
Chapter 7. Projective Modules over the Group Algebra

We continue developing techniques to describe modules that are not semisimple and in particular inde-
composable modules. The indecomposable projective modules are the indecomposable summands of the
regular module. Since every module is a homomorphic image of a direct sum of copies of the regular
module, by knowing the structure of the projectives we gain some insight into the structure of all modules.

Notation. Throughout this chapter, unless otherwise specified, we let G denote a finite group. Over a
semisimple algebra, any module is projective and for a complete discrete valuation ring � with residue
field � , the projective �G-modules can be recovered from projective �G-modules. For this reason, in
this chapter, we simply assume that K is a field. and assume all KG-modules considered are finitely
generated as KG-modules. When no confusion is to be made, we denote the regular module simply by
KG instead of KG

˝.
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21 Radical, socle, head
Before focusing on projective modules, at this point we examine further the structure of KG-modules
which are not semisimple, and try to establish connections with their semisimple submodules, semisimple
quotients, and composition factors. This leads us to the definitions of the radical and the socle of a
module.
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Definition 21.1
Let M be a KG-module.

(a) The radical of M is its submodule radpMq :“
ì

V PMaxpMq V where MaxpMq denotes the set
of maximal KG-submodules of M .

(b) The head of M is the quotient module hdpMq :“ M{ radpMq.

(c) The socle of M , denoted socpMq is the sum of all simple KG-submodules of M .

Informally (talks/spoken mathematics) one also uses the words top and bottom instead of head and
socle, respectively.

Lemma 21.2
Let M be a KG-module. Then the following KG-submodules of M are equal:

(1) radpMq;

(2) JpKGqM;

(3) the smallest KG-submodule of M with semisimple quotient.

Proof :

“(3)“(1)”: Recall that if V P MaxpMq, then M{V is simple. Moreover, if V1� � � � � V� P MaxpMq (� P Z°0), then
the map

� : M ›Ñ M{V1 ‘ ¨ ¨ ¨ ‘ M{V�

� fiÑ p� ` V1� � � � � � ` V�q

is a KG-homomorphism with kerp�q “ V1 X ¨ ¨ ¨ X V� . Hence M{pV1 X ¨ ¨ ¨ X V�q – Imp�q is
semisimple, since it is a KG-submodule of a semisimple KG-module. Therefore M{ radpMq is a
semisimple quotient. It remains to see that it is the smallest such quotient.
If X Ñ M is a KG-submodule with M{X semisimple, then by the Correspondence Theorem, there
exists KG-submodules X1� � � � � X� of M (� P Z°0) containing X such that

M{X – X1{X ‘ ¨ ¨ ¨ ‘ X�{X and X�{X is simple @ 1 § � § � �

For each 1 § � § �, let Y� be the kernel of the projection homomorphism M ⇣ M{X ⇣ X�{X , so
that Y� is maximal (as X�{X is simple) and X “ Y1 X � � � X Y� . Thus X Ö radpMq, as required.

“(1)Ñ(2)”: Observe that the quotient module M{JpKGqM is a KG{JpKGq-module as

JpKGq pM{JpKGqMq “ 0 �

Now, as KG{JpKGq is semisimple (by Proposition 6.6 and Proposition 6.7), M{JpKGqM is a semisim-
ple KG{JpKGq-module by definition of a semisimple ring, but then it is also semisimple as a KG-
module. Since we have already proved that radpMq is the smallest KG-submodule of M with
semisimple quotient, we must have that radpMq Ñ JpKGqM .

“(2)Ñ(1)”: If Z Ñ M is any KG-submodule for which M{Z is semisimple, certainly JpKGq ¨ M{Z “ 0, because
JpKGq annihilates all simple KG-modules by definition, and it follows that JpKGqM Ñ Z . Thus, in
particular, we obtain that JpKGqM Ñ radpMq. (Again, because we already know that (3)“(1).)
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Example 12
If M is a semisimple KG-module, then socpMq “ M by definition, radpMq “ 0 by the above Lemma,
and hence hdpMq “ M .

Lemma 21.3
Let M be a KG-module. Prove that the following KG-submodules of M are equal:

(1) socpMq;

(2) the largest semisimple KG-submodule of M;

(3) t� P M | JpKGq ¨ � “ 0u.

