Tuesday. Chapter 3. Indecomposable Modules

After simple and semisimple modules, the goal of this chapter is to understand indecomposable modules
in general. Apart for exceptions, the group algebra is of wild representation type, which, roughly speak-
ing, means that it is not possible to classify the indecomposable modules over such algebras. However,
representation theorists have developed tools which enable us to organise indecomposable modules
in packages parametrised by parameters that are useful enough to understand essential properties of
these modules. In this respect, we will generalise the idea of a projective module by defining what
is called relative projectivity. This will lead us to introduce the concepts of vertices and sources of
indecomposable modules, which are two typical examples of parameters bringing us useful information
about indecomposable modules in general.

8 Existence and Uniqueness of Direct Sum Decompositions

First, we take a look at the concept of decomposability over general rings.

Definition 8.1 (indecomposable module)

An R-module M is called decomposable if M possesses two non-zero proper submodules My, M5
such that M = M; @ M,. An R-module M is called indecomposable if it is non-zero and not
decomposable.

First, we want to be able to decompose R-modules into direct sums of indecomposable submodules.
The Krull-Schmidt Theorem then provide us with certain uniqueness properties of such decompositions.

Proposition 8.2

Let M be an R-module. If M satisfies either A.C.C. or D.C.C., then M admits a decomposition into
a direct sum of finitely many indecomposable R-submodules.

Exercise 8.3

Prove Proposition 8.2.

Theorem 8.4 (Krull-Schmidt)

Let M be an R-module which has a composition series. If

M=M@ - dM, =M &---dM,, (n,n" € Z-y)
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are two decomposition of M into direct sums of finitely many indecomposable R-submodules, then
n = n’, and there exists a permutation 7 € &, such that M; =~ /\/IJ’T(l.) foreach 1 < i< n.

Thus the number n is uniquely determined by the module M, and the submodules My, ..., M, are
unique, up to isomorphism and ordering. They are sometimes called the components of M.

9 Indecomposability Criteria

The proof of the Krull-Schmidt theorem relies on the following general indecomposability criterion.

Proposition 9.1 (Indecomposability criterion)

Let M be an R-module which has a composition series. Then:

M is indecomposable <= Endgr(M) is a local ring.

For modules over the group algebra, we have the following important indecomposability criterion due
to J. A. Green. The proof is rather involved.

Theorem 9.2 (Green’s indecomposability criterion, 1959)

Assume that K is an algebraically closed field of characteristic p > 0. Let H < G be a subnormal
subgroup of G of index a power of p and let M be an indecomposable KH-module. Then /\/ITE, is
an indecomposable KG-module.

Remark 9.3

Green'’s indecomposability criterion remains true over an arbitrary field of characteristic p, provided
we replace indecomposability with absolute indecomposability. (A KG-module M is called abso-

lutely indecomposable iff its endomorphism algebra Endkg(M) is a split local algebra, that is, if
EndK(;(/\/I)/j(Enng(/\/l)) = K.)

Example 5

Assume that K is an algebraically closed field of characteristic p > 0. If P is a p-group, Q < P and
M is an indecomposable KQ-module, then /\/ITZ is an indecomposable KP-module. In particular,

the permutation module K[P/Q] =~ KTZ is indecomposable.

Indeed, since P is a p-group, by the Sylow theory any subgroup Q < P can be plugged in a
subnormal series where each quotient is cyclic of order p, hence is a subnormal subgroup of P. The
claim follows immediately from Green's indecomposability criterion.

10 Projective Modules for the Group Algebra

We have seen that over a semisimple ring, all simple modules appear as direct summands of the reqular
module with multiplicity equal to their dimension. For non-semisimple rings this is not true any more,
but replacing simple modules by the projective modules, we will obtain a similar characterisation.
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To begin with we review a series of properties of projective KG-modules with respect to the operations
on groups and modules we have introduced in Chapter 1, i.e. induction/restriction, tensor products, ...

