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Foreword

This text is a transcript of my lectures for the mini-course Introduction to the Modular Representation
Theory of Finite Groups held at the IKIU SUMMER ScHooL oN REPRESENTATION THEORY 2022 and
which took place from the 5th of September to the 7th of September 2022 in Qazin, Iran (3 x 80 minutes).

Together with the necessary theoretical foundations the main aim of this mini-course was to provide
the participants with an introduction to the representation theory of finite groups from a module- and
block-theoretic point of view.

The material presented here has been very much influenced by lectures and summer lectures available
in conference proceedings or which | have followed myself as a student, doctoral student or young
postdoc. In particular, | want to mention here:

- [Mal15] G. Malle, Darstellungstheorie, M.Sc. lecture, TU Kaiserslautern, WS 2015/16. [Unpub-
lished]

- [Bro92] M. Broué, Equivalences of blocks of group algebras. Ottawa, 1992. [MathSciNet]
- [Kes07] R. Kessar, Introducton to block theory. EPFL: CIB 2005 & YAC 2012. [MathSciNet]
- [Kue18] B. Kiilshammer, Basic local representation theory. EPFL/CIB, 2016. [MathSciNet]

- [HKK10] G. Hiss, R. Kessar, B. Kiilshammer, An Introduction to the Representation Theory of
Finite Groups. Aachen, 2010. [Unpublished]

- [Samb16] B. Sambale, Determination of block invariants. EPFL/CIB, 2016. [Unpublished, avail-
able from his webpage]

Acknowledgement:

First of all, | wish to thank the organisers of the IKIU Summer School on Representation Theory
for inviting me to hold this mini-course and the efforts they invested in organising this event as a
presence event. | believe, after 2 years of restrictions due to the pandemics, all participants immensely
appreciated this opportunity to meet their contemporaries and hear about advances in current research
problems.
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https://mathscinet.ams.org/mathscinet-getitem?mr=1308978
https://mathscinet.ams.org/mathscinet-getitem?mr=2336637
https://mathscinet.ams.org/mathscinet-getitem?mr=3821136

Conventions

Unless otherwise stated, throughout these notes we make the following general assumptions:

- all groups considered are finite;

- all rings considered are associative and unital, i.e. possess a neutral element for the
multiplication, denoted by 1;

- all modules considered are finitely generated left modules;

- R always denotes an associative ring with a 1;

- G always denotes a finite group;

- K always denotes a field of arbitrary characteristic;

- A always denotes a finite-dimensional K-algebra, which is split.

- (F,0, k) always denotes a splitting p-modular system for G and its subgroups, where F
contains a primitive exp(G)-th root of 1.
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Monday, Chapter 1. Representations of Finite Groups

Representation theory of finite groups is originally concerned with the ways of writing a finite group G
as a group of matrices, that is using group homomorphisms from G to the general linear group GL,(K)
of invertible n x n-matrices with coefficients in a field K for some positive integer n. Thus, we shall
first define representations of groups using this approach, and then translate such homomorphisms
G — GL,(K) into the language of module theory.

Notation. Throughout this chapter, unless otherwise specified, char(K) > 0. Moreover, we assume that

all KG-modules considered are finitely generated, so finite-dimensional when regarded as K-vector
spaces.

1 Linear Representations of Finite Groups

To begin with, we review elementary definitions and examples about representations of finite groups.

Definition 1.1 (K-representation, matrix representation)

a) A K-representation of G is a group homomorphism p : G — GL(V), where V =~ K"
g
(n € Z>p) is a K-vector and GL(V) := Autk (V).

(b) A matrix representation of G over K is a group homomorphism X : G — GL,(K) (n € Z>y).

In both cases the integer n is called the degree of the representation.

(c) A K-representation (resp. a matrix representation) is called an ordinary representation if
char(K) = 0 (or more generally if char(K) 1 |G|), and it is called a modular representation if
char(K) | |G].

Both concepts of a representation and of a matrix representation are closely related. Indeed, choosing
a K-basis B of V, then we have a commutative diagram

G —— GL(V)

~.O I
3y

GL,(K).
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Example 1
(@) The map

p: G — GLK)=K*
g — |d/<<—>1/<

is a K-representation of G of degree 1, called the trivial representation of G.