Proof : Exercise. [Hint: t� P M | JpKGq ¨ � “ 0u is the largest KG-submodule of M annihilated by JpKGq,
and hence may be seen as a KG{JpKGq-module.]

Remark 21.4 (Socle, radical and Loewy layers)
We can iterate the notions of socle and radical: for each KG-module M and each � P Z•2 we define
inductively

rad�
pMq :“ rad

´
rad�´1

pMq

¯
and soc�

pMq{ soc�´1
pMq :“ socpM{ soc�´1

pMqq

where we understand that rad1
pMq “ radpMq and soc1

pMq “ socpMq.
Exercise. Prove that:

(a) rad�
pMq “ JpKGq

�
¨ M and soc�

pMq “ t� P M | JpKGq
�

¨ � “ 0u ;

(b) ¨ ¨ ¨ Ñ rad3
pMq Ñ rad2

pMq Ñ radpMq Ñ M and 0 Ñ socpMq Ñ soc2
pMq Ñ soc3

pMq Ñ ¨ ¨ ¨

The chains of submodules in (b) are called respectively, the radical series and socle series of M .
The radical series of M is also known as the Loewy series of M . The quotients rad�´1

pMq{ rad�
pMq

are called the radical layers, or Loewy layers of M , and the quotients soc�
pMq{ soc�´1

pMq are
called the socle layers of M .

Exercise 21.5
Let M and N be KG-modules. Prove the following assertions.

(a) For every � P Z•1, rad�
pM‘Nq – rad�

pMq‘rad�
pNq and soc�

pM‘Nq – soc�
pMq‘soc�

pNq.

(b) The radical series of M is the fastest descending series of KG-submodules of M with semisim-
ple quotients, and the socle series of M is the fastest ascending series of M with semisimple
quotients. The two series terminate, and if � and � are the least integers for which rad�

pMq “ 0
and soc�

pMq “ M then � “ �.

Definition 21.6
The common length of the radical series and socle series of a KG-module M is called the Loewy
length of M . (By the above, we may see it as the least integer � such that JpKGq

�
¨ M “ 0.)
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Remark 21.7
The results and arguments used in this section still hold if we assume that K is a commutative ring
which is Artinian. (Then KG is also left Artinian and left Noetherian, and so are the modules over
KG.)

22 Projective modules
For the sake of clarity, we recall the general definition of a projective module through its most standard
equivalent characterisations.

Proposition-Definition 22.1 (Projective module)
Let R be a ring and let P be an R-module. Then the following are equivalent:

(a) The functor HomR pP� ´q is exact. In other words, the image of any s.e.s. of R-modules under
HomR pP� ´q is again a s.e.s.

(b) If ψ P HomR pM� Nq is a surjective morphism of R-modules, then the morphism of abelian
groups ψ˚ : HomR pP� Mq ›Ñ HomR pP� Nq is surjective. In other words, for every pair of
R-morphisms

P

M N

α

ψ

where ψ is surjective, there exists an R-morphism β : P ›Ñ M such that α “ ψβ.

(c) If π : M ›Ñ P is a surjective R-homomorphism, then π splits, i.e., there exists σ P

HomR pP� Mq such that π ˝ σ “ IdP .

(d) The module P is isomorphic to a direct summand of a free R-module.

If P satisfies these equivalent conditions, then P is called projective. Moreover, a projective inde-
composable module is called a PIM of R .

Example 13

(a) Any free module is projective.

(b) If � is an idempotent element of the ring R , then R – R� ‘ Rp1 ´ �q and R� is projective,
but not free if � ‰ 0� 1.

(c) It follows from condition (d) of Proposition-Definition 22.1 that a direct sum of modules tP�u�PI

is projective if and only if each P� is projective.

(d) If R is semisimple, then on the one hand any projective indecomposable module is simple, and
conversely, since R

˝ is semisimple. It follows that any R-module is projective.
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23 Projective modules for the group algebra
We have seen that over a semisimple ring, all simple modules appear as direct summands of the regular
module with multiplicity equal to their dimension. For non-semisimple rings this is not true any more,
but replacing simple modules by the projective modules, we will obtain a similar characterisation.

To begin with we review a series of properties of projective KG-modules with respect to the operations
on groups and modules we have introduced in Chapter 4, i.e. induction/restriction, tensor products, . . .

