Index of Notation

General symbols	
\mathbb{C}	field of complex numbers
\mathbb{F}_q	finite field with q elements
$Id_{\mathcal{M}}$	identity map on the set M
$\operatorname{Im}(f)$	image of the map f
$ker(\varphi)$	kernel of the morphism φ
N	the natural numbers without 0
\mathbb{N}_{0}	the natural numbers with 0
O	discrete valuation ring
P	the prime numbers in \mathbb{Z}
Q	field of rational numbers
[©] n	field of p -adic numbers
\mathbb{R}	field of real numbers
\mathbb{Z}	ring of integer numbers
$\mathbb{Z}_{\geq a}, \mathbb{Z}_{\geq a}, \mathbb{Z}_{\leq a}, \mathbb{Z}_{\leq a}$	$\{m \in \mathbb{Z} \mid m \ge a \text{ (resp. } m > a, m \ge a, m < a)\}$
\mathbb{Z}_{p}	ring of p -adic integers
$ \dot{X} $	cardinality of the set X
δ_{ii}	Kronecker's delta
Ĵ	union
Й	disjoint union
กิ	intersection
\sum	summation symbol
<u>Π</u> , ×	cartesian/direct product
×	semi-direct product
\oplus	direct sum
\otimes	tensor product
Ø	empty set
\forall	for all
Ξ	there exists
\cong	isomorphism
$a \mid b$, $a \nmid b$	a divides b, a does not divide b
(<i>a</i> , <i>b</i>)	gcd of <i>a</i> and <i>b</i>
(F, O, k)	<i>p</i> -modular system
$f _S$	restriction of the map f to the subset S
\hookrightarrow	injective map
\rightarrow	surjective map

Group theory	
$\operatorname{Aut}(G)$	automorphism group of the group G
\mathfrak{A}_n	alternating group on <i>n</i> letters
C_m	cyclic group of order <i>m</i> in multiplicative notation
$C_G(x)$	centraliser of the element x in G
$C_G(H)$	centraliser of the subgroup H in G
D_{2n}	dihedral group of order 2n
$\delta: G \to G \times G$	diagonal map
End(A)	endomorphism ring of the abelian group A
G/N	quotient group G modulo N
$GL_n(K)$	general linear group over K
HaL	(<i>H</i> , <i>L</i>)-double coset
$[H \setminus G/L]$	set of (H, L) -double coset representatives
$H \leq G, H < G$	H is a subgroup of G, resp. a proper subgroup
$N \triangleleft G$	N is a normal subgroup G
$N_{C}(H)$	normaliser of H in G
$N \rtimes \rho H$	semi-direct product of N in H wrt θ
S.	summetric group on <i>n</i> letters
$SI_{\pi}(K)$	special linear group over K
$\mathbb{Z}/m\mathbb{Z}$	special linear group over n cuclic group of order m in additive notation
×_/	conjugate of a bulk i.e. $a x a^{-1}$
g	subgroup of C generated by a
$\langle g \rangle \equiv 0$	index of the subgroup H in C
$\left[C/H \right]$	set of left coset representatives of H
$\overline{\mathbf{x}} \in C/N$	class of $x \in C$ in the quotient group C/N
$x \in \mathbf{G}/\mathbf{N}$	trivial group
ξ' , '	tititat group
Module theory	
$\operatorname{Hom}_{R}(M, N)$	R-homomorphisms from M to N
$\operatorname{End}_{\mathcal{B}}(M)$	R-endomorphism ring of the R-module M
hd(M)	head of the module M
KG	group algebra of the group G over the commutative ring K
$\varepsilon: KG \longrightarrow K$	augmentation map
I(KG)	augmentation ideal
Irr(R)	set of representatives of the isomorphism classes of simple <i>R</i> -modules
I(R)	lacobson radical of the ring R
MIN	M is a direct summand of N
$M \otimes_{\mathcal{P}} N$	tensor product of M and N balanced over R
M^{G}	G-fixed points of the module M
Mc	G-cofixed points of the module M
$M \mid G \operatorname{Res}^{G}(M)$	restriction of M from C to H
$\Lambda \Lambda \Lambda H$ Ind ^G ($\Lambda \Lambda$)	induction of M from H to C
$M \mid_G, \operatorname{Ind}_H(M)$	induction of // nom // to C
$\prod_{i=1}^{N} G/N(V_{i})$	
	units of the ring <i>K</i>
	regular left <i>R</i> -module on the ring <i>R</i>
rad(<i>M</i>)	radical of the module M
soc(M)	socle of the module <i>M</i>

$\langle X \rangle_R$	R-module generated by the set X
V^F	extension of scalars $F\otimes_{\mathcal{O}} V$
Z(R)	centre of the ring <i>R</i>

Character and block theory

b^G	Brauer correspondent of <i>b</i>
С	Cartan matrix of G
$\operatorname{Cl}_F(G)$, $\operatorname{Cl}_F(G_{p'})$	the class functions on G or $G_{p'}$
$\operatorname{Dec}_p(G)$	decomposition matrix
$G_{p'}$	p-regular elements of G
$\operatorname{Irr}_F(G)$	ordinary irreducible <i>F</i> -characters of <i>G</i>
$IBr_p(G)$	irreducible <i>p</i> -Brauer characters of <i>G</i>
Xreq	regular character
$ ho_{\rm reg}$	regular representation
Φ_{arphi}	projective indecomposable character associated to $\varphi \in \operatorname{IBr}(G)$

Category theory

objects of the category ${\mathcal C}$
morphisms from A to B
the category of sets
the category of vector spaces over the field k
the category of topological spaces
the category of groups
the category of abelian groups
the category of rings
the category of left <i>R</i> -modules
the category of left <i>R</i> -modules
the category of (R, S) -bimodules