(b) If X is a finite G-set, i.e. a finite set endowed with a left action - : G x X — X, and V is a
K -vector space with basis {e, | x € X}, then

PX - G — GL(V)
g = px(g):V—V, e ey

is a K-representation of G of degree |X|, called the permutation representation associated
with X.

Two particularly interesting examples are the following:

(1) if G =S, (n>=1) is the symmetric group on n letters, X = {1,2,...,n}, and the left
action - : G x X — X is given by the natural action of S, then px is called natural
representation of S;

(2) if X = G and the left action - : G x X — X is just the multiplication in G, then
PX =: Preg is called the regular representation of G.

Definition 1.2 (Homomorphism of representations, equivalent representations)
Let p, : G — GL(V4) and p, : G — GL(V2) be two K-representations of G.

(a) A K-homomorphism a : Vi — V; such that p,(g) o a = a0 p,(g) for each g € G is called a
homomorphism of representations (or a G-homomorphism) between p; and p,.

V1 P1(9) V1

o |

Vz —_— V2
p2(9)

(b) If, moreover, a is a K-isomorphism, then it is called an isomorphism of representations (or a
G-isomorphism), and the K-representations and are called equivalent (or similar, or
p P P1 P2 q
isomorphic). In this case we write p; ~ p,.

Remark 1.3

(a) Equivalent representations have the same degree.
(b) Clearly ~ is an equivalence relation.

(c) In consequence, it essentially suffices to study representations up to equivalence (as it es-
sentially suffices to study groups up to isomorphism).
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Definition 1.4 (G-invariant subspace, irreducibility, subrepresentation)
Let p: G —> GL(V) be a K-representation of G.

(@) A K-subspace W < V is called G-invariant if
p(g)(W)cW  VgeG.

(In fact in this case the reverse inclusion holds as well, since for each w € W we can write
w=p(g9~")(w) = p(9)(p(g~")(w)) € p(g) (W), hence p(g)(W) = W)

(b) The representation p is called irreducible if it admits exactly two G-invariant K-subspaces,
namely 0 and V itself; it is called reducible if it is not irreducible.

() f0c W< Visa G-invariant K-subspace, then

pw: G — GL(W)
g —  pwlg)=p@)y: W-—W

is called a subrepresentation of p. (This is clearly again a K-representation of G.)

2 The Group Algebra and its Modules

We actually want to be able to see K-representations of a group G as modules.

Definition 2.1 (Group algebra)

The group algebra of G over K is the K-algebra KG whose elements are the K-linear combinations
dec Agg with Ay € KVg € G, and addition and multiplication are given by

Z )\gg + Z Hgg = Z()‘g + /Jg>g and (Z )\gg) : (Z Ith) = Z ()\gl’h)gh

9eG 9eG 9eG 9eG heG 9,heG
respectively.
Remark 2.2
ke =1a;
- dimg (KG) = |GJ;

- KG is commutative if and only if G is an abelian group;

- as K is a field, KG is a left Artinian ring, so by Hopkins' Theorem a KG-module is finitely
generated if and only if it admits a composition series.

Also notice that since G is a group, the map KG — KG defined by g — g~ for each g € G is an
anti-automorphism. It follows that any left KG-module M may be regarded as a right KG-module
via the right G-action m- g := g~' - m. Thus the sidedness of KG-modules is not usually an issue.
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As KG is a K-algebra, we may of course consider modules over KG and we recall that any KG-module
is in particular a K-vector space. Moreover, we adopt the following convention, which is automatically
satisfied if K is a field.

Proposition 2.3

(a) Any K-representation p : G —> GL(V) of G gives rise to a KG-module structure on V, where
the external composition law is defined by the map

GxV — V
(gv) = g-v:=p(g)v)

extended by K-linearity to the whole of KG.

(b) Conversely, every KG-module (V/, +, ) defines a K-representation

pv: G — GL(V)
g = PV(g)iV—>V,Vr—>p\/(g);:g.V

of the group G.