Proposition 23.1
Here we may assume K P t�� �u.

(a) If P is a projective KG-module and M is an arbitrary KG-module which is free of finite rank
as a K -module, then P bK M is projective.

(b) If P is a projective KG-module and H § G, then P Ó
G

H
is a projective KH-module.

(c) If H § G and P is a projective KH-module, then P Ò
G

H
is a projective KG-module.

Proof :

(a) Since P is projective, by definition it is a direct summand of a free KG-module, so there exist a
KG-module P

1 and a positive integer � such that P ‘ P
1

– pKGq
�. Therefore,

pKGq
�

bK M – pP ‘ P
1
q bK M – P bK M ‘ P

1
bK M

and it suffices to prove that pKGq
�

bK M is free. So observe that Example 10(a), Proposition 17.11(a)
and the properties of the tensor product yield

KG bK M – pK Ò
G

t1uq bK M – pK bK M Ó
G

t1uqÒ
G

t1u – M Ò
G

t1u

– pK
rkK pMq

qÒ
G

t1u– pK Ò
G

t1uq
rkK pMq

– pKGq
rkK pMq

since M Ó
G

t1u is just M seen as K -module, and, as such, is free of finite rank. It follows immediately
that pKGq

�
bK M – pKGq

�¨rkK pMq is a free KG-module, as required.
(b) We have already seen that as a KH-module,

KG Ó
G

H
– KH ‘ ¨ ¨ ¨ ‘ KH

where KH occurs with multiplicity |G : H|, so KG Ó
G

H
is a free KH-module. Hence the restriction

from G to H of any free KG-module is a free KH-module. Now, by definition P | F for some free
KG-module F , so that P Ó

G

H
| F Ó

G

H
and the claim follows.

(c) Exercise!
[Hint: prove that KH Ò

G

H
– KG.]

We now want to prove that the PIMs of KG are in bijection with the simple KG-modules, and hence
that there are a finite number of them, up to isomorphism. We will then be able to deduce from this
bijection that each of them occurs in the decomposition of the regular module with multiplicity equal
to the dimension of the corresponding simple module.
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Theorem 23.2

(a) If P is a projective indecomposable KG-module, then P{ radpPq is a simple KG-module.

(b) If M is a KG-module and M{ radpMq – P{ radpPq for a projective indecomposable KG-
module P , then there exists a surjective KG-homomorphism � : P ›Ñ M . In particular, if M

is also projective indecomposable, then M{ radpMq – P{ radpPq if and only if M – P .

(c) There is a bijection
 projective indecomposable

KG-modules
(

{ –
„

–Ñ IrrpKGq

P fiÑ P{ radpPq

and hence the number of pairwise non-isomorphic PIMs of KG is finite.

Proof :

(a) By Lemma 21.2, P{ radpPq is semisimple, hence it suffices to prove that it is indecomposable, or
equivalently, by Proposition 5.4 that EndKGpP{ radpPqq is a local ring.
Now, if � P EndKGpPq, then by Lemma 21.2, we have

�pradpPqq “ �pJpKGqPq “ JpKGq�pPq Ñ JpKGqP “ radpPq �

Therefore, by the universal property of the quotient, � induces a unique KG-homomorphism
� : P{ radpPq ›Ñ P{ radpPq such that the following diagram commutes:

P P

P{ radpPq P{ radpPq

πP

�

πPö

�

Then, the map

Φ : EndKGpPq ›Ñ EndKGpP{ radpPqq

� fiÑ �

is clearly a K -algebra homomorphism. Moreover Φ is surjectiv. Indeed, if ψ P EndKGpP{ radpPqq,
then by the definition of a projective module there exists a KG-homomorphism � : P ›Ñ P such
that ψ ˝ πP “ πP ˝ �. But then ψ satisfies the diagram of the universal property of the quotient
and by uniqueness ψ “ �.
Finally, as P is indecomposable EndKGpPq is local, hence any element of EndKGpPq is either
nilpotent or invertible, and by surjectivity of Φ the same holds for EndKGpP{ radpPqq, which in turn
must be local.