Proposition 10.1

Assume K is an arbitrary commutative ring. Then the following assertions hold.
(@) If P is a projective KG-module and M is an arbitrary KG-module, then P ®x M is projective.
(b) If P is a projective KG-module and H < G, then Plf, is a projective K'H-module.

(c) It H < G, then KH Tg; KG and P is a projective KH-module, then P TE, is a projective
KG-module. [Hint: Prove that KH 1§~ KG]

Exercise 10.2

Prove Proposition 10.1.

We now want to prove that the PIMs of KG can be labelled by the simple KG-modules, and hence
that there are a finite number of them, up to isomorphism. We will then be able to deduce from this
bijection that each of them occurs in the decomposition of the reqular module with multiplicity equal
to the dimension of the corresponding simple module.

Theorem 10.3

(a) If P is a projective indecomposable KG-module, then P/rad(P) is a simple KG-module.

(b) If M is a KG-module and M/rad(M) =~ P/rad(P) for a projective indecomposable KG-
module P, then there exists a surjective KG-homomorphism ¢ : P — M. In particular, if M
is also projective indecomposable, then M/rad(M) =~ P/rad(P) if and only if M =~ P.

(c) There is a bijection

lle
lle

{projective lndecomposable}/ o { simple }/
KG-modules KG-modules

P —  P/rad(P)

and hence the number of pairwise non-isomorphic PIMs of KG is finite.

Definition 10.4 (Projective cover of a simple module)

If S is a simple KG-module, then we denote by Ps the projective indecomposable KG-module
corresponding to S through the bijection of Theorem 10.3(c) and call this module the projective
cover of S.
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Corollary 10.5

In the decomposition of the reqular module KG into a direct sum of indecomposable KG-submodules,
each isomorphism type of projective indecomposable KG-module occurs with multiplicity dimg (P/rad(P)).
In other words,

KG= @ (Ps)™

Selrr(KG)

(where ns = dimg S).

Proof: Let KG =P @®---® P, (r € Z~o) be such a decomposition. In particular, Py, ... P, are PIMs. Then
J(KG) = J(KG)KG = J(KG)P1®--- @ J(KG)P, =rad(P1)@---®rad(P,).

Therefore,
KG/J(KG) = Py/rad(P1)@®--- @ P,/rad(P,)

where each summand is simple by Theorem 10.3(a). Now as KG//(KG) is semisimple, by Theorem 5.5,
any simple KG/J(KG)-module occurs in this decomposition with multiplicity equal to its K-dimension.
Thus the claim follows from the bijection of Theorem 10.3(c). |

The Theorem also leads us to the following important dimensional restriction on projective modules,
which we will see again later.

Exercise 10.6

Assume K is a splitting field for G of characteristic p > 0.

(@) Prove that if G is a p-group, then the projective cover of the trivial module is the regular
module.

(b) Use (a) and restriction to a Sylow p-subgroup to prove that if P is a projective KG-module,
then
|Glp | dimk(P).

(Here |G|, is the p-part of |G|, i.e. the exact power of p that divides the order of G.)

11 Relative Projectivity

Definition 11.1
Let H < G. A KG-module M is called relatively H-projective, or simply H-projective, if it is

isomorphic to a direct summand of a KG-module induced from H, i.e. it M | V Tﬁ for some KH-
module V.

Example 6
Clearly, H-projectivity is a generalisation of projectivity. Indeed, if M € mod(KG), then:
M is projective <= 3n € Z.g such that M | (KG)" = (K1{y)" = (K") 1§,

<= M is {1}-projective
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We can actually characterise relative projectivity in a similar way as we characterised projectivity.

Proposition 11.2 (Characterisation of relative projectivity)
Let H < G and let M be a KG-module. TFAE:

(@) M is relatively H-projective;
(b) M| MGG
(c) 3 a KG-module N such that M | K15 @k N;

(d) if ¢ € Homgg(M, W), ¢ € Homgg(V, W) is surjective and 3 ay € S M
Homk (MG, VI§) such that goay = ¢, then 3 ag € Homkg(M, V) ¢ ldl

e
such that @ o ag = ; p—

(e) A surjective KG-homomorphism ¢ : V — M is KG-splits provided it is KH-split.