Example 2

Via Proposition 2.3 the trivial representation (Example 1(a)) corresponds to the so-called trivial
KG-module, that is, K itself seen as a KG-module via the G-action

i GxK—K
(9. 4) —g-A:=2

extended by K-linearity to the whole of KG.

Exercise 2.4

Prove that the regular representation p,oy of G defined in Exampale 1(b)(2) corresponds to the
reqular KG-module KG° via Proposition 2.3.

Convention: In the sequel, when no confusion is to be made, we drop the o-notation to denote the
regular KG-module and simply write KG instead of KG°.

Remark 2.5 (Dictionary)

More generally, through Proposition 2.3, we may transport terminology and properties from KG-
modules to K-representations and conversely.

This lets us build the following translation dictionary:
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K-REPRESENTATIONS

10

KG-MobDULES

K-representation of G

degree

homomorphism of K-representations
equivalent K-representations
subrepresentation

direct sum of representations Py, @pvz
irreducible representation

the trivial representation

the regular representation of G

completely reducible K-representation

every K-representation of G is

KG-module

K-dimension

homomorphism of KG-modules
isomorphism of KG-modules
KG-submodule

direct sum of KG-modules V4 @& V>

simple (= irreducible) KG-module
the trivial KG-module K
the reqgular KG-module KG°

semisimple KG-module
(= completely reducible)

KG is semisimple

completely reducible

3 Operations on Groups and Modules

Next we see how to construct new KG-modules from old ones using standard module operations such
as tensor products, Hom-functors, duality, or using subgroups or quotients of the initial group.

Remark 3.1 (Tensors, Hom’s and duality)
Let M and N be KG-modules.

(@) The tensor product M @k N of M and N balanced over K becomes a KG-module via the
diagonal action of G. In other words, the external composition law is defined by the G-action

GX(/\/’@KN) — Mk N
(g.m®n) —  g-(m®n):=gm®gn

extended by K-linearity to the whole of KCG.

(b) The abelian group Homg (M, N) becomes a KG-module via the so-called conjugation action
of G. In other words, the external composition law is defined by the G-action

G x Homg(M,N) — Homg(M, N)
(9.) = g-f:M—N,m—(g-f)(m):=g-f(g~" - m)

extended by K-linearity to the whole of KCG.

(c) Specifying Definition 3.1 to N = K yields a KG-module structure on the K-dual M* =
Homk (M, K), that is, M* becomes a KG-module via the external composition law is defined
by the map
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Gx M* —s M
(g.f) = g-f:M—K m—(g-f)(m):=1F(g~" m)

extended by K-linearity to the whole of KG.

On the other hand, we may define new module structures from known ones for subgroups, overgroups
and quotients. This leads to standard operations called restriction, inflation, and induction.

&emark 3.2

(@) If H < G is a subgroup, then the inclusion H — G, h — h can be extended by K-linearity
to an injective algebra homomorphism ¢ : KH — KG, > .y Anh — X pcpy Anh. Hence KH is
a K-subalgebra of KG.

(b) Similarly, if U < G is a normal subgroup, then the quotient homomorphism G — G/U,
g — gU can be extended by K-linearity to an algebra homomorphism 7 : KG — K[G/U].

It is clear that we can always perform changes of the base ring using the above homomorphism in order

to

obtain new module structures. This yields:

Definition 3.3 (Restriction)

Let H < G be a subgroup. If M is a KG-module, then M may be regarded as a KH-module through
a change of the base ring along ¢ : KH — KG, which we denote by Resﬁ(/\/l) or simply /Vliﬁ and
call the restriction of M from G to H.

Definition 3.4 (Inflation)

Let U < G be a normal subgroup. If M is a K[G/U]-module, then M may be regarded as a
KG-module through a change of the base ring along 7 : KG — K[G/U], which we denote by
Infg/U(/\/I) and call the inflation of M from G/U to G.

mma 3.5

(@) If H < G and My, M, are two KG-modules, then (My @ M) l,g = Mﬂﬁ (—B/\/Izlf,. If U< G
and Mq, M, are two K[G/U]-modules, then Infg (M @ My) = Infg (M) @ Infg. ,(My).

(b) (Transitivity of restriction) If L < H < G and M is a KG-module, then /\/IiﬁlLHz /\/Ilf.