(b) Consider the diagram
P

M M{ radpMq P{ radpPq

πP

πM ψ

–

where πM and πP are the quotient morphisms. As P is projective, by definition, there exists a
KG-homomorphism � : P ›Ñ M such that πP “ ψ ˝ πM ˝ �.
It follows that M “ �pPq ` radpMq “ �pPq ` JpKGqM , so that �pPq “ M by Nakayama’s Lemma.
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Finally, if M is a PIM, the surjective homomorphism � splits by definition of a projective module,
and hence M | P . But as both modules are indecomposable, we have M – P . Conversely, if
M – P , then clearly M{ radpMq – P{ radpPq.

(c) The given map between the two sets is well-defined by (a) and (b), and it is injective by (b). It
remains to prove that it is surjective. So let S be a simple KG-module. As S is finitely generated,
there exists a free KG-module F and a surjective KG-homomorphism ψ : F ›Ñ S. But then
there is an indecomposable direct summand P of F such that ψ|P : P ›Ñ S is non-zero, hence
surjective as S is simple. Clearly radpPq Ñ kerpψ|Pq since it is the smallest KG-submodule with
semisimple quotient by Lemma 21.2. Then the universal property of the quotient yields a surjective
homomorphism P{ radpPq ›Ñ S induced by ψ|P . Finally, as P{ radpPq is simple, P{ radpPq – S

by Schur’s Lemma.

Definition 23.3 (Projective cover of a simple module)
If S is a simple KG-module, then we denote by PS the projective indecomposable KG-module
corresponding to S through the bijection of Theorem 23.2(c) and call this module the projective
cover of S.

Corollary 23.4
Assume K is a splitting field for G. In the decomposition of the regular module KG into a direct
sum of indecomposable KG-submodules, each isomorphism type of projective indecomposable KG-
module occurs with multiplicity

dimK pP{ radpPqq �

In other words, with the notation of Definition 23.3,

KG –

à

SPIrrpKGq
pPSq

�S

where �S “ dimK S.

Proof : Let KG “ P1 ‘ ¨ ¨ ¨ ‘ P� (� P Z°0) be such a decomposition. In particular, P1� � � � P� are PIMs. Then

JpKGq “ JpKGqKG “ JpKGqP1 ‘ ¨ ¨ ¨ ‘ JpKGqP� “ radpP1q ‘ ¨ ¨ ¨ ‘ radpP�q

by Lemma 21.2. Therefore,

KG{JpKGq – P1{ radpP1q ‘ ¨ ¨ ¨ ‘ P�{ radpP�q

where each summand is simple by Theorem 23.2(a). Now as KG{JpKGq is semisimple, by Theorem 8.2,
any simple KG{JpKGq-module occurs in this decomposition with multiplicity equal to its K -dimension.
Thus the claim follows from the bijection of Theorem 23.2(c).

The Theorem also leads us to the following important dimensional restriction on projective modules.

Corollary 23.5
Assume K is a splitting field for G of characteristic � ° 0. If P is a projective KG-module, then

|G|�

ˇ̌
dimK pPq �

(Here |G|� is the �-part of |G|, i.e. the exact power of � that divides the order of G.)
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Proof : Let Q P Syl
�
pGq be a Sylow �-subgroup of G. By Lemma 23.1, P Ó

G

Q
is projective. Moreover, by

Corollary 12.4 the trivial KQ-module is the unique simple KQ-module, hence by Theorem 23.2(c) KQ

has a unique PIM, namely KQ itself, which has dimension |Q| “ |G|�. Hence

P Ó
G

Q
– pKQq

� for some � P Z°0 �

Therefore,
dimK pPq “ dimK pP Ó

G

Q
q “ � ¨ dimK KQ “ � ¨ |Q| “ � ¨ |G|�

and the claim follows.

24 The Cartan matrix
Now that we have classified the projective KG-modules we turn to one of their important uses, which
is to determine the multiplicity of a simple module S as a composition factor of an arbitrary finitely
generated KG-module M (hence with a composition series). We recall that if

0 “ M0 Ä M1 Ä M2 Ä ¨ ¨ ¨ Ä M�´1 Ä M� “ M

is any composition series of M , the number of quotients M�{M�´1 (1 § � § �) isomorphic to S is
determined independently of the choice of composition series, by the Jordan–Hölder theorem. We call
this number the multiplicity of S in M as a composition factor.

Proposition 24.1
Let S P IrrpKGq be a simple KG-module.

