
G and G1 such that the group rings of G and G1 over any field of characteristic 2 are isomorphic.

Finally we mention that the notions of a Morita and a splendid Morita equivalence can be weakened
in different flavours to equivalences between the stable module categories or of the bounded derived
categories of the blocks.

Definition 20.8 (Rickard equivalence / Stable equivalence of Morita type)
Let G and G1 be two finite groups. Two block algebras A P Bl�pGq and B P Bl�pG1q are called:

(a) Rickard (or derived) equivalent if the derived categories D�pmodpAqq and D�pmodpBqq of
bounded complexes of finitely generated modules over A and B are equivalent as triangulated
categories.

(b) “stably equivalent à la Morita” (or say that there is a stable equivalence of Morita type
between A and B) if there exist an pA� Bq-bimodule M which is projective as an A-module and
as a B-module and a pB� Aq-bimodule N which is projective as a B-module and as an A-module
such that M bB N – A ‘ pprojectivesq as pA� Aq-bimodules and N bA M – B ‘ pprojectivesq
as pB� Bq-bimodules.

Remark 20.9

(a) A derived version of Morita’s theorem asserts that A and B are Rickard equivalent if and only
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if the equivalence of triangulated categories between D�pmodpAqq and D�pmodpBqq can be
realised by tensoring over B with a bounded complex M‚ of pA� Bq-bimodules in which each
term is both projective as an A-module and as B-module. When all terms in this complex
(seen as one-sided left modules) are �-permutation modules, then the equivalence is called a
splendid Rickard equivalence.

(b) A stable equivalence of Morita type between A and B induces an equivalence of triangulated
categories between the stable categories stmodpAq and stmodpBq.

See the HANDOUT of my Beamer presentation for relations between these equivalences.

Finally, we mention that blocks with cyclic defect groups are a very nice playground to play around
with several notions of equivalences – mentioned in this section – and more concepts such as the Green
correspondence, Clifford theory or perfect isometries of characters.

Remark 20.10 (Blocks with cyclic defect groups)
Let B P Bl�p�Gq be a block with a cyclic defect group D. Let D1 be the unique cyclic subgroup
of D of order �. As D is cyclic, N1 :“ NGpD1q • NGpDq, so we may consider the Brauer
correspondent � P Bl�pNGpD1qq of B, let � P Bl�pCGpD1qq be a block of CGpD1q covered by �
and let �1 P Bl�pStabNGpD1qp�qq be the Fong-Reynolds correspondent of �. Then, we have the
following situation:

G B ´ mod

N1 � ´ mod

StabN1p�q �1 ´ mod

CGpD1q � ´ mod

stable equivalence of Morita type, induced by the Green correspondence
(+ a perfect isometry)

splendid Morita equivalence (given by the Fong-Reynolds correspondence, induced by IndN1
T )

Clifford theory (induced by IndT
CG pD1q)