(c) If H< G and M is a KG-module, then (M*) |4~ (M |£)*. If U< G and M is a K[G/U]-
module, then Infg& (,(M*) = (Infg,, M)*.

A third natural operation comes from extending scalars from a subgroup to the initial group.

Definition 3.6 (Induction)

Let H < G be a subgroup and let M be a KH-module. Regarding KG as a (KG, KH)-bimodule,
we define the induction of M from H to G to be the left KG-module

M1&= Ind%(M) := KG ®xn M.
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Example 3

(a) If H= {1} and M = K, then K 1§, = KG®« K = KG.

(b) Transitivity of induction: clearly L < H < G and M is a KL-module, then M1{= (M1})15
by the associativity of the tensor product.

First, we analyse the structure of an induced module in terms of the left cosets of H.

Remark 3.7

Writing [G/H] (= {g1,..., gc:H|) for a set of representatives of the left cosets, given a KH-
module M, we have

KCGRkuM=( @ gKH)@nuM= B (GKHRkuM)= P (M),
g9€[G/H] g€[G/H] g€[G/H]

where we set
gOM:={g®m|meM} < KGRy M.

Clearly, each g ® M = M as a K-space via the K-isomorphism g @M — M, g & m — m, so

dimg (Ind$(M)) = |G : H| - dimg (M) .

Theorem 3.8 (Adjunction | Frobenius reciprocity | Nakayama relations)

Pr

Let H < G. Let N be a KG-module and let M be a KH-module. Then, there are K-isomorphisms:

(a) Hom/(/_/(/\/l, HomKG(KG, /\/)) ~ HomKG(KG RkH M, /\/),
or in other words, Homg (M, Nlﬁ) >~ HomKG(/\/IT,f,, N);

(b) Homkw(N G, M) = Homkg(N, M16) .

oposition 3.9

Let H < G be a subgroup. Let N be a KG-module and let M be a KH-module. Then, there are
KG-isomorphisms:

(@) M@k N1 15~ M4 ®cN; and
(b) Homg (M, N |5) 16 =~ Homg (M1, N).

Finally, if H and L are subgroups of G, we wish to describe what happens if we induce a KL-module

fro

m L to G and then restrict it to H.

Now if M is a KL-module, we will also write IM for g ® M, which is a left K(9L)-module with

(glg™") - (g@m) =g®Im

for each [ € L and each m € M.
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Theorem 3.10 (Mackey formula)
Let H,L < G and let M be a KL-module. Then, as KH-modules,

MTElIC—;I; @ (gMiiIngL)TﬂmgL :
ge[H\G/L]

Proof: We need to examine KG seen as a (KH, KL)-bimodule (i.e. with left and right external laws given
by multiplication in G). Since G = |_|ge[H\C/L] HglL, we have

KG = (—B K{HgL)
ge[H\G/L]

as (KH, KL)-bimodule, where K{HgL) denotes the K-vector space with K-basis the double coset HgL.
Also
K{Hgl) =~ KH ®kHna) (9 ®KL),

where hgl e HglL corresponds to h ® g ® L. It follows that as left K H-modules we have

@ K(HgLy@kiM
ge[H\G/L]

@ KH®kmna) (g@KL) @k M
ge[H\G/L]

D KH®k@wnw) (gOM) L q
ge[H\G/L]

@ (ngilegL)TﬁmgL .

ge[H\G/L]

M1ELG = (KG @k M) LG

lle

lle

lle

lle

13



Monday. Chapter 2. Semisimplicity and Simplicity

The aim of this chapter is to study two important classes of modules over the group algebra, namely
simple modules and semisimple modules. In particular, our first aim is to understand what the general
theory of semisimple rings and the Artin-Wedderburn theorem bring to the theory of representations of
finite groups over a field of arbitrary characteristic.

Notation. From now on, we let Irr(R) := {isomorphism classes of simple R-modules}.

4 Schur’s Lemma

Schur’s Lemma is one of the most basic result, which lets us understand homomorphisms between simple
modules, and, more importantly, endomorphisms of such modules. It is

Theorem 4.1 (Schur’s Lemma)

(@) Let V, W be simple R-modules. Then:

(i) Endg(V) is a skew-field, and
(it) if V 22 W, then Homg(V, W) = 0.