(a) If T P IrrpKGq, then

dimK HomKGpPS � T q “

#
dimK EndKGpSq if S – T �

0 if S fl T �

(b) If M is an arbitrary KG-module, then the multiplicity of S as a composition factor of M is

dimK HomKGpPS � Mq{ dimK EndKGpSq �

Proof : Exercise, Sheet 4. [Hint: (b) can be proved by induction on the composition length of M .]

Definition 24.2

(a) Given S� T P IrrpKGq, the Cartan invariant associated to the pair pS� T q is the non-negative
integer

�
ST

:“ multiplicity of S as a composition factor of PT �

(b) The Cartan matrix of KG is the matrix C :“ p�
ST

qS�T PIrrpKGq P M| IrrpKGq|pZq.

It follows immediately from Proposition 24.1 that the Cartan invariants can be computed as follows.
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Corollary 24.3
Let S� T P IrrpKGq. Then

�
ST

“ dimK HomKGpPS � PT q{ dimK EndKGpSq �

and if the base field K is a splitting field for G, then

�
ST

“ dimK HomKGpPS � PT q �

We will see later that there is an extremely effective way of computing the Cartan matrix using another
matrix associated to the simple KG-modules, called the decomposition matrix.

25 Symmetry of the group algebra
We now want to obtain information about projective KG-modules using duality.
Recall that we have already seen in Lemma 17.9 that pKGq

˚
– KG as (left) KG-modules. This allows

us to deduce that projectivity is preserved by taking duals.

Proposition 25.1
Let P be a KG-module. Then, P is projective if and only if P

˚ is.

Proof : As P
˚˚

– P as KG-modules it suffices to prove one implication. Now, if P is a direct summand of
pKGq

� (� P Z•1), then P
˚ is a direct summand of

ppKGq
�
q

˚
– ppKGq

˚
q
�

– pKGq
�

�

and hence is also projective.

Next we want to investigate the relationship between head and socle of projective modules. For this
purpose, we recall the following properties of submodules, quotients and duality:

W § V KG-submodule ñ V
˚ has a KG-submodule M such that M – pV {W q

˚ and V
˚
{M – W

˚
�

Corollary 25.2
Every projective indecomposable KG-module P has a simple socle, more precisely,

socpPq – pP
˚
{ radpP

˚
qq

˚
�

Proof : As on the one hand P
˚

{ radpP
˚

q is simple by Theorem 23.2 and on the other hand radpP
˚

q is the
smallest KG-submodule of P

˚ with semisimple quotient by Lemma 21.2, its dual is the largest semisimple
KG-submodule of P

˚˚
– P , hence isomorphic to socpPq, which has to be simple, as required.

Alternatively, we could argue that as the socle is by definition the sum of all simple submodules, it
suffices to prove that P has a unique simple KG-submodule. Because P

˚ is projective by Proposition 25.1,
if S is any simple KG-module, then by duality the KG-homomorphisms S ›Ñ P are in bijection with
the KG-homomorphisms P

˚
›Ñ S

˚ and it follows that

dimK HomKGpS� Pq “ dimK HomKGpP
˚
� S

˚
q
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Moroever S
˚ is also simple. Thus it follows from Proposition 24.1(a) that

dimK HomKGpP
˚
� S

˚
q “

#
dimK EndKGpS

˚
q if P

˚ is the projective cover of S
˚
�

0 else�

Therefore, the claim follows from the fact that dimK EndKGpS
˚

q “ dimK EndKGpSq (again by duality).

Notice that in this proof to see that dimK HomKGpS� Pq “ dimK HomKGpP
˚
� S

˚
q and dimK EndKGpS

˚
q “

dimK EndKGpSq it is also possible to argue using Lemma 15.4 and Lemma 16.2.

In fact, we can obtain a more precise statement and prove that the head and the socle of a PIM are
isomorphic. For this purpose, we need the fact that the group algebra is a symmetric algebra.

Remark 25.3
The map p � q : G ˆ G ›Ñ K � p�� �q :“ δ���´1 extended by K -bilinearity to

p � q : KG ˆ KG Ñ K

defines a K -bilinear form, which is symmetric, non-degenerate and associative. (Associative means
that p��� �q “ p�� ��q @ �� �� � P KG).
More generally, a K -algebra endowed with such a symmetric, non-degenerate and associative
K -bilinear form is called a symmetric algebra.

