Chapter 6. The Mackey Formula and Clifford Theory

The results in this chapter go more deeply into the theory. We start with the so-called *Mackey de-composition formula*, which provides us with yet another relationship between induction and restriction. After that we explain Clifford's theorem, which considers restriction/induction of simple modules to/from a normal subgroup. These results are essential and have many consequences throughout representation theory of finite groups.

Notation. Throughout this chapter, unless otherwise specified, we let *G* denote a finite group and let (F, \mathcal{O}, k) be a *p*-modular system, which is splitting for *G* and all its subgroups. We let $K \in \{F, \mathcal{O}, k\}$ and assume all *KG*-modules considered are assumed are **free of finite rank as** *K*-**modules** (hence **finitely generated** as *KG*-modules).

References:

- [Alp86] J. L. Alperin. *Local representation theory.* Vol. 11. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986.
- [Ben98] D. J. Benson. *Representations and cohomology. I.* Vol. 30. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1998.
- [CR90] C. W. Curtis and I. Reiner. Methods of representation theory. Vol. I. John Wiley & Sons, Inc., New York, 1990.
- [LP10] K. Lux and H. Pahlings. *Representations of groups*. Vol. 124. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
- [Web16] P. Webb. *A course in finite group representation theory.* Vol. 161. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.

18 Double cosets

Definition 18.1 (Double cosets)

Given subgroups *H* and *L* of *G* we define for each $g \in G$

$$HqL := \{hq\ell \in G \mid h \in H, \ell \in L\}$$

and call this subset of *G* the (H, L)-double coset of *g*. Moreover, we let $H \setminus G/L$ denote the set of all (H, L)-double cosets of *G*.

First, we want to prove that the (H, L)-double cosets partition the group G.

Lemma 18.2

Let $H, L \leq G$.

- (a) Each (*H*, *L*)-double coset is a disjoint union of right cosets of *H* and a disjoint union of left cosets of *L*.
- (b) Any two (H, L)-double cosets either coincide or are disjoint. Hence, letting $[H \setminus G/L]$ denote a set of representatives for the (H, L)-double cosets of G, we have

$$G = \bigsqcup_{g \in [H \setminus G/L]} HgL.$$

Proof:

- (a) If $hg\ell \in HgL$ and $\ell_1 \in L$, then $hg\ell \cdot \ell_1 = hg(\ell\ell_1) \in HgL$. It follows that the entire left coset of L that contains $hg\ell$ is contained in HgL. This proves that HgL is a union of left cosets of L. A similar argument proves that HgL is a union of right cosets of H.
- (b) Let $g_1, g_2 \in G$. If $h_1g_1\ell_1 = h_2g_2\ell_2 \in Hg_1L \cap Hg_2L$, then $g_1 = h_1^{-1}h_2g_2\ell_2\ell_1^{-1} \in Hg_2L$ so that $Hg_1L \subseteq Hg_2L$. Similarly $Hg_2L \subseteq Hg_1L$. Thus if two double cosets are not disjoint, they coincide.

If X is a left G-set we use the standard notation $G \setminus X$ for the set of orbits of G on X, and denote a set of representatives for theses orbits by $[G \setminus X]$. Similarly if Y is a right G-set we write Y/G and [Y/G]. We shall also repeatedly use the orbit-stabiliser theorem without further mention: in other words, if X is a transitive left G-set and $x \in X$ then $X \cong G/\operatorname{Stab}_G(x)$ (i.e. the set of left cosets of the stabiliser of x in G), and similarly for right G-sets.

Exercise 18.3

(a) Let $H, L \leq G$. Prove that the set of (H, L)-double cosets is in bijection with the set of orbits $H \setminus (G/L)$, and also with the set of orbits $(H \setminus G)/L$ under the mappings

$$HgL \mapsto H(gL) \in H \setminus (G/L)$$

$$HgL \mapsto (Hg)L \in (H \setminus G)/L.$$

This justifies the notation $H \setminus G/L$ for the set of (H, L)-double cosets.

(b) Let $G = S_3$. Consider $H = L := S_2 = \{ Id, (1 2) \}$ as a subgroup of S_3 . Prove that

 $[S_2 \setminus S_3 / S_2] = \{ \mathsf{Id}, (1 \ 2 \ 3) \}$

while

$$S_2 \setminus S_3 / S_2 = \{ \{ \mathsf{Id}, (1 \ 2) \}, \{ (1 \ 2 \ 3), (1 \ 3 \ 2), (1 \ 3), (2 \ 3) \} \}.$$

19 The Mackey formula

If H and L are subgroups of G, we wish to describe what happens if we induce a KL-module from L to G and then restrict it to H.

