
Chapter 5. Operations on Groups and Modules

In this chapter we show how to construct new modules over the group algebra from old ones using
standard module operations such as tensor products, Hom-functors, duality, or using subgroups or quo-
tients of the initial group. Moreover, we study how these constructions relate to each other.

Notation: throughout this chapter, unless otherwise specified, we let G denote a finite group and
pF � �� �q be a splitting �-modular system for G and its subgroups. Moreover, we let K P tF � �� �u (so
that K is in particular always a commutative ring), and we assume that all KG-modules considered are
free of finite rank as K -modules, hence finitely generated as KG-modules.
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15 Tensors, Hom’s and duality
Definition 15.1 (Tensor product of KG-modules)

If M and N are two KG-modules, then the tensor product M bK N of M and N balanced over K

becomes a KG-module via the diagonal action of G. In other words, the external composition law
is defined by the G-action

¨ : G ˆ pM bK Nq ›Ñ M bK N

p�� � b �q fiÑ � ¨ p� b �q :“ �� b ��

extended by K -linearity to the whole of KG.

44
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Definition 15.2 (Homs)
If M and N are two KG-modules, then the abelian group HomK pM� Nq becomes a KG-module via
the so-called conjugation action of G. In other words, the external composition law is defined by
the G-action

¨ : G ˆ HomK pM� Nq ›Ñ HomK pM� Nq

p�� �q fiÑ � ¨ � : M ›Ñ N� � fiÑ p� ¨ �qp�q :“ � ¨ �p�
´1

¨ �q

extended by K -linearity to the whole of KG.

Specifying Definition 15.2 to N “ K yields a KG-module structure on the K -dual M
˚

“ HomK pM� K q.

Definition 15.3 (Dual of a KG-module)

(a) If M is a KG-module, then its K -dual M
˚ becomes a KG-module via the external composition

law is defined by the map

¨ : G ˆ M
˚

›Ñ M
˚

p�� �q fiÑ � ¨ � : M ›Ñ K � � fiÑ p� ¨ �qp�q :“ �p�
´1

¨ �q

extended by K -linearity to the whole of KG.

(b) If M� N are KG-modules, then every morphism ρ P HomKGpM� Nq induces a KG-homomorphism

ρ
˚ : N

˚
›Ñ M

˚

� fiÑ ρ
˚
p�q : M ›Ñ K � � fiÑ ρ

˚
p�qp�q :“ � ˝ ρp�q �

(See Proposition D.3.)

Lemma 15.4
If M and N are KG-modules, then HomK pM� Nq – M

˚
bK N as KG-modules.

Proof : The map

θ :“ θM�N : M
˚

bK N ›Ñ HomK pM� Nq

� b � fiÑ θp� b �q : M ›Ñ N� � fiÑ θp� b �qp�q “ �p�q�

defines a K -isomorphism. (Check it!)
Now, for every � P G, � P M

˚, � P N and � P M , we have on the one hand

θp� ¨ p� b �qqp�q “ θp� ¨ � b � ¨ �qqp�q “ p� ¨ �qp�q� ¨ �

“ �p�
´1

¨ �q� ¨ �

and on the other hand
`
� ¨ θp� b �q

˘
p�q “ � ¨

`
θp� b �qp�

´1
�q

˘
“ � ¨

`
�p�

´1
�q�

˘
“ �p�

´1
¨ �q� ¨ � �

hence θp� ¨ p� b �qq “
`
� ¨ θp� b �q

˘
and it follows that θ is in fact a KG-isomorphism.
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Remark 15.5
In case M “ N the above constructions yield a KG-module structure on EndK pMq – M

˚
bK M .

Moreover, if rkK pMq “: �, t�1� � � � � ��u is a K -basis of M and t�
˚
1 � � � � � �

˚
�u is the dual K -basis,

then IdM P EndK pMq corresponds to the element r :“
∞

�

�“1 �
˚
�

b �� P M
˚

bK M . (Exercise!)
This allows us to define the KG-homomorphism

I : K ›Ñ M
˚

bK M

1 fiÑ r .

Definition 15.6 (Trace map)
If M is a KG-module, then the trace map associated with M is the KG-homomorphism

TrM : M
˚

bK M ›Ñ K

� b � fiÑ �p�q �

Exercise 15.7
Let M and N be KG-modules. Prove the following assertions:

(a) M – pM
˚
q

˚ as KG-modules (in a natural way);

(b) M
˚

‘ N
˚

– pM ‘ Nq
˚ and M

˚
bK N

˚
– pM bK Nq

˚ as KG-modules (in a natural way);

(c) M is simple, resp. indecomposable, resp. semisimple, if and only if M
˚ is simple, resp.

indecomposable, resp. semisimple;

Notation 15.8
If M and N are KG-modules, we shall write M | N to mean that M is isomorphic to a direct
summand of N .

