
Chapter 6. The Mackey Formula and Clifford Theory

The results in this chapter go more deeply into the theory. We start with the so-called Mackey de-

composition formula, which provides us with yet another relationship between induction and restriction.
After that we explain Clifford’s theorem, which considers restriction/induction of simple modules to/from
a normal subgroup. These results are essential and have many consequences throughout representation
theory of finite groups.

Notation. Throughout this chapter, unless otherwise specified, we let G denote a finite group and let
pF � �� �q be a �-modular system, which is splitting for G and all its subgroups. We let K P tF � �� �u

and assume all KG-modules considered are assumed are free of finite rank as K -modules (hence
finitely generated as KG-modules).
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18 Double cosets
Definition 18.1 (Double cosets)

Given subgroups H and L of G we define for each � P G

H�L :“ t��� P G | � P H� � P Lu

and call this subset of G the pH� Lq-double coset of �. Moreover, we let HzG{L denote the set of
all pH� Lq-double cosets of G.
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First, we want to prove that the pH� Lq-double cosets partition the group G.

Lemma 18.2
Let H� L § G.

(a) Each pH� Lq-double coset is a disjoint union of right cosets of H and a disjoint union of left
cosets of L.

(b) Any two pH� Lq-double cosets either coincide or are disjoint. Hence, letting rHzG{Ls denote
a set of representatives for the pH� Lq-double cosets of G, we have

G “

ß

�PrHzG{Ls
H�L �

Proof :

(a) If ��� P H�L and �1 P L, then ��� ¨ �1 “ ��p��1q P H�L. It follows that the entire left coset of
L that contains ��� is contained in H�L. This proves that H�L is a union of left cosets of L. A
similar argument proves that H�L is a union of right cosets of H .

(b) Let �1� �2 P G. If �1�1�1 “ �2�2�2 P H�1L X H�2L, then �1 “ �
´1
1 �2�2�2�

´1
1 P H�2L so that

H�1L Ñ H�2L. Similarly H�2L Ñ H�1L. Thus if two double cosets are not disjoint, they coincide.

If X is a left G-set we use the standard notation GzX for the set of orbits of G on X , and denote a set
of representatives for theses orbits by rGzX s. Similarly if Y is a right G-set we write Y {G and rY {Gs.
We shall also repeatedly use the orbit-stabiliser theorem without further mention: in other words, if X

is a transitive left G-set and � P X then X – G{ StabGp�q (i.e. the set of left cosets of the stabiliser of
� in G), and similarly for right G-sets.

Exercise 18.3

(a) Let H� L § G. Prove that the set of pH� Lq-double cosets is in bijection with the set of orbits
HzpG{Lq, and also with the set of orbits pHzGq{L under the mappings

H�L fiÑ Hp�Lq P HzpG{Lq

H�L fiÑ pH�qL P pHzGq{L�

This justifies the notation HzG{L for the set of pH� Lq-double cosets.

(b) Let G “ S3. Consider H “ L :“ S2 “ tId� p1 2qu as a subgroup of S3. Prove that

rS2zS3{S2s “ tId� p1 2 3qu

while
S2zS3{S2 “ t tId� p1 2qu� tp1 2 3q� p1 3 2q� p1 3q� p2 3quu �
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19 The Mackey formula
If H and L are subgroups of G, we wish to describe what happens if we induce a KL-module from L to
G and then restrict it to H .

Remark 19.1
We need to examine KG regarded as a pKH� KLq-bimodule (i.e. with left and right external laws
by multiplication in G). Since G “

ó
�PrHzG{Ls H�L, we have

KG “

à

�PrHzG{Ls
K xH�Ly

as pKH� KLq-bimodule, where K xH�Ly denotes the free K -module with K -basis H�L.
Now if M is a KL-module, we will also write �

M for � b M , which is a left K p
�
Lq-module with

p���
´1

q ¨ p� b �q “ � b ��

for each � P L and each � P M . With this notation, we have

K xH�Ly – KH bK pHX �Lq p� b KLq �

where ��� P H�L corresponds to � b � b � .