Theorem 25.4
If P is a projective indecomposable KG-module, then P{ radpPq – socpPq.

Proof : Put S :“ P{ radpPq, which we know is simple as P is a PIM of KG, and assume S fl socpPq. Write
KG “ R ‘ Q, where Q “ P

� (� P Z°0) is the direct sum of all the indecomposable direct summands of
KG isomorphic to P and P - R . Then

socpQq – socpPq
�

and Q does not contain any KG-submodule isomorphic to S. Next, consider the sum of all KG-submodules
of KG isomorphic to S and denote it by I , so that clearly 0 ‰ I Ä R and I is a left ideal of KG. However,
as ψpIq Ñ I for every ψ P EndKGpKGq, I is an ideal of KG. Now set J :“ tψ P EndKGpKGq | Impψq Ä Iu,
so that J is clearly an ideal of EndKGpKGq. Let π : KG Ñ Q be the projection onto Q with kernel R .
Then:

� P J ñ radpKGq Ñ kerp�q

as the image of � is semisimple, because it is a KG-submodule of I . Thus, �|
R

“ 0, as S - hdpRq, and it
follows that

� ˝ π “ � and π ˝ � “ 0

(as �pKGq Ñ I) and hence
� “ � ˝ π ´ π ˝ � @ � P J� p˚q

Let now 0 ‰ � P J (exists since S “ hdpPq Ñ hdpKGq), and let α P EndKGpKGq, so � ˝ α P J and

�α “ �απ ´ π�α by (˚).

Set then � :“ αp1q, � :“ �p1q, � :“ πp1q, so

�� “ αp1q�p1q “ �pαp1qq “ �pαpπp1qqq ´ πp�pαp1qqq “ ��� ´ ���
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and it follows from Remark 25.3 that

p�� �q “ p��� 1q “ p���� 1q ´ p���� 1q “ p�� ��q ´ p��� �q “ 0�

This is true for every α P EndKGpKGq, and hence every � P KG. Finally, as p � q is non-degenerate, we
have � “ 0 and hence � “ 0. Contradiction!

Corollary 25.5
Let S be a simple KG-module.

(a) If P is any projective KG-module, then the multiplicity of S in P{ radpPq equals the multiplicity
of S in socpPq. In particular

dimK pP
G

q “ dimK pP
G

q “ dimK pP
˚
q
G

“ dimK pP
˚
q
G

�

(b) We have pP
S

q
˚

– P
S˚ .

Proof :

(a) By Theorem 25.4, the first claim holds for the PIMs of KG, hence this is also true for any finite direct
sum of PIMs, because taking socles and radicals commute with the direct sum by Exercise 21.5(a).
Next taking S “ K yields the equalities dimK pP

G
q “ dimK pP

G
q “ dimK pP

˚
q
G

“ dimK pP
˚

q
G

�

(b) We have seen in the proof of Corollary 25.2 that pP
S

q
˚ is the projective cover of the simple module

psocpP
S

qq
˚. Moreover, by Theorem 25.4

psocpP
S

qq
˚

– pP
S

{ radpP
S

qq
˚

– S
˚

�

Hence pP
S

q
˚

– P
S˚ .

Finally, we see that the symmetry of the group algebra also leads us to the symmetry of the Cartan
matrix.

Theorem 25.6
If S and T are simple KG-modules, then

�
ST

¨ dimK EndKGpSq “ �
T S

¨ dimK EndKGpT q �

In particular, if K is a splitting field for G, then the Cartan matrix of KG is symmetric.