Lemma 15.9
Let M be a KG-module. If rkK pMq P K

ˆ, then K | M
˚

bK M .

Proof : By Lemma-Definition D.4(c) it suffices to check that 1
rkK pMq I is a KG-section for TrM , because then

M
˚

bK M – kerpTrMq ‘ K , hence K | M
˚

bK M . So let λ P K . Then, using the notation of Remark 15.5,
we obtain

”
TrM ˝

1
rkK pMq

I
ı
pλq “

1
rkK pMq

TrMpλ�q “
λ

rkK pMq
TrMp

�ÿ

�“1
�

˚
�

b ��q

“
λ

rkK pMq

�ÿ

�“1
�

˚
�

p��q

“
λ

rkK pMq

�ÿ

�“1
1 “ λ �

and hence TrM ˝
1

rkK pMq I “ IdK .
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Exercise 15.10
Let M be a KG-module. Prove the following assertions:

(a) TrM is a KG-homomorphism and TrM ˝ θ
´1
M�M

coincides with the ordinary trace of matrices;

(b) if K “ � , then M | M b� M
˚

b� M , and if char(k) | dim�pMq, then M ‘ M | M b� M
˚

b� M .

16 Fixed and cofixed points
Fixed and cofixed points explain why in the previous section we considered tensor products and Hom’s
over K and not over KG.

Definition 16.1 (G-fixed points and G-cofixed points)
Let M be a KG-module.

(a) The G-fixed points of M are by definition M
G :“

 
� P M | � ¨ � “ � @ � P G

(
.

(b) The G-cofixed points of M are by definition MG :“ M{pIpKGq ¨ Mq.

In other words:

¨ M
G is the largest KG-submodule of M on which G acts trivially, and

¨ MG is the largest quotient of M on which G acts trivially.

Lemma 16.2
If M� N are KG-modules, then HomK pM� Nq

G
“ HomKGpM� Nq and pM bK NqG – M bKG N .

Proof : A K -linear map � : M ›Ñ N is a morphism of KG-modules if and only if �p� ¨ �q “ � ¨ �p�q for all
� P G and all � P M , that is if and only if �

´1
¨ �p� ¨ �q “ �p�q for all � P G and all � P M . This is

exactly the condition that � is fixed under the action of G. Hence HomK pM� Nq
G

“ HomKGpM� Nq.
Second claim: Exercise!

Exercise 16.3

Let K be a field and let 0 ›Ñ L
�

›Ñ M
ψ

›Ñ N ›Ñ 0 be a s.e.s. of KG-modules. Prove that if
M – L ‘ N , then the s.e.s. splits.
[Hint: Consider the exact sequence induced by the functor HomKGpN� ´q (as in Proposition D.3(a)) and use the fact that
the modules considered are all finite-dimensional.]

17 Inflation, restriction and induction
In this section we define new module structures from known ones for subgroups, overgroups and quo-
tients, and investigate how these relate to each other.
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Remark 17.1
(a) If H § G is a subgroup, then the inclusion H ›Ñ G� � fiÑ � can be extended by K -linearity

to an injective algebra homomorphism � : KH ›Ñ KG�
∞

�PH
λ�� fiÑ

∞
�PH

λ��. Hence KH is
a K -subalgebra of KG.

(b) Similarly, if U E G is a normal subgroup, then the quotient homomorphism G ›Ñ G{U ,
� fiÑ �U can be extended by K -linearity to an algebra homomorphism π : KG ›Ñ K rG{Us.

It is clear that we can always perform changes of the base ring using the above homomorphism in order
to obtain new module structures. This yields two natural operations on modules over group algebras
called inflation and restriction.

Definition 17.2 (Restriction)
Let H § G be a subgroup. If M is a KG-module, then M may be regarded as a KH-module through
a change of the base ring along � : KH ›Ñ KG, which we denote by ResG

HpMq or simply M Ó
G

H
and

call the restriction of M from G to H .

Definition 17.3 (Inflation)
Let U E G be a normal subgroup. If M is a K rG{Us-module, then M may be regarded as a
KG-module through a change of the base ring along π : KG ›Ñ K rG{Us, which we denote by
InfG

G{U
pMq and call the inflation of M from G{U to G.

