Chapter 6. The Mackey Formula and Clifford Theory

The results in this chapter go more deeply into the theory. We start with the so-called *Mackey decomposition formula*, which provides us with yet another relationship between induction and restriction. After that we explain Clifford's theorem, which considers restriction/induction of simple modules to/from a normal subgroup. These results are essential and have many consequences throughout representation theory of finite groups.

Notation. Throughout this chapter, unless otherwise specified, we let *G* denote a finite group and let (F, \mathcal{O}, k) be a *p*-modular system, which is splitting for *G* and all its subgroups. We let $K \in \{F, \mathcal{O}, k\}$ and assume all *KG*-modules considered are assumed are **free of finite rank as** *K***-modules** (hence **finitely generated** as *KG*-modules).

References:

- [Alp86] J. L. Alperin. *Local representation theory*. Vol. 11. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986.
- [Ben98] D. J. Benson. *Representations and cohomology. I*. Vol. 30. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1998.
- [CR90] C. W. Curtis and I. Reiner. *Methods of representation theory. Vol. I*. John Wiley & Sons, Inc., New York, 1990.
- [LP10] K. Lux and H. Pahlings. *Representations of groups*. Vol. 124. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
- [Web16] P. Webb. *A course in finite group representation theory*. Vol. 161. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.

18 Double cosets

Definition 18.1 (*Double cosets***)**

Given subgroups *H* and *L* of *G* we define for each $q \in G$

$$
HgL := \{hg\ell \in G \mid h \in H, \ell \in L\}
$$

and call this subset of *G* the (H, L) -double coset of *g*. Moreover, we let $H\setminus G/L$ denote the set of all (H, L) -double cosets of G .

First, we want to prove that the (H, L) -double cosets partition the group *G*.

Lemma 18.2

Let *H*, *L* ≤ *G*.

- (a) Each (H, L) -double coset is a disjoint union of right cosets of *H* and a disjoint union of left cosets of *L*.
- (b) Any two (H, L) -double cosets either coincide or are disjoint. Hence, letting $[H\setminus G/L]$ denote a set of representatives for the (H, L) -double cosets of G , we have

$$
G=\bigsqcup_{g\in [H\setminus G/L]}HgL.
$$

Proof :

- (a) If $h g \ell \in H g L$ and $\ell_1 \in L$, then $h g \ell \cdot \ell_1 = h g(\ell \ell_1) \in H g L$. It follows that the entire left coset of *L* that contains *hg&* is contained in *HgL*. This proves that *HgL* is a union of left cosets of *L*. A similar argument proves that *HgL* is a union of right cosets of *H*.
- (b) Let $g_1, g_2 \in G$. If $h_1g_1\ell_1 = h_2g_2\ell_2 \in Hg_1L \cap Hg_2L$, then $g_1 = h_1^{-1}h_2g_2\ell_2\ell_1^{-1} \in Hg_2L$ so that $Hg_1L \subseteq Hg_2L$. Similarly $Hg_2L \subseteq Hg_1L$. Thus if two double cosets are not disjoint, they coincide.

If *X* is a left *G*-set we use the standard notation $G\backslash X$ for the set of orbits of *G* on *X*, and denote a set of representatives for theses orbits by $\lbrack G \backslash X \rbrack$. Similarly if *Y* is a right *G*-set we write *Y*/*G* and $\lbrack Y/G \rbrack$. We shall also repeatedly use the orbit-stabiliser theorem without further mention: in other w We shall also repeatedly use the orbit-stabiliser theorem without further mention: in other words, if *X* is a transitive left *G*-set and $x \in X$ then $X \cong G/S$ tab $G(X)$ (i.e. the set of left cosets of the stabiliser of *x* in *G*), and similarly for right *G*-sets.

Exercise 18.3

(a) Let $H, L \leq G$. Prove that the set of (H, L) -double cosets is in bijection with the set of orbits $H \setminus (G/L)$, and also with the set of orbits $(H \setminus G)/L$ under the mappings

$$
HgL \mapsto H(gL) \in H\backslash (G/L)
$$

$$
HgL \mapsto (Hg)L \in (H\backslash G)/L.
$$

This justifies the notation $H\backslash G/L$ for the set of (H, L) -double cosets.

(b) Let $G = S_3$. Consider $H = L := S_2 = \{Id, (1\ 2)\}\)$ as a subgroup of S_3 . Prove that

 $[S_2\setminus S_3/S_2] = \{Id, (1\ 2\ 3)\}\$

while

$$
S_2 \setminus S_3 / S_2 = \{ \{ \{ \mathsf{Id}, (1\ 2) \}, \{ (1\ 2\ 3), (1\ 3\ 2), (1\ 3), (2\ 3) \} \}.
$$

19 The Mackey formula

If *H* and *L* are subgroups of *G*, we wish to describe what happens if we induce a *K L*-module from *L* to *G* and then restrict it to *H*.