Projectivity relative to a subgroup can be generalised as follows to projectivity relative to a KG-module:

Remark 11.3 (Projectivity relative to KG-modules)

(a) Let V be a KG-module. A KG-module M is termed projective relative to the module V or
relatively V -projective, or simply V-projective if there exists a KG-module N such that M is
isomorphic to a direct summand of V®x N, i.e. M|V @k N.

(b) Proposition 11.2(c) shows that projectivity relative to a subgroup H < G is in fact projectivity
relative to the KG-module V := KTﬁ.

The concept of projectivity relative to a subgroup is proper to the group algebra, but the concept of
projectivity relative to a module is not and makes sense in general over algebras/rings.

Next we see that any indecomposable KG-module can be seen as a relatively projective module with
respect to some subgroup of G.

Theorem 11.4
Let H < G.
(a) If |G : H| is invertible in K, then every KG-module is H-projective.

(b) In particular, if K is a field of characteristic p > 0 and H contains a Sylow p-subgroup of G,
then every KG-module is H-projective.

Part (b) follows immediately from (a). Indeed, if P € Syl,(G) and H 2 P, then p { [G : H|, so
|G : H| € K*. Moreover, considering the case H = {1} shows that Theorem 11.4 is a generalisation of
Maschke's Theorem.
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Example 7

Assume that char(K) =: p > 0 and H = {1}. If H contains a Sylow p-subgroup of G then the
Sylow p-subgroups of G are trivial, so p 1 |G|. The theorem then says that all KG-modules are
{1}-projective, that is, projective.

We know this already, however! If p t |G| then KG is semisimple by Maschke's Theorem, and so
all KG-modules are projective.

Corollary 11.5

Let H < G and suppose that |G : H| is invertible in K. Then a KG-module M is projective if and
only if /\/Il,(_;, is projective.

Proof: The necessary condition is given by Proposition 10.1(b). To prove the sufficient condition, suppose
that M | & is projective. Then, on the one hand,

M LS | (KH)" for some ne€ Z-g.
On the other hand, M is H-projective by Theorem 11.4, and it follows from Proposition 11.2(e) that
MIMLET .

Hence
M MGG | (KH)" 16 = (KG)",

so M is projective. ]

12 Vertices and Sources

As in the case in which KG is semisimple, relative projectivity is just projectivity, we now focus on the
non-semiminple case.

For the remainder of this chapter, we as-
sume that char(K) =:p >0 and p | |G|.

As said before, we now want to explain some techniques that are available to understand indecompos-
able modules better. Vertices and sources are two parameters making this possible.

Theorem 12.1
Let M be an indecomposable KG-module.

(@) There is a unique conjugacy class of subgroups Q of G which are minimal subject to the
property that M is Q-projective.

(b) Let Q be a minimal subgroup of G such that M is Q-projective. Then, there exists an
indecomposable KQ-module T which is unique, up to conjugacy by elements of N¢(Q), such
that M is a direct summand of TTg. Such a KQ-module T is necessarily a direct summand

of M.

This characterisation leads us to the following definition:
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Definition 12.2
Let M be an indecomposable KG-module.

(@) A vertex of M is a minimal subgroup Q of G such that M is relatively Q-projective.
The set of all vertices of M is denoted by vtx(M).

(b) Given a vertex Q of M, a KQ-source, or simply a source of M is a KQ-module T such that
M| T1§.

Remark 12.3

(@) A vertex Q of an indecomposable KG-module M is not uniquely defined, in general. However,
the vertices of M are unique up to G-conjugacy, so in particular are all isomorphic. For this
reason, in general, one (i.e. you!) should never talk about the vertex of a module (of course,
unless a vertex has been fixed). We either say that Q is a vertex of M, or talk about the
vertices of M. (Unfortunately many textbooks/articles are very sloppy with this terminology,
inducing errors.)