(b) If K is an algebraically closed field, A is a K-algebra, and V is a simple A-module, then

Enda(V) = {Aldy [Ae K} =K.

Remark 4.2

In (b) the assumption that the field K is algebraically closed is in general too strong and we often
replace this hypothesis by the hypothesis that the algebra A is split, meaning that

Enda(S) = K for every simple A-module S.

In this respect, the field K is a splitting field for G if the group algebra KG is split. This will be
one of our standard assumptions.

From now on, we assume that K is a
splitting field for G.

14
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5

Th

The Artin-Wedderburn Structure Theorem

e next step is to analyse semisimple rings and modules, sorting simple modules into isomorphism

classes and relate these to a direct summand of the reqular module.

Reﬁnition 5.1

Th

If M is a semisimple R-module and S is a simple R-module, then the S-homogeneous component
of M, denoted S(M), is the sum of all simple R-submodules of M isomorphic to S.

eorem 5.2 (Wedderburn)

If R is a semisimple ring, then the following assertions hold.

(@) If Selrr(R), then S(R°) # 0. Furthermore,

Irr(R)| < o0.

(b) We have
R° = @ S(R%),

Selrr(R)
where each homogenous component S(R°) is a two-sided ideal of R and S(R°)T(R°) =0 if
S # T elrr(R).

(c) Each S(R°) is a simple left Artinian ring, the identity element of which is an idempotent
element of R lying in Z(R).

Remark 5.3

Remember that if R is a semisimple ring, then the reqular module R° admits a composition series.
Therefore it follows from the Jordan-Holder Theorem that

RR= @ SR)=~ P éﬁ)s

Selrr(R) Selrr(R) i=1

for uniquely determined integers ns € Z-.

Th

eorem 5.4 (Artin-Wedderburn)

If R is a semisimple ring, then, as a ring,

R= [] Mas(Ds),
Selrr(R)

where Ds := Endr(S)°P is a division ring.

Let us now assume that R = A is a
split K-algebra.

We obtain the following Corollary to Wedderburn’s and Artin-Wedderburn's Theorems.
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Eeorem 5.5

Assume A is semisimple and let S € Irr(A) be a simple A-module. Then the following statements
hold:

() S(A°) = M, (K) and dimi(S(A°)) = n2;
(b) dimk(S) = ns;

() dimg(A) = Psepr(a dimi (S)?;

(d) [rr(A)| = dimg (Z(A)).

Exercise 5.6

Prove Thm. 5.5.

Corollary 5.7
Up to isomorphism, the number of simple A-modules is |Irr(A)| = dimg (Z(A/J(A))).

Proof: Since A and A/J(A) have the same simple modules | Irr(A)| = | Irr(A/J(A))|. Moreover, the quotient
A/J(A) is J-semisimple, hence semisimple because finite-dimensional algebras are left Artinian rings.
Therefore it follows from Theorem 5.5(d) that

[Irr(A)| = | Irr(A/J(A))] = dimg (Z(A/](A))) .

|

Corollary 5.8

If A is commutative, then any simple A-module has K-dimension 1.
Proof: First assume that A is semisimple. As A is commutative, A = Z(A). Hence parts (d) and (c) of

Theorem 5.5 yield

[Irr(A)] = dime (A) = )" dimk(S)?,
Selrr(A) =1

which forces dimk (S) = 1 for each S € Irr(A).

Now, if A is not semissimple, then again we use the fact that A and A/J(A) have the same simple

modules. Because A/J(A) is semisimple and also commutative, the argument above tells us that all

simple A/J(A)-modules have K-dimension 1. The claim follows. |
Applying these results to the group algebra KG, we obtain for example that:
Corollary 5.9

There are only finitely many isomorphism classes of simple KG-modules.
Proof: The claim follows directly from Corollary 5.7. |

Corollary 5.10

If G is an abelian group then any simple KG-module is one-dimensional.

Proof: Since KG is commutative the claim follows directly from Corollary 5.8. ]
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Corollary 5.11

Let p be a prime number. If G is a p-group, and char(K) = p, then the trivial module is the unique
simple KG-module, up to isomorphism.