Theorem 19.2 (Mackey formula)
Let H� L § G and let M be a KL-module. Then, as KH-modules,

M Ò
G

L
Ó

G

H
–

à

�PrHzG{Ls
p

�
M Ó

�
L

HX �L
qÒ

H

HX �L
�

Proof : It follows from Remark 19.1 that as left KH-modules we have

M Ò
G

L
Ó

G

H
– pKG bKL MqÓ

G

H
–

à

�PrHzG{Ls
K xH�Ly bKL M

–

à

�PrHzG{Ls
KH bK pHX �Lq p� b KLq bKL M

–

à

�PrHzG{Ls
KH bK pHX �Lq p� b MqÓ

�
L

HX �L

–

à

�PrHzG{Ls
p

�
M Ó

�
L

HX �L
qÒ

H

HX �L
�

Remark 19.3
Given an arbitrary finite group Z , write KZ mod for the category of KZ-modules which are free of
finite rank as K -modules. Then, expressed in categorical terms, the Mackey formula says that we
have the following equality of functors from KLmod to KHmod:

ResG

H ˝ IndG

L “

à

�PrHzG{Ls
IndH

HX �L ˝ Res �
L

HX �L ˝ Innp�q

where Innp�q is conjugation by � P G.
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Exercise 19.4
Let H� L § G, let M be a KL-module and let N be a KH-module. Use the Mackey formula to
prove that:

(a) M Ò
G

L
bK N Ò

G

H
–

À
�PrHzG{Lsp

�
M Ó

�
L

HX �L
bK N Ó

H

HX �L
qÒ

G

HX �L
;

(b) HomK pM Ò
G

L
� N Ò

G

H
q –

À
�PrHzG{LspHomK p

�
M Ó

�
L

HX �L
� N Ó

H

HX �L
qqÒ

G

HX �L
.

20 Clifford theory
We now turn to Clifford’s theorem, which we present in a weak and a strong form. Clifford theory is a
collection of results about induction and restriction of simple modules from/to normal subgroups.

Throughout this section, we assume that K is one
of F or � .

Theorem 20.1 (Clifford’s Theorem, weak form)
If U E G is a normal subgroup and S is a simple KG-module, then S Ó

G

U
is semisimple.

Proof : Let V be any simple KU-submodule of S Ó
G

U
. Now, notice that for every � P G, �V :“ t�� | � P V u

is also a KU-submodule of S Ó
G

U
, since U E G for any � P U we have

� ¨ �V “ � ¨ p�
´1

��qlooomooon
PU

V “ �V

Moreover, �V is also simple, since if W were a non-trivial proper KU-submodule of �V then �
´1

W

would also be a non-trivial proper submodule of �
´1

�V “ V . Now
∞

�PG
�V is non-zero and it is a

KG-submodule of S, which is simple, hence
∞

�PG
�V “ S. Restricting to U , we obtain that

S Ó
G

U
“

ÿ

�PG

�V

is a sum of simple KU-submodules. Hence S Ó
G

U
is semisimple.

Remark 20.2
The KU-submodules �V which appear in the proof of Theorem 20.1 are isomorphic to modules we
have seen before! More precisely the map

� b V ›Ñ �V

� b � fiÑ ��

is a KU-isomorphism, since U E G implies that �
U “ U and hence the action of U on � b V (see

Remark 19.1) and �V is prescribed in the same way.
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Theorem 20.3 (Clifford’s Theorem, strong form)
Let U E G be a normal subgroup and let S be a simple KG-module. Then we may write

S Ó
G

U
“ S

�1
1 ‘ ¨ ¨ ¨ ‘ S

��

�

where � P Z°0 and S1� � � � � S� are pairwise non-isomorphic simple KU-modules, occurring with
multiplicities �1� � � � � �� respectively. Moreover, the following statements hold:

(i) the group G permutes the homogeneous components of S Ó
G

U
transitively;

(ii) �1 “ �2 “ ¨ ¨ ¨ “ �� and dimK pS1q “ ¨ ¨ ¨ “ dimK pS�q; and

(iii) S – pS
�1
1 qÒ

G

H1
as KG-modules, where H1 “ StabGpS

�1
1 q.

Proof : The fact that S Ó
G

U
is semisimple and hence can be written as a direct sum as claimed follows from

Theorem 20.1. Moreover, by the chapter on semisimplicity of rings and modules, we know that for each
1 § � § � the homogeneous component S

��

�
is characterised by Proposition 7.1: it is the unique largest

KU-submodule which is isomorphic to a direct sum of copies of S�.
Now, if � P G then �pS

��

�
q “ p�S�q

�� , where �S� is a simple KU-submodule of S Ó
G

U
(see the proof of

the weak form of Clifford’s Theorem). Hence there exists an index 1 § � § � such that �S� “ S� and
�pS

��

�
q Ñ S

��

�
(alternatively to Proposition 7.1, the theorem of Krull-Schmidt can also be invoked here).