(b) For a fixed vertex Q of M, a source of M is defined up to conjugacy by elements of Ng(Q).

Warning! Vertices and sources are very useful theoretical tools in general, but extremely difficult to
compute concretely. However, the following properties are useful.

To begin with, by Theorem 11.4, we know that every KG-module is projective relative to a Sylow p-
subgroup of G. Therefore, by minimality, vertices are contained in Sylow p-subgroups. Hence:

Proposition 12.4

The vertices of an indecomposable KG-module are p-subgroups of G.

Proposition 12.5

Let U be an indecomposable KG-module and let Q € vix(U). If P € Syl,(G) is such that Q < P,
then

|P: Q| | dimg(U).
In particular if U is a PIM of KG, then |P| = |G|, | dimk (U).

Example 8

(a) The trivial subgroup {1} is a vertex of an indecomposable KG-module U <= U is a PIM
of KG.

(b) The vertices of the trivial KG-module are the Sylow p-subgroups of G, i.e. vtx(K) = Syl,(G),
and all sources are trivial.

Exercise 12.6

Prove that the vertices of any KG-module with K-dimension coprime to p are the Sylow p-subgroups
of G.
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Conceptually, the closer the vertices of a module are to the trivial subgroup, the closer this module is
to being projective.

Finally, we give a name to the modules which have a trivial source. We will see in Lecture 4 that these
module play a particularly important role in block theory.

Definition 12.7 (trivial source module)

A KG-module is called a trivial source KG-module if it is a finite direct sum of KG-modules with
a trivial source K.

Warning! Some texts (books/articles/...) require that a trivial source module is indecomposable, others
do not.

13 The Green Correspondence

The Green correspondence is a correspondence which relates the indecomposable KG-modules with
a fixed vertex with the indecomposable KL-modules with the same vertex for well-chosen subgroups
L < G. It is used to reduce questions about indecomposable modules to a situation where a vertex of
the given indecomposable module is a normal subgroup.

Theorem 13.1 (Green Correspondence)

Let Q be a p-subgroup of G and let L be a subgroup of G containing Ng(Q).
(@) If U is an indecomposable KG-module with vertex Q, then
Ulf=fU)e X

where f(U) is the unique indecomposable direct summand of U |{ with vertex Q and every
direct summand of X is L n *Q-projective for some x € G\L.

(b) If V is an indecomposable KL-module with vertex Q, then
Vit=g(V)@Y

where g(V) is unique indecomposable direct summand of \/TLG with vertex Q and every direct
summand of Y is Q n *Q-projective for some x € G\L.

(c) With the notation of (a) and (b), we then have g(f(U)) = U and f(g(V)) = V. In other words,
f and g define a bijection

{lsomorphism classes of indecomposable} PN { isomorphism classes of indecomposable
KG-modules with vertex Q K [-modules with vertex Q

U - f(U)

g(V) — V.

Moreover, corresponding modules have a source in common.



Short Introduction to Modular Representation IKIU 22 28

Terminology: f(U) is called the KL-Green correspondent of U (or simply the Green correspondent)
and g(V) is called the KG-Green correspondent of V (or simply the Green correspondent of V).

Warning! When working with the Green correspondence it is essential that a vertex Q is fixed and not
considered up to conjugation, because the G-conjugacy class of Q and the L-conjugacy class of Q do
not coincide in general.

Example 9

The Green correspondent of the trivial module is the trivial module, for Klf = K.

14 p-Permutation Modules

Definition 14.1 (Permutation module)

A KG-module is called a permutation KG-module if it admits a K-basis X which is invariant under
the action of the group G. We denote this module by KX.

Permutation KG-modules and, in particular, their indecomposable direct summands have remarkable
properties, which we investigate in this section.