Remark 17.4

(a) If H § G is a subgroup, M is a KG-module and ρ : G ›Ñ GLpMq is the associated
K -representation, then the K -representation associated to M Ó

G

H
is simply the composite

morphism
H

�
›Ñ G

ρ
›Ñ GLpMq �

(b) Similarly, if U E G is a normal subgroup, M is a K rG{Us-module and ρ : G{U ›Ñ GLpMq

is the associated K -representation, then the K -representation associated to InfG
G{U

pMq is
simply

G
π

›Ñ G{U
ρ

›Ñ GLpMq �

Lemma 17.5

(a) If H § G and M1� M2 are two KG-modules, then pM1 ‘ M2q Ó
G

H
“ M1Ó

G

H
‘ M2Ó

G

H
. If U E G

and M1� M2 are two K rG{Us-modules, then InfG
G{U

pM1 ‘ M2q “ InfG
G{U

pM1q ‘ InfG
G{U

pM2q.

(b) (Transitivity of restriction) If L § H § G and M is a KG-module, then M Ó
G

H
Ó

H

L
“ M Ó

G

L
.

(c) If H § G and M is a KG-module, then pM
˚
q Ó

G

H
– pM Ó

G

H
q

˚. If U E G and M is a K rG{Us-
module, then InfG

G{U
pM

˚
q – pInfG

G{U
Mq

˚.

Proof : (a) Straightforward from the fact that the external composition law on a direct sum is defined
componentwise.
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(b) If �L�H : L ›Ñ H denotes the canonical inclusion of L in H , �H�G : H ›Ñ G the canonical inclusion
of H in G and �L�G : L ›Ñ G the canonical inclusion of L in G, then

�H�G ˝ �L�H “ �L�G �

Thus performing a change of the base ring via �L�G is the same as performing two successive changes
of the base ring via first �H�G and then �L�H . Hence M Ó

G

H
Ó

H

L
“ M Ó

G

L
.

(c) Straightforward.

A third natural operation comes from extending scalars from a subgroup to the initial group.

Definition 17.6 (Induction)
Let H § G be a subgroup and let M be a KH-module. Regarding KG as a pKG� KHq-bimodule,
we define the induction of M from H to G to be the left KG-module

IndG

HpMq :“ KG bKH M

where the KG acts via its left action on itself. We also write M Ò
G

H
instead of IndG

HpMq.

Example 10

(a) If H “ t1u and M “ K , then K Ò
G

t1u“ KG bK K – KG.

(b) Transitivity of induction: clearly L § H § G and M is a KL-module, then M Ò
G

L
“ pM Ò

H

L
qÒ

G

H

by the associativity of the tensor product.

First, we analyse the structure of an induced module in terms of the left cosets of H .

Remark 17.7
Recall that G{H “ t�H | � P Gu denotes the set of left cosets of H in G. Moreover, we write
rG{Hs for a set of representatives of these left cosets. In other words, rG{Hs “ t�1� � � � � �|G:H|u
(where we assume that �1 “ 1) for elements �1� � � � � �|G:H| P G such that ��H ‰ ��H if � ‰ � and
G is the disjoint union of the left cosets of H , so that

G “

ß

�PrG{Hs
�H “ �1H \ � � � \ �|G:H|H �

It follows that
KG “

à

�PrG{Hs
�KH �

where �KH “ t�
∞

�PH
λ�� | λ� P K @ � P Hu. Clearly, �KH – KH as right KH-modules via

�� fiÑ � for each � P H . Therefore

KG –

à

�PrG{Hs
KH “ pKHq

|G:H|

and hence is a free right KH-module with a KH-basis given by the left coset representatives
in rG{Hs.
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In consequence, if M is a given KH-module, then we have

KG bKH M “ p

à

�PrG{Hs
�KHq bKH M “

à

�PrG{Hs
p�KH bKH Mq “

à

�PrG{Hs
p� b Mq �

where we set
� b M :“ t� b � | � P Mu Ñ KG bKH M �

Clearly, each � b M is isomorphic to M as a K -module via the K -isomorphism

� b M ›Ñ M� � b � fiÑ � �

It follows that
rkK pIndG

HpMqq “ |G : H| ¨ rkK pMq �

Next we see that with its left action on KG bKH M , the group G permutes these K -submodules:
for if � P G, then ��� “ ��� for some � P H , and hence

� ¨ p�� b �q “ ��� b � “ ��� b � “ �� b �� �

This action is also clearly transitive since for every 1 § �� � § |G : H| we can write

���
´1
�

p�� b Mq “ �� b M �

Exercise: Check that the stabiliser of �1 b M is H (where �1 “ 1) and deduce that the stabiliser
of �� b M is ��H�

´1
�

.