Because dimK pS�q “ dimK p�S�q, we have that �� § �� . Similarly, since S� “ �
´1

S�, we obtain �� § �� .
Hence �� “ �� holds. Because

S Ó
G

U
“ �pS Ó

G

U
q “ �pS

�1
1 q ‘ ¨ ¨ ¨ ‘ �pS

��

�
q �

we actually have that G permutes the homogeneous components. Moreover, as
∞

�PG
�pS

�1
1 q is a non-

zero KG-submodule of S, which is simple, we have that
∞

�PG
�pS

�1
1 q “ S, and so the action on the

homogeneous components is transitive. This establishes both (i) and (ii).
For (iii), we define a K -homomorphism via the map

Φ : pS
�1
1 qÒ

G

H1
“ KG bKH1 S

�1
1 “

À
�PrG{H1s � b S

�1
1 ›Ñ S

� b � fiÑ ��

that is, where �b� P �bS
�1
1 . This is in fact a KG-homomorphism. Furthermore, the K -subspaces �pS

�1
1 q

of S are in bijection with the cosets G{H1, since G permutes them transitively by (i), and the stabiliser
of one of them is H1. Thus both KG bKH1 S

�1
1 and S are the direct sum of |G : H1| K -subspaces � b S

�1
1

and �pS
�1
1 q respectively, each K -isomorphic to S

�1
1 (via � b � Ø � and �� Ø �). Thus the restriction

of Φ to each summand is an isomorphism, and so Φ itself must be bijective, hence a KG-isomorphism.

One application of Clifford’s theory is for example the following Corollary:

Corollary 20.4
If � is a prime number and G is a �-group, then every simple KG-module has the form X Ò

G

H
, where

X is a 1-dimensional KH-module for some subgroup H § G.

Proof : We proceed by induction on |G|.
If |G| P t1� �u, then G is abelian and any simple KG-module S is 1-dimensional by Corollary 12.3, so
H “ G, X “ S and we are done.
So assume |G| “ �

� with � P Z°1, and let S be a simple KG-module and consider the subgroup

U :“ t� P G | � ¨ � “ � @ � P Su �
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This is obviously a normal subgroup of G since it is the kernel of the K -representation associated to S.
Hence S “ InfG

G{U
pT q for a simple K rG{Us-module T .

Now, if U ‰ t1u, then |G{U| † |G|, so by the induction hypothesis there exists a subgroup H{U § G{U

and a 1-dimensional K rH{Us-module Y such that T “ IndG{U

H{U
pY q. But then

S “ InfG
G{U

pT q “ InfG
G{U

˝ IndG{U

H{U
pY q “ IndG

H
˝ InfH

H{U
pY q �

so that setting X :“ InfH
H{U

pY q yields the result. Thus we may assume U “ t1u.
If G is abelian, then all simple modules are 1-dimensional, so we are done. Assume now that G is not
abelian. Then G has a normal abelian subgroup A that is not central. Indeed, to construct this subgroup
A, let Z2pGq denote the second centre of G, that is, the preimage in G of Z pG{Z pGqq (this centre is
non-trivial as G{Z pGq is a non-trivial �-group). If � P Z2pGqzZ pGq, then A :“ xZ pGq� �y is a normal
abelian subgroup not contained in Z pGq. Now, applying Clifford’s Theorem yields:

S Ó
G

A
“ S

�1
1 ‘ ¨ ¨ ¨ ‘ S

��

�

where � P Z°0, S1� � � � � S� are non-isomorphic simple KA-modules and S “ pS
�1
1 q Ò

G

H1
, where H1 “

StabGpS
�1
1 q. We argue that V :“ S

�1
1 must be a simple KH1-module, since if it had a proper non-

trivial submodule W , then W Ò
G

H1
would be a proper non-trivial submodule of S, which is simple: a

contradiction. If H1 ‰ G then by the induction hypothesis V “ X Ò
H1
H

, where H § H1 and X is a
1-dimensional KH-module. Thefore, by transitivity of the induction, we have

S “ pS
�1
1 qÒ

G

H1 “ pX Ò
H1
H

qÒ
G

H1 “ X Ò
G

H
�

as required.
Finally, the case H1 “ G cannot happen. For if it were to happen then

S Ó
G

A
“ S Ó

H1
A

“ S
�1
1 �

is simple by the weak form of Clifford’s Theorem, hence of dimension 1 since A is abelian. The elements
of A must therefore act via scalar multiplication on S. Since such an action would commute with the
action of G, which is faithful on S, we deduce that A Ñ Z pGq, which contradicts the construction of A.

Remark 20.5
This result is extremely useful, for example, to construct the complex character table of an �-group
(� P P). Indeed, it says that we need look no further than induced linear characters. In general,
a KG-module of the form N Ò

G

H
for some subgroup H § G and some 1-dimensional KH-module is

called monomial. A group all of whose simple CG-modules are monomial is called an M-group.
(By the above �-groups are M-groups.)