Remark 19.1

We need to examine *KG* regarded as a (*KH*, *KL*)-bimodule (i.e. with left and right external laws by multiplication in *G*). Since $G = \bigsqcup_{q \in [H \setminus G/L]} HgL$, we have

$$KG = \bigoplus_{g \in [H \setminus G/L]} K \langle HgL \rangle$$

as (KH, KL)-bimodule, where $K\langle HgL \rangle$ denotes the free K-module with K-basis HgL. Now if M is a KL-module, we will also write ${}^{g}M$ for $g \otimes M$, which is a left $K({}^{g}L)$ -module with

$$(g\ell g^{-1})\cdot(g\otimes m)=g\otimes\ell m$$

for each $\ell \in L$ and each $m \in M$. With this notation, we have

$$K\langle HgL\rangle \cong KH \otimes_{K(H \cap gL)} (g \otimes KL)$$

where $hg\ell \in HgL$ corresponds to $h \otimes g \otimes \ell$.

Theorem 19.2 (Mackey formula)

Let $H, L \leq G$ and let M be a KL-module. Then, as KH-modules,

$$\mathcal{M}\uparrow^G_L\downarrow^G_H\cong\bigoplus_{g\in[H\backslash G/L]}({}^g\!\mathcal{M}\downarrow^{g_L}_{H\cap {}^{g_L}})\uparrow^H_{H\cap {}^{g_L}}.$$

Proof: It follows from Remark 19.1 that as left *KH*-modules we have

$$\begin{split} M \uparrow^{G}_{L} \overset{G}{\downarrow}^{G}_{H} &\cong (KG \otimes_{KL} M) \downarrow^{G}_{H} \cong \bigoplus_{g \in [H \setminus G/L]} K \langle HgL \rangle \otimes_{KL} M \\ &\cong \bigoplus_{g \in [H \setminus G/L]} KH \otimes_{K(H \cap g_{L})} (g \otimes KL) \otimes_{KL} M \\ &\cong \bigoplus_{g \in [H \setminus G/L]} KH \otimes_{K(H \cap g_{L})} (g \otimes M) \downarrow^{g_{L}}_{H \cap g_{L}} \\ &\cong \bigoplus_{g \in [H \setminus G/L]} (g M \downarrow^{g_{L}}_{H \cap g_{L}}) \uparrow^{H}_{H \cap g_{L}} . \end{split}$$

Remark 19.3

Given an arbitrary finite group Z, write $_{KZ}$ mod for the category of KZ-modules which are free of finite rank as K-modules. Then, expressed in categorical terms, the Mackey formula says that we have the following equality of functors from $_{KL}$ mod to $_{KH}$ mod:

$$\operatorname{\mathsf{Res}}^G_H \circ \operatorname{\mathsf{Ind}}^G_L = \bigoplus_{g \in [H \setminus G/L]} \operatorname{\mathsf{Ind}}^H_{H \cap g_L} \circ \operatorname{\mathsf{Res}}^{g_L}_{H \cap g_L} \circ \operatorname{\mathsf{Inn}}(g)$$

where Inn(g) is conjugation by $g \in G$.

Exercise 19.4

Let $H, L \leq G$, let M be a KL-module and let N be a KH-module. Use the Mackey formula to prove that:

- (a) $M \uparrow^G_L \otimes_{\mathcal{K}} N \uparrow^G_H \cong \bigoplus_{g \in [H \setminus G/L]} ({}^g M \downarrow^{g_L}_{H \cap {}^g L} \otimes_{\mathcal{K}} N \downarrow^H_{H \cap {}^g L}) \uparrow^G_{H \cap {}^g L};$
- (b) $\operatorname{Hom}_{\mathcal{K}}(M \uparrow_{L}^{G}, N \uparrow_{H}^{G}) \cong \bigoplus_{g \in [H \setminus G/L]} (\operatorname{Hom}_{\mathcal{K}}({}^{g}M \downarrow_{H \cap {}^{g}L}^{g_{L}}, N \downarrow_{H \cap {}^{g}L}^{H})) \uparrow_{H \cap {}^{g}L}^{G}$.

20 Clifford theory

We now turn to *Clifford's theorem*, which we present in a weak and a strong form. Clifford theory is a collection of results about induction and restriction of simple modules from/to normal subgroups.

Throughout this section, we assume that K is one of F or k.

Theorem 20.1 (Clifford's Theorem, weak form)

If $U \trianglelefteq G$ is a normal subgroup and S is a simple KG-module, then $S \downarrow_U^G$ is semisimple.