Proof : By Corollary 24.3,
�

ST
“ dimK HomKGpPS � PT q{ dimK EndKGpSq

and
�

T S
“ dimK HomKGpPT � PSq{ dimK EndKGpT q �

so it is enough to prove that dimK HomKGpPS � PT q “ dimK HomKGpPT � PSq.
Now, by Lemma 16.2 and Lemma 15.4 we have

HomKGpPS � PT q “ HomK pPS � PT q
G

– ppPSq
˚

bK PT q
G

and
HomKGpPT � PSq “ HomK pPT � PSq

G
– ppPT q

˚
bK PSq

G
�
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Moreover, as pPSq
˚

bK PT is projective by Proposition 23.1(a), it follows from Corollary 25.5(a), that

dimK pppPSq
˚

bK PT q
G

q “ dimK pppPSq
˚

bK PT q
˚

q
G

q �

But ppPSq
˚

bK PT q
˚

– PS bK pPT q
˚

– pPT q
˚

bK PS , thus we have proved that dimK HomKGpPS � PT q “

dimK HomKGpPT � PSq.
Finally, if K is a splitting field for G, then by definition EndKGpSq – K – EndKGpT q, so that the
dimension of both endomorphism algebras is one and we have �

ST
“ �

T S
and we conclude that the

Cartan matrix is symmetric.

26 Representations of cyclic groups in positive characteristic
We now describe the representations of a cyclic group G :“ Z� “ x� | �

�
“ 1y of order � P Z•1 over

a field K of positive characteristic.

Notation: Set � :“ charpK q ° 0 and write � “ �
�
� with � P Z•0, � P Z•1 and gcdp�� �q “ 1. More-

over, we assume that K is a splitting field for G, so it follows that K contains a primitive �-th root of
unity, which we denote by ζ�. This enables us to use the theory of Jordan normal forms (Linear Algebra).

Theorem 26.1
There are exactly � isomorphism classes of indecomposable KZ�-modules. These correspond to the
� matrix representations

R��� : G Ñ GL�pK q� � fiÑ

»

————–

ζ
�
� 1

ζ
�
�

. . .

. . . 1
ζ

�
�

fi

����fl
p1 § � § �� 1 § � § �

�
q�

Proof : First notice that R��� (1 § � § �� 1 § � § �
�) defines a matrix representation of G “ Z� since

R���p�q
�

“ I� . Furthermore, if p�1� � � � � ��q is the standard K -basis of K
� , then the only Z�-invariant

subspaces are the x�1� � � � � ��yK
with 1 § � § �. As they form a chain, R��� is indecomposable for all 1 §

� § �� 1 § � § �
�, because it cannot be written as the direct sum of two non-trivial subrepresentations.

It is also clear that the R��� are pairwise non-equivalent, as they are uniquely determined through K -
dimension and eigenvalues at evaluation in �.
It remains to prove that the R��� (1 § � § �� 1 § � § �

�) account for all the indecomposable KZ�-modules.
We know from the theory of Jordan normal form, that if M is a KG-module with dimK pMq “: � P Z°0,
then choosing a suitable K -basis, we may assume that M corresponds to a matrix representation R

such that Rp�q is a block diagonal matrix where each block is a Jordan block. Assuming now that M is
indecomposable, then there can be only one Jordan block. Moreover, as

Rp�q
�

“ Rp�
�
q “ Rp1Gq “ I� �

the eigenvalues (i.e. the diagonal entries of the Jordan blocks) can only be �-th roots of unity in K , and
hence they are powers ζ

�
�

(1 § � § �) of ζ� since charpK q “ �. Furthermore,

Rp�q “ �� “ ��

with � “ diagpζ
�
�

� � � � � ζ
�
�

q and � is the Jordan block with diagonal entries equal to 1, where it holds that

p� ´ I�q
�

�

“ �
�

�

´ I� “ 0 @ �
�

• �,
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so � is the �-part of Rp�q and it follows that 1 § � § �
�.

Corollary 26.2
Up to isomorphism:

¨ the simple KZ�-modules correspond precisely to the matrix representations R
��1 (1 § � § �);

¨ the PIMs of KZ� correspond precisely to the matrix representations R
���� (1 § � § �).

Proof : We can bound the number of modules in both families of modules as follows.

¨ Firstly, the matrix representations R��1 (1 § � § �) all have degree 1, hence they must be irreducible
and correspond to simple KZ�-modules. It follows that there are at least � pairwise non-isomorphic
simple KZ�-modules.

¨ Secondly, by Corollary 23.5, if P is a PIM of KZ�, then �
�

| dimK pPq. Hence, up to equivalence,
P corresponds to one of the matrix representations R

���� with 1 § � § �. It follows that there are
at most � pairwise non-isomorphic PIMs.

However, we know from Theorem 23.2(c) that there is a bijection between the simple KZ�-modules and
the PIMs of KZ�. The claim follows.


