Chapter 6. The Mackey Formula and Clifford Theory

The results in this chapter go more deeply into the theory. We start with the so-called Mackey de-
composition formula, which provides us with yet another relationship between induction and restriction.
After that we explain Clifford’s theorem, which considers restriction/induction of simple modules to/from
a normal subgroup. These results are essential and have many consequences throughout representation
theory of finite groups.

Notation. Throughout this chapter, unless otherwise specified, we let G denote a finite group and let
(F,O, k) be a p-modular system, which is splitting for G and all its subgroups. We let K € {F, O, k}
and assume all KG-modules considered are assumed are free of finite rank as K-modules (hence
finitely generated as KG-modules).
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18 Double cosets

Definition 18.1 (Double cosets)
Given subgroups H and L of G we define for each g e G

Hgl :={hgfe G|heH,lel}

and call this subset of G the (H, L)-double coset of g. Moreover, we let H\G/L denote the set of
all (H, L)-double cosets of G.
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First, we want to prove that the (H, L)-double cosets partition the group G.

Lemma 18.2
Let H,L < G.

(a) Each (H, L)-double coset is a disjoint union of right cosets of H and a disjoint union of left
cosets of L.

(b) Any two (H, L)-double cosets either coincide or are disjoint. Hence, letting [H\G/L] denote
a set of representatives for the (H, L)-double cosets of G, we have

G= || HgL.
ge[H\G/L]

Proof:

(@) If hg¢ € HgL and ¢; € L, then hgl - ¢, = hg(¢¢;) € HgL. It follows that the entire left coset of
L that contains hg¥? is contained in HgL. This proves that HgL is a union of left cosets of L. A
similar argument proves that HgL is a union of right cosets of H.

(b) Let g1,g2 € G. If h1g16y = hygaty € Hgil n Hgyl, then g1 = hy'hygat8, " € Hgal so that
HgiL < Hg,L. Similarly Hg,L < HgyL. Thus if two double cosets are not disjoint, they coincide. g

If X is a left G-set we use the standard notation G\X for the set of orbits of G on X, and denote a set
of representatives for theses orbits by [G\X]. Similarly if Y is a right G-set we write Y/G and [Y/G].
We shall also repeatedly use the orbit-stabiliser theorem without further mention: in other words, if X
is a transitive left G-set and x € X then X = G/ Stabg(x) (i.e. the set of left cosets of the stabiliser of
x in G), and similarly for right G-sets.

E(ercise 18.3

(a) Let H, L < G. Prove that the set of (H, L)-double cosets is in bijection with the set of orbits
H\(G/L), and also with the set of orbits (H\G)/L under the mappings

Hgl — H(glL) e H\(G/L)
HglL — (Hg)L e (H\G)/L.
This justifies the notation H\G/L for the set of (H, L)-double cosets.
(b) Let G = S3. Consider H = L:= S, = {lId, (1 2)} as a subgroup of S3. Prove that
[S2\S3/S2] = {Id, (1 23)}

while

52\53/52 = {{Id, (1 2)},{(123),(132),(13),(23)}}.
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19 The Mackey formula

If H and L are subgroups of G, we wish to describe what happens if we induce a KL-module from L to
G and then restrict it to H.

Remark 19.1

We need to examine KG regarded as a (KH, KL)-bimodule (i.e. with left and right external laws
by multiplication in G). Since G = |_|ge[H\G/L] HgL, we have

KG= P K(HgL)
ge[H\G/1]

as (KH, KL)-bimodule, where K{HgL) denotes the free K-module with K-basis HgL.
Now if M is a KL-module, we will also write IM for g ® M, which is a left K(9L)-module with

(gtg™")-(g@m) = g@em
for each ¢ € L and each m € M. With this notation, we have
K{Hgl) = KH ®kHn~a) (g®KL),

where hg?¢ € HglL corresponds to h@ g ® #.