Proof: Let V be any simple KU-submodule of $S \downarrow_U^G$. Now, notice that for every $g \in G$, $gV := \{gv \mid v \in V\}$ is also a KU-submodule of $S \downarrow_U^G$, since $U \leq G$ for any $u \in U$ we have

$$u \cdot gV = g \cdot \underbrace{(g^{-1}ug)}_{\in U} V = gV$$

Moreover, gV is also simple, since if W were a non-trivial proper KU-submodule of gV then $g^{-1}W$ would also be a non-trivial proper submodule of $g^{-1}gV = V$. Now $\sum_{g \in G} gV$ is non-zero and it is a KG-submodule of S, which is simple, hence $\sum_{g \in G} gV = S$. Restricting to U, we obtain that

$$S\downarrow_U^G = \sum_{g\in G} gV$$

is a sum of simple *KU*-submodules. Hence $S \downarrow_U^G$ is semisimple.

Remark 20.2

The KU-submodules gV which appear in the proof of Theorem 20.1 are isomorphic to modules we have seen before! More precisely the map

is a *KU*-isomorphism, since $U \trianglelefteq G$ implies that ${}^{g}U = U$ and hence the action of *U* on $g \otimes V$ (see Remark 19.1) and gV is prescribed in the same way.

Theorem 20.3 (Clifford's Theorem, strong form)

Let $U \trianglelefteq G$ be a normal subgroup and let S be a simple KG-module. Then we may write

$$S\downarrow_U^G = S_1^{a_1} \oplus \cdots \oplus S_r^a$$

where $r \in \mathbb{Z}_{>0}$ and S_1, \ldots, S_r are pairwise non-isomorphic simple *KU*-modules, occurring with multiplicities a_1, \ldots, a_r respectively. Moreover, the following statements hold:

- (i) the group *G* permutes the homogeneous components of $S \downarrow_U^G$ transitively;
- (ii) $a_1 = a_2 = \cdots = a_r$ and $\dim_K(S_1) = \cdots = \dim_K(S_r)$; and
- (iii) $S \cong (S_1^{a_1}) \uparrow_{H_1}^G$ as *KG*-modules, where $H_1 = \operatorname{Stab}_G(S_1^{a_1})$.
- **Proof:** The fact that $S \downarrow_U^G$ is semisimple and hence can be written as a direct sum as claimed follows from Theorem 20.1. Moreover, by the chapter on semisimplicity of rings and modules, we know that for each $1 \le i \le r$ the homogeneous component $S_i^{a_i}$ is characterised by Proposition 7.1: it is the unique largest KU-submodule which is isomorphic to a direct sum of copies of S_i .

Now, if $g \in G$ then $g(S_i^{a_i}) = (gS_i)^{a_i}$, where gS_i is a simple *KU*-submodule of $S \downarrow_U^G$ (see the proof of the weak form of Clifford's Theorem). Hence there exists an index $1 \leq j \leq r$ such that $gS_i = S_j$ and $g(S_i^{a_i}) \subseteq S_j^{a_j}$ (alternatively to Proposition 7.1, the theorem of Krull-Schmidt can also be invoked here). Because $\dim_K(S_i) = \dim_K(gS_i)$, we have that $a_i \leq a_j$. Similarly, since $S_j = g^{-1}S_i$, we obtain $a_j \leq a_j$. Hence $a_i = a_j$ holds. Because

$$S\downarrow_U^G = g(S\downarrow_U^G) = g(S_1^{a_1}) \oplus \cdots \oplus g(S_r^{a_r})$$
,

we actually have that *G* permutes the homogeneous components. Moreover, as $\sum_{g \in G} g(S_1^{a_1})$ is a non-zero *KG*-submodule of *S*, which is simple, we have that $\sum_{g \in G} g(S_1^{a_1}) = S$, and so the action on the homogeneous components is transitive. This establishes both (i) and (ii).

For (iii), we define a K-homomorphism via the map

$$\Phi : (S_1^{a_1}) \uparrow_{H_1}^{G} = KG \otimes_{KH_1} S_1^{a_1} = \bigoplus_{g \in [G/H_1]} g \otimes S_1^{a_1} \longrightarrow S$$
$$g \otimes m \mapsto gm$$

that is, where $g \otimes m \in g \otimes S_1^{a_1}$. This is in fact a *KG*-homomorphism. Furthermore, the *K*-subspaces $g(S_1^{a_1})$ of *S* are in bijection with the cosets G/H_1 , since *G* permutes them transitively by (i), and the stabiliser of one of them is H_1 . Thus both $KG \otimes_{KH_1} S_1^{a_1}$ and *S* are the direct sum of $|G:H_1|$ *K*-subspaces $g \otimes S_1^{a_1}$ and $g(S_1^{a_1})$ respectively, each *K*-isomorphic to $S_1^{a_1}$ (via $g \otimes m \leftrightarrow m$ and $gm \leftrightarrow m$). Thus the restriction of Φ to each summand is an isomorphism, and so Φ itself must be bijective, hence a *KG*-isomorphism.