Proposition 17.8 (Universal property of the induction)
Let H § G, let M be a KH-module and let � : M ›Ñ KG bKH M� � fiÑ 1 b � be the canonical
map (which is in fact a KH-homomorphism). Then, for every KG-module N and for every KH-
homomorphism � : M ›Ñ ResG

HpNq, there exists a unique KG-homomorphism �̃ : KG bKH M ›Ñ N

such that �̃ ˝ � “ �, or in other words such that the following diagram commutes:

M N

IndG

HpMq

�

�

ö
D! �̃

Proof : The universal property of the tensor product yields the existence of a well-defined homomorphism of
abelian groups

�̃ : KG bKH M ›Ñ N

� b � fiÑ � ¨ �p�q .

which is obviously KG-linear. Moreover, for each � P M , we have �̃˝�p�q “ �̃p1b�q “ 1¨�p�q “ �p�q,
hence �̃ ˝ � “ �. Finally the uniqueness follows from the fact for each � P KG and each � P M , we have

�̃p� b �q “ �̃p� ¨ p1 b �qq “ � ¨ �̃p1 b �q “ � ¨ p�̃ ˝ �p�qq “ � ¨ �p�q

hence there is a unique possible definition for �̃.
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Induced modules can be hard to understand from first principles, so we now develop some formalism
that will enable us to compute with them more easily.

To begin with, there is in fact a further operation that relates the modules over a group G and a
subgroup H called coinduction. Given a KH-module M , then the coinduction of M from H to G is the
left KG-module

CoindG

HpMq :“ HomKHpKG� Mq

where the left KG-module structure is defined through the natural right KG-module structure of KG,
i.e. for � P G:

¨ : KG ˆ HomKHpKG� Mq ›Ñ HomKHpKG� Mq

p�� θq fiÑ p � ¨ θ : KG ›Ñ M� � fiÑ p� ¨ θqp�q :“ θp� ¨ �q q

Example 11

If H “ t1u and M “ K , then CoindG

t1upK q – pKGq
˚ (i.e. with the KG-module structure on pKGq

˚

of Definition 15.3).
Exercise: exhibit a KG-isomorphism between the coinduction of K from t1u to G and pKGq

˚.

Now, we see that the operation of coinduction in the context of group algebras is just a disguised
version of the induction functor.

Lemma 17.9 (Induction and coinduction are the same)
If H § G is a subgroup and M is a KH-module, then KGbKH M – HomKHpKG� Mq as KG-modules.
In particular, KG – pKGq

˚ as KG-modules.

Proof : Mutually inverse KG-isomorphisms are defined by:

Φ : KG bKH M ›Ñ HomKHpKG� Mq

� b � fiÑ Φ�b� (for � P G, � P M)

where Φ�b� : KG ›Ñ M is such that for � P G, Φ�b�p�q :“ ��� if �� P H and Φ�b�p�q :“ 0 if �� R H;
and

Ψ : HomKHpKG� Mq ›Ñ KG bKH M

θ fiÑ
∞

�PrG{Hs � b θp�
´1

q �

It follows that in the case in which H “ t1u and M “ K ,

KG – KG bK K – HomK pKG� K q – pKGq
˚

as KG-modules.

Theorem 17.10 (Adjunction / Frobenius reciprocity / Nakayama relations)
Let H § G be a subgroup. Let N be a KG-module and let M be a KH-module. Then, there are
K -isomorphisms:

(a) HomKHpM� HomKGpKG� Nqq – HomKGpKG bKH M� Nq,
or in other words, HomKHpM� N Ó

G

H
q – HomKGpM Ò

G

H
� Nq ;

(b) HomKHpN Ó
G

H
� Mq – HomKGpN� M Ò

G

H
q .
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Proof : (a) Since induction and coinduction coincide, we have HomKGpKG� Nq – KG bKG N – N as KG-
modules. Therefore, HomKGpKG� Nq – N Ó

G

H
as KH-modules, and it suffices to prove the second

isomorphism. In fact, this K -isomorphism is given by the map

Φ : HomKHpM� N