Remark 19.1

We need to examine *KG* regarded as a (KH, KL) -bimodule (i.e. with left and right external laws by multiplication in *G*). Since $G = \bigsqcup_{g \in [H \setminus G/L]} HgL$, we have

$$
KG = \bigoplus_{g \in [H \setminus G/L]} K \langle HgL \rangle
$$

as (KH, KL) -bimodule, where $K\langle HqL\rangle$ denotes the free *K*-module with *K*-basis *HqL*. Now if M is a KL-module, we will also write *^gM* for $g \otimes M$, which is a left $K({}^{g}L)$ -module with

$$
(g\ell g^{-1})\cdot (g\otimes m)=g\otimes \ell m
$$

for each $\ell \in L$ and each $m \in M$. With this notation, we have

$$
K\langle HgL\rangle \cong KH\otimes_{K(H\cap GL)}(g\otimes KL),
$$

where $hq\ell \in HqL$ corresponds to $h \otimes q \otimes \ell$.

Theorem 19.2 (*Mackey formula***)**

Let $H, L \le G$ and let M be a KL-module. Then, as KH -modules,

$$
M \uparrow^G_L \downarrow^G_H \cong \bigoplus_{g \in [H \setminus G/L]} (\, ^g \! M \downarrow^{\mathcal{I}_L}_{H \cap \mathcal{I}_L}) \uparrow^H_{H \cap \mathcal{I}_L}.
$$

Proof : It follows from Remark 19.1 that as left *K H*-modules we have

$$
M\uparrow_{L\downarrow H}^{G_1 G} \cong (KG \otimes_{KL} M)\downarrow_H^{G} \cong \bigoplus_{g \in [H\setminus G/L]} K\langle HgL \rangle \otimes_{KL} M
$$

$$
\cong \bigoplus_{g \in [H\setminus G/L]} KH \otimes_{K(H \cap \mathcal{I})} (g \otimes KL) \otimes_{KL} M
$$

$$
\cong \bigoplus_{g \in [H\setminus G/L]} KH \otimes_{K(H \cap \mathcal{I})} (g \otimes M)\downarrow_{H \cap \mathcal{I}L}^{\mathcal{I}L}
$$

$$
\cong \bigoplus_{g \in [H\setminus G/L]} (\mathcal{M}\downarrow_{H \cap \mathcal{I}L}^{\mathcal{I}L})\uparrow_{H \cap \mathcal{I}L}^H.
$$

Remark 19.3

Given an arbitrary finite group Z, write K z mod for the category of KZ -modules which are free of finite rank as *K*-modules. Then, expressed in categorical terms, the Mackey formula says that we have the following equality of functors from K / mod to K / mod :

$$
\operatorname{\sf Res}^G_H\circ\operatorname{\sf Ind}^G_L\,=\, \bigoplus_{g\in [H\backslash G/L]}\operatorname{\sf Ind}^H_{H\cap\, {}^g\!L}\circ\operatorname{\sf Res}^{g\!L}_{H\cap\, {}^g\!L}\circ\operatorname{\sf Inn}(g)
$$

where $\text{Inn}(q)$ is conjugation by $q \in G$.

a ka

Exercise 19.4

Let $H, L \le G$, let M be a KL-module and let N be a KH-module. Use the Mackey formula to prove that:

- (a) $M\uparrow_L^G\otimes_KN\uparrow_H^G\cong\bigoplus_{g\in[H\setminus G/L]}(\mathscr{G}M\downarrow_{H\cap\mathscr{G}L}^{\mathscr{G}L}\otimes_KN\downarrow_{H\cap\mathscr{G}L}^H)\uparrow_{H\cap\mathscr{G}L}^G;$
- (b) $\text{Hom}_K(M \uparrow^G_L, N \uparrow^G_H) \cong \bigoplus_{g \in [H \setminus G/L]} (\text{Hom}_K(\mathcal{M} \downarrow^{\mathcal{H}}_{H \cap \mathcal{H}}, N \downarrow^H_{H \cap \mathcal{H}})) \uparrow^G_{H \cap \mathcal{H}}.$

20 Clifford theory

We now turn to *Clifford's theorem*, which we present in a weak and a strong form. Clifford theory is a collection of results about induction and restriction of simple modules from/to normal subgroups.

> Throughout this section, we assume that *K* is one of F or k .