Theorem 19.2 (Mackey formula)
Let H,L < G and let M be a KL-module. Then, as KH-modules,

MElG= @D (ML) Hiaa -
ge[H\G/L]

Proof: It follows from Remark 19.1 that as left KH-modules we have

M1ELG = (KG &k M) L P K{HgLy @k M

lle

ge[H\G/L]
= P KH®k@p~u) (g®KL) @kt M
ge[H\G/L]
> P KH®kHAn) (gOM) /g
ge[H\G/L]
= @ (ngilegL)TﬁmgL .
ge[H\G/L] |

&:mark 19.3

Given an arbitrary finite group Z, write xzmod for the category of KZ-modules which are free of
finite rank as K-modules. Then, expressed in categorical terms, the Mackey formula says that we
have the following equality of functors from x;mod to xymod:

Resf olnd{ = @ Indf 4 oRes; 4 olnn(g)
ge[H\G/L]

where Inn(g) is conjugation by g € G.
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E(ercise 19.4
Let H,L < G, let M be a KL-module and let N be a KH-module. Use the Mackey formula to
prove that:

(a) MT} @N1j= @ge[H\G/L](ng/ZLm o kN o) Mima

(b) Homix (M1E, N1E) = Dgepra gy (Homa (ML LT o N na)) Mo -

20 Clifford theory

We now turn to Clifford’s theorem, which we present in a weak and a strong form. Clifford theory is a
collection of results about induction and restriction of simple modules from/to normal subgroups.

Throughout this section, we assume that K is one
of F or k.

Theorem 20.1 (Clifford’s Theorem, weak form)

If U<QG is a normal subgroup and S is a simple KG-module, then Sig is semisimple.

Proof: Let V be any simple KU-submodule of S |5. Now, notice that for every g € G, gV := {gv | v € V}
is also a KU-submodule of Slﬁ, since U < G for any u € U we have

u-gV=g-(g-lug)V =gV
~—
el
Moreover, gV is also simple, since if W were a non-trivial proper KU-submodule of gV then ¢g~'W

would also be a non-trivial proper submodule of g7'gV = V. Now decgv is non-zero and it is a
KG-submodule of S, which is simple, hence dec gV = S. Restricting to U, we obtain that

Sig=> gV
geG
is a sum of simple KU-submodules. Hence S |§ is semisimple. ]

Remark 20.2

The KU-submodules gV which appear in the proof of Theorem 20.1 are isomorphic to modules we
have seen before! More precisely the map

gV — gV
gRv —  gv

is a KU-isomorphism, since U < G implies that 9U = U and hence the action of U on g ® V (see
Remark 19.1) and gV is prescribed in the same way.
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Theorem 20.3 (Clifford’s Theorem, strong form)

Let U < G be a normal subgroup and let S be a simple KG-module. Then we may write

Sli=sy'@---@S

multiplicities a1, ..., a, respectively. Moreover, the following statements hold:
(i) the group G permutes the homogeneous components of Sig transitively;
(i) a1 = a2 =+ =a, and dimg(S1) = -+ - = dimg(S5;); and

(iii) S=(S7")1f, as KG-modules, where Hy = Stabg(S7").

Proof: The fact that S |G is semisimple and hence can be written as a direct sum as claimed follows from
Theorem 20.1. Moreover, by the chapter on semisimplicity of rings and modules, we know that for each
1 < i < r the homogeneous component S/ is characterised by Proposition 7.1: it is the unique largest
K U-submodule which is isomorphic to a direct sum of copies of S;.
Now, if g € G then g(5{") = (gS:), where gS; is a simple KU-submodule of S |§ (see the proof of
the weak form of Clifford’s Theorem). Hence there exists an index 1 < j < r such that g5; = S; and
g(Si") < S;” (alternatively to Proposition 7.1, the theorem of Krull-Schmidt can also be invoked here).
Because dimk(S;) = dimk(gS;), we have that a; < a;. Similarly, since S; = g~'S;, we obtain a; < a;.
Hence a; = a; holds. Because