Proof: Because G is a p-group, we have J(KG) = {3,499 € KG | XcgAg = 0} =t I(KG) (the
augmentation ideal (see definition in Exercise 6.3), so KG//(KG) =~ K as K-algebras. Now, as K is
commutative, Z(K) = K, and it follows from Corollary 5.7 that

| Irr(KG)| = dimk Z(KG/J(KG)) = dimg K = 1.

6 Semisimplicity of the Group Algebra

The semisimplicity of the group algebra depends on both the characteristic of the field and the order
of the group. This is Maschke's Theorem and its converse.

Theorem 6.1 (Maschke)
If char(K) 1 |G|, then KG is a semisimple K-algebra.

Example 4
If K = C is the field of complex numbers, then CG is a semisimple C-algebra, since char(C) = 0.

It turns out that the converse to Maschke’s theorem also holds. This follows from elementary properties
of the augmentation ideal.

Theorem 6.2 (Converse of Maschke'’s Theorem)
If KG is a semisimple K-algebra, then char(K) t |G|.

This result can be proved using the Artin-Wedderburn Theorem and elementary properties of augmen-
tation ideal through the following exercices.

Exercise 6.3 (The augmentation ideal)

The map € : KG — K,dec Agg dec Ag is an algebra homomorphism, called augmentation
homomorphism (or map). Its kernel ker(e) =: /(KG) is an ideal, called the augmentation ideal
of KG. Prove that:

(@) I(KG) = {4299 € KG | Xy Ag = 0} = annk(K) and I(KG) = J(KG);
(b) KG/I(KG) ~ K as K-algebras;
(c) I(KG) is a free K-vector space of dimension |G|-1 with K-basis {g —1 | g € G\{1}}.
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Exercise 6.4 (Proof of the Converse of Maschke’s Theorem.)

Assume K is a field of positive characteristic p with p [ [G]. Set T := (X, . 9)k-
(a) Prove that we have a series of KG-submodules given by KG° 2 [(KG) 2 T 2 0.
(b) Deduce that KG° has at least two composition factors isomorphic to the trivial module K.

(c) Deduce that KG is not a semisimple K-algebra.

Corollary 6.5
If char(K) 1 |G

, then |G| = Ysein(kc) dimk (S)*.

Proof: Since char(K) 1 |G|, the group algebra KG is semisimple by Maschke’'s Theorem. Thus

> dimk(S)? = dimk (KG) = |G
Selrr(KG) |

7 Clifford Theory

We now turn to Clifford’s theorem, which we present in a weak and a strong form. Broadly speaking,
Clifford theory is a collection of results about induction and restriction of simple modules from/to normal
subgroups.

Theorem 7.1 (Clifford’s Theorem, weak form)

If U< G is anormal subgroup and S is a simple KG-module, then Slg is semisimple.

Theorem 7.2 (Clifford’s Theorem, strong form)

Let U < G be a normal subgroup and let S be a simple KG-module. Then we may write
Slg=S"®--- @S

where r € Z-9 and Sq,..., S, are pairwise non-isomorphic simple KU-modules, occurring with
multiplicities ay, ..., a, respectively. Moreover, the following statements hold:

(i) the group G permutes the homogeneous components of 5l6 transitively;
(i) a1 =ay=---=a, and dimkg(S1) = --- = dimg(S;); and

(ii)) S=(5")1f;, as KG-modules, where H; = Stabg(S]").

One application of Clifford’s theory is for example the following Corollary:

Corollary 7.3

Assume K is a field of arbitrary characteristic. (Still splitting for G.) If p is a prime number and
G is a p-group, then every simple KG-module has the form XTE,, where X is a 1-dimensional
K H-module for some subgroup H < G.




Short Introduction to Modular Representation IKIU 22 19

Remark 7.4

This result is extremely useful, for example, to construct the complex character table of a p-group.
Indeed, it says that we need look no further than induced linear characters. In general, a KG-
module of the form N 1§ for some subgroup H < G and some 1-dimensional K H-module is called
monomial. A group all of whose simple CG-modules are monomial is called an M-group. (By the
above p-groups are M-groups.)
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