Theorem 20.1 (*Clifford's Theorem, weak form***)**

If $U \unlhd G$ is a normal subgroup and S is a simple $\mathcal{K}G\text{-module, then }S\!\downarrow_{U}^G$ is semisimple.
——

Proof: Let *V* be any simple *K U*-submodule of $S \downarrow U$. Now, notice that for every $g \in G$, $gV := \{gv \mid v \in V\}$ is also a KU -submodule of $S\downarrow^G_U$, since $U\unlhd G$ for any $u\in U$ we have

$$
u \cdot gV = g \cdot \underbrace{(g^{-1}ug)}_{\in U} V = gV
$$

Moreover, qV is also simple, since if W were a non-trivial proper KU -submodule of qV then $q^{-1}W$ would also be a non-trivial proper submodule of $g^{-1}gV = V$. Now $\sum_{g \in G} gV$ is non-zero and it is a *KG*-submodule of *S*, which is simple, hence $\sum_{g \in G} gV = S$. Restricting to *U*, we obtain that

$$
S \downarrow_U^G = \sum_{g \in G} gV
$$

is a sum of simple $K\,U$ -submodules. Hence $S\!\downarrow\!\!\stackrel{\cup}{U}$ is semisimple.

Remark 20.2

The *K U*-submodules *gV* which appear in the proof of Theorem 20.1 are isomorphic to modules we have seen before! More precisely the map

$$
\begin{array}{rcl} g \otimes V & \longrightarrow & gV \\ g \otimes V & \mapsto & gV \end{array}
$$

is a KU -isomorphism, since $U \trianglelefteq G$ implies that $^gU = U$ and hence the action of U on $g \otimes V$ (see Remark 19.1) and *gV* is prescribed in the same way.

 \blacksquare

Theorem 20.3 (*Clifford's Theorem, strong form***)**

Let $U \trianglelefteq G$ be a normal subgroup and let *S* be a simple *KG*-module. Then we may write

$$
S\downarrow_{U}^{G}=S_{1}^{a_{1}}\oplus\cdots\oplus S_{r}^{a_{r}}
$$

where $r \in \mathbb{Z}_{>0}$ and S_1, \ldots, S_r are pairwise non-isomorphic simple KU -modules, occurring with multiplicities *a*1*,...,ar* respectively. Moreover, the following statements hold:

- (i) the group G permutes the homogeneous components of $S\downarrow_U^G$ transitively;
- (ii) $a_1 = a_2 = \cdots = a_r$ and $\dim_K(S_1) = \cdots = \dim_K(S_r)$; and
- (iii) $S \cong (S_1^{\alpha_1}) \uparrow_{H_1}^{\alpha}$ as *KG*-modules, where $H_1 = \text{Stab}_G(S_1^{\alpha_1})$.
- **Proof:** The fact that $S \downarrow^G$ is semisimple and hence can be written as a direct sum as claimed follows from *^U* is semisimple and hence can be written as a direct sum as claimed follows from Theorem 20.1. Moreover, by the chapter on semisimplicity of rings and modules, we know that for each $1 \leqslant i \leqslant r$ the homogeneous component $S_i^{a_i}$ is characterised by Proposition 7.1: it is the unique largest *K U*-submodule which is isomorphic to a direct sum of copies of *Si*.

Now, if $g \in G$ then $g(S_i^{a_i}) = (gS_i)^{a_i}$, where gS_i is a simple KU -submodule of $S \downarrow^U_U$ (see the proof of the weak form of Clifford's Theorem). Hence there exists an index $1 \leqslant f \leqslant r$ such that $gS_i = S_j$ and $g(S_i^{a_i}) \subseteq S_j^{a_j}$ (alternatively to Proposition 7.1, the theorem of Krull-Schmidt can also be invoked here). Because dim_K (S_i) = dim_K (gS_i) , we have that $a_i \leq a_j$. Similarly, since $S_j = g^{-1}S_i$, we obtain $a_j \leq a_j$. Hence $a_i = a_j$ holds. Because

$$
S\downarrow^G_U=g(S\downarrow^G_U)=g(S_1^{a_1})\oplus\cdots\oplus g(S_r^{a_r}),
$$

we actually have that *G* permutes the homogeneous components. Moreover, as $\sum_{g \in G} g(S_1^{a_1})$ is a nonzero *KG*-submodule of *S*, which is simple, we have that $\sum_{g \in G} g(S_1^{a_1}) = S$, and so the action on the homogeneous components is transitive. This establishes both (i) and (ii).

For (iii), we define a *K*-homomorphism via the map

$$
\Phi: (S_1^{a_1}) \uparrow_{H_1}^G = KG \otimes_{KH_1} S_1^{a_1} = \bigoplus_{g \in [G/H_1]} g \otimes S_1^{a_1} \longrightarrow S
$$

$$
g \otimes m \longrightarrow g
$$

that is, where $g \otimes m \in g \otimes S_1^{\omega_1}$. This is in fact a *KG*-homomorphism. Furthermore, the *K*-subspaces $g(S_1^{\omega_1})$ of *S* are in bijection with the cosets *G*{*H*1, since *G* permutes them transitively by (i), and the stabiliser of one of them is H_1 . Thus both $KG \otimes_{KH_1} S_1^{a_1}$ and *S* are the direct sum of $|G : H_1|$ *K*-subspaces $g \otimes S_1^{a_1}$ and $g(S_1^{a_1})$ respectively, each *K*-isomorphic to $S_1^{a_1}$ (via $g \otimes m \leftrightarrow m$ and $g m \leftrightarrow m$). Thus the restriction of Φ to each summand is an isomorphism, and so Φ itself must be bijective, hence a *KG*-isomorphism.