Slg=g(Slg) =g(STH@®---@g(S"),

we actually have that G permutes the homogeneous components. Moreover, as decg(Sf‘) is a non-

zero KG-submodule of S, which is simple, we have that decg(5f1) = S, and so the action on the
homogeneous components is transitive. This establishes both (i) and (ii).
For (iii), we define a K-homomorphism via the map

(O (51”‘)TE,1:I<G®,<H151‘”:(—Dge[c/h,w]g(@Sf1 — S
gem = gm

that is, where g®m € g®S7". This is in fact a KG-homomorphism. Furthermore, the K-subspaces g(S]")
of S are in bijection with the cosets G/H, since G permutes them transitively by (i), and the stabiliser
of one of them is H;. Thus both KG ®xp, S;" and S are the direct sum of |G : H;| K-subspaces g ® S7
and g(S}") respectively, each K-isomorphic to S{' (via g ® m <> m and gm <> m). Thus the restriction
of ® to each summand is an isomorphism, and so ® itself must be bijective, hence a KG-isomorphism.

One application of Clifford’s theory is for example the following Corollary:

Corollary 20.4

X is a 1-dimensional K H-module for some subgroup H < G.

Proof: We proceed by induction on |G|.

If |G| € {1,4}, then G is abelian and any simple KG-module S is 1-dimensional by Corollary 12.3, so
H =G, X =5 and we are done.

So assume |G| = ¢° with b e Z_4, and let S be a simple KG-module and consider the subgroup

U:={geCG|g-x=x ¥YxeS5}.
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where r € Z-.o and Sq,..., S, are pairwise non-isomorphic simple KU-modules, occurring with

If ¢ is a prime number and G is a ¢-group, then every simple KG-module has the form XTE,, where
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This is obviously a normal subgroup of G since it is the kernel of the K-representation associated to S.
Hence S = Infg/U(T) for a simple K[G/U]-module T.
Now, if U # {1}, then |G/U| < |G|, so by the induction hypothesis there exists a subgroup H/U < G/U
and a 1-dimensional K[H/U]-module Y such that T = Indf,%(Y). But then
G/U
S = Inf,(T) = Inf&;, o Indyy5(Y) = Ind§ o Inffl,(Y),

so that setting X := Infﬂ/U(Y) yields the result. Thus we may assume U = {1}.

If G is abelian, then all simple modules are 1-dimensional, so we are done. Assume now that G is not
abelian. Then G has a normal abelian subgroup A that is not central. Indeed, to construct this subgroup
A, let Z,(G) denote the second centre of G, that is, the preimage in G of Z(G/Z(G)) (this centre is
non-trivial as G/Z(G) is a non-trivial #-group). If x € Z(G)\Z(G), then A := (Z(G), x) is a normal
abelian subgroup not contained in Z(G). Now, applying Clifford’s Theorem yields:

Sli=Si"®--- @S

where r € Z-g, S1,...,S, are non-isomorphic simple KA-modules and S = (5101”;31, where H; =
Stabg(S{"). We argue that V := S" must be a simple KH;-module, since if it had a proper non-
trivial submodule W, then W Tfh would be a proper non-trivial submodule of S, which is simple: a

contradiction. If Hy # G then by the induction hypothesis V = X Tﬁ, where H < H; and X is a
1-dimensional KH-module. Thefore, by transitivity of the induction, we have

S = (S{)1G, = (X116 = X15,

as required.
Finally, the case H; = G cannot happen. For if it were to happen then

Sl5=Slth=1s,

is simple by the weak form of Clifford’s Theorem, hence of dimension 1 since A is abelian. The elements
of A must therefore act via scalar multiplication on S. Since such an action would commute with the
action of G, which is faithful on S, we deduce that A < Z(G), which contradicts the construction of A. Wl

Remark 20.5

This result is extremely useful, for example, to construct the complex character table of an #-group
(¢ € P). Indeed, it says that we need look no further than induced linear characters. In general,
a KG-module of the form /\/Tg for some subgroup H < G and some 1-dimensional KH-module is
called monomial. A group all of whose simple CG-modules are monomial is called an M-group.
(By the above ¢-groups are M-groups.)