One application of Clifford's theory is for example the following Corollary:

Corollary 20.4

If ℓ is a prime number and G is a ℓ -group, then every simple KG-module has the form $X \uparrow_{H}^{G}$, where X is a 1-dimensional KH-module for some subgroup $H \leq G$.

Proof: We proceed by induction on |G|.

If $|G| \in \{1, \ell\}$, then G is abelian and any simple KG-module S is 1-dimensional by Corollary 12.3, so H = G, X = S and we are done.

So assume $|G| = \ell^b$ with $b \in \mathbb{Z}_{>1}$, and let S be a simple KG-module and consider the subgroup

$$U := \{g \in G \mid g \cdot x = x \ \forall x \in S\}.$$

This is obviously a normal subgroup of G since it is the kernel of the K-representation associated to S. Hence $S = \inf_{G/U}^{G}(T)$ for a simple K[G/U]-module T.

Now, if $U \neq \{1\}$, then |G/U| < |G|, so by the induction hypothesis there exists a subgroup $H/U \leq G/U$ and a 1-dimensional K[H/U]-module Y such that $T = \operatorname{Ind}_{H/U}^{G/U}(Y)$. But then

$$S = \operatorname{Inf}_{G/U}^G(T) = \operatorname{Inf}_{G/U}^G \circ \operatorname{Ind}_{H/U}^{G/U}(Y) = \operatorname{Ind}_H^G \circ \operatorname{Inf}_{H/U}^H(Y)$$
 ,

so that setting $X := \inf_{H/U}^{H}(Y)$ yields the result. Thus we may assume $U = \{1\}$. If *G* is abelian, then all simple modules are 1-dimensional, so we are done. Assume now that *G* is not abelian. Then *G* has a normal abelian subgroup *A* that is not central. Indeed, to construct this subgroup *A*, let $Z_2(G)$ denote the second centre of *G*, that is, the preimage in *G* of Z(G/Z(G)) (this centre is non-trivial as G/Z(G) is a non-trivial ℓ -group). If $x \in Z_2(G) \setminus Z(G)$, then $A := \langle Z(G), x \rangle$ is a normal abelian subgroup not contained in Z(G). Now, applying Clifford's Theorem yields:

$$S\downarrow_A^G = S_1^{a_1} \oplus \cdots \oplus S_r^{a_r}$$

where $r \in \mathbb{Z}_{>0}$, S_1, \ldots, S_r are non-isomorphic simple *KA*-modules and $S = (S_1^{a_1}) \uparrow_{H_1}^G$, where $H_1 = \operatorname{Stab}_G(S_1^{a_1})$. We argue that $V := S_1^{a_1}$ must be a simple *KH*₁-module, since if it had a proper non-trivial submodule *W*, then $W \uparrow_{H_1}^G$ would be a proper non-trivial submodule of *S*, which is simple: a contradiction. If $H_1 \neq G$ then by the induction hypothesis $V = X \uparrow_{H_1}^{H_1}$, where $H \leq H_1$ and *X* is a 1-dimensional *KH*-module. Thefore, by transitivity of the induction, we have

$$S = (S_1^{a_1}) \uparrow_{H_1}^G = (X \uparrow_H^{H_1}) \uparrow_{H_1}^G = X \uparrow_H^G,$$

as required.

Finally, the case $H_1 = G$ cannot happen. For if it were to happen then

$$S\downarrow_A^G = S\downarrow_A^{H_1} = S_1^{a_1}$$

is simple by the weak form of Clifford's Theorem, hence of dimension 1 since A is abelian. The elements of A must therefore act via scalar multiplication on S. Since such an action would commute with the action of G, which is faithful on S, we deduce that $A \subseteq Z(G)$, which contradicts the construction of A.

Remark 20.5

This result is extremely useful, for example, to construct the complex character table of an ℓ -group $(\ell \in \mathbb{P})$. Indeed, it says that we need look no further than induced linear characters. In general, a *KG*-module of the form $N \uparrow_{H}^{G}$ for some subgroup $H \leq G$ and some 1-dimensional *KH*-module is called **monomial**. A group all of whose simple $\mathbb{C}G$ -modules are monomial is called an *M*-group. (By the above ℓ -groups are *M*-groups.)