One application of Clifford's theory is for example the following Corollary:

Corollary 20.4

If *&* is a prime number and *G* is a *&*-group, then every simple *KG*-module has the form *X* Ò*^G H*, where *X* is a 1-dimensional KH -module for some subgroup $H \le G$.

Proof : We proceed by induction on |*G*|.

If $|G| \in \{1, \ell\}$, then *G* is abelian and any simple *KG*-module *S* is 1-dimensional by Corollary 12.3, so $H = G$, $X = S$ and we are done.

So assume $|G| = \ell^b$ with $b \in \mathbb{Z}_{>1}$, and let *S* be a simple *KG*-module and consider the subgroup

$$
U := \{ g \in G \mid g \cdot x = x \ \forall x \in S \}.
$$

This is obviously a normal subgroup of *G* since it is the kernel of the *K*-representation associated to *S*. Hence $S = \text{Int}_{G/U}^G(I)$ for a simple $K[G/U]$ -module *T*.

Now, if $U \neq \{1\}$, then $|G/U| < |G|$, so by the induction hypothesis there exists a subgroup $H/U \leq G/U$ and a 1-dimensional $K[H/U]$ -module *Y* such that $T = \text{Ind}_{H/U}^{G/U}(Y)$. But then

$$
S = \text{Inf}_{G/U}^G(T) = \text{Inf}_{G/U}^G \circ \text{Ind}_{H/U}^{G/U}(Y) = \text{Ind}_{H}^G \circ \text{Inf}_{H/U}^H(Y),
$$

so that setting $X := \ln t_H^U_U(Y)$ yields the result. Thus we may assume $U = \{1\}$.

If *G* is abelian, then all simple modules are 1-dimensional, so we are done. Assume now that *G* is not abelian. Then *G* has a normal abelian subgroup *A* that is not central. Indeed, to construct this subgroup *A*, let $Z_2(G)$ denote the second centre of *G*, that is, the preimage in *G* of $Z(G/Z(G))$ (this centre is non-trivial as $G/Z(G)$ is a non-trivial ℓ -group). If $x \in Z_2(G) \setminus Z(G)$, then $A := \langle Z(G), x \rangle$ is a normal abelian subgroup not contained in $Z(G)$. Now, applying Clifford's Theorem yields:

$$
S\downarrow_A^G=S_1^{a_1}\oplus\cdots\oplus S_r^{a_r}
$$

where $r \in \mathbb{Z}_{>0}$, S_1, \ldots, S_r are non-isomorphic simple KA -modules and $S = (S_1^{a_1}) \uparrow^{\mathcal{U}}_{H_1}$, where $H_1 =$ $\text{Stab}_G(S_1^{a_1})$. We argue that $V := S_1^{a_1}$ must be a simple KH_1 -module, since if it had a proper nontrivial submodule *W*, then *W* $\uparrow_{H_1}^{\omega}$ would be a proper non-trivial submodule of *S*, which is simple: a contradiction. If $H_1 \neq G$ then by the induction hypothesis $V = X \uparrow_H^H$, where $H \leq H_1$ and X is a 1-dimensional *K H*-module. Thefore, by transitivity of the induction, we have

$$
S = (S_1^{a_1}) \uparrow_{H_1}^G = (X \uparrow_H^{H_1}) \uparrow_{H_1}^G = X \uparrow_H^G,
$$

as requireu.
E

Finally, the case *H*¹ " *G* cannot happen. For if it were to happen then

$$
S\downarrow_A^G=S\downarrow_A^{H_1}=S_1^{a_1},
$$

is simple by the weak form of Clifford's Theorem, hence of dimension 1 since *A* is abelian. The elements of *A* must therefore act via scalar multiplication on *S*. Since such an action would commute with the action of *G*, which is faithful on *S*, we deduce that $A \subseteq Z(G)$, which contradicts the construction of *A*.

Remark 20.5

This result is extremely useful, for example, to construct the complex character table of an *&*-group $(\ell \in \mathbb{P})$. Indeed, it says that we need look no further than induced linear characters. In general, a KG-module of the form $N \uparrow_H^{\omega}$ for some subgroup $H \leqslant G$ and some 1-dimensional KH-module is called **monomial**. A group all of whose simple **C***G*-modules are monomial is called an *M*-**group**. (By the above *&*-groups are *M*-groups.)