Remark 14.2

If KX is a permutation KG-module on X, then a decomposition of the basis X as a disjoint union
of G-orbits, say X = | |!_, X;, yields a direct sum decomposition of KX as a KG-module as

n
KX = @KX:.
i=1

Thus, we can assume that X is a transitive G-set, in which case we have a direct sum decomposition
as a K-vector space
KX = @ Kgx
ge[G/H]
where H := Stabg(x), the stabiliser in G of some x € X, and G acts transitively on the summands.
Hence,
KX = K15 .

It follows that an arbitrary permutation KG-module is isomorphic to a direct sum of KG-modules of
the form KTE, for various H < G.

Conversely, an induced module of the form KTE, (H < G) is always a permutation KG-module.
Indeed, as KTE, = KG®RkH K = (—Dge[G/H] g ® K as K-vector space, it has on obvious G-invariant

K-basis given by the set
{g®1c [ gelG/H]}.

In fact, more generally if H < G and KX is a permutation KH-module on X, then KX1§ is a
permutation KG-module with G-invariant K-basis {g ® x | g € [G/H],x € X}. In other words,
induction preserves permutation modules.
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Exercise 14.3

Prove that direct sums, restriction, inflation and conjugation also preserve permutation modules.

In order to understand the indecomposable direct summands of the permutation KG-modules, we ob-
serve that they all have a trivial source and we will apply the Green correspondence to see that, up to
isomorphism, there are only a finite number of them.

Proposition-Definition 14.4 (p-permutation module)

Let M be a KG-module and let P € Syl,(G). Then, the following conditions are equivalent:
(a) /\/Ilg is a permutation KQ-module for each p-subgroup Q < G;
(b) Mlg is a permutation KP-module;
(c) M has a K-basis which is invariant under the action of P;
(d) M is isomorphic to a direct summand of a permutation KG-module;
(e) M is a trivial source KG-module.

If M fulfils one of these equivalent conditions, then it is called a p-permutation KG-module.

Note. In fact p-permutation KG-modules and trivial source KG-modules are two different pieces of
terminology for the same concept. French/German speaking authors tend to favour the terminology p-
permutation module (and reserve the terminology trivial source module for an indecomposable module
with a trivial source), whereas English speaking authors tend to favour the terminology trivial source
module.

Exercise 14.5

Prove that p-permutation modules are preserved by the following operations: direct sums, tensor
products, restriction, inflation, conjugation, induction.

Example 10

(a) If G is a p-group, then any p-permutation module is a permutation module.

(b) The PIMs of KG are precisely the KG-modules with vertex {1} and trivial source, so any
projective KG-module is a p-permutation KG-module.

Example 11

Any KG-modules Y of K-dimension 1 is a p-permutation module.

Proof. Let Q be a vertex of Y and let f(Y) be the kNg(Q)-Green correspondent of Y. Then clearly
dimg f(Y) = 1 as well. Thus f(Y) is a simple and therefore has a trivial KQ-source. Indeed,
f(Y) lgc(o) is semisimple by the weak version of Clifford's Theorem, and so must be a direct sum of
copies of the trivial kQ-module because Q is a p-group and therefore has only one simple module,
up to isomorphism, namely the trivial module.
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Generalising these examples, we can characterise the indecomposable p-permutation KG-modules with
a given vertex Q < G as described below.

Example 12 (Green Correspondence applied to indecomposables with a trivial source)

(1) If M is an indecomposable p-permutation KG-module with vertex Q < G, then Q acts triv-
ially on the KNg(Q)-Green correspondent f(M) of M. Thus f(M) can be viewed as a
K[N¢(Q)/Q]-module. As such, f(M) is indecomposable and projective.

(2) Conversely, if N is a projective indecomposable K[N¢(Q)/Q]-module, then Inf%ggg;/o(/\/) is

an indecomposable KNg(Q)-module with vertex Q and trivial source. Its KG-Green corre-
spondent is then also an indecomposable KG-module with vertex Q and trivial source, hence
is an indecomposable p-permutation KG-module

(3) In this way we obtain a bijection

{ isomorphism classes of indecomposable } ~ isomorphism classes of projective
p-permutation KG-modules with vertex Q indecomposable K[Ng(Q)/Q]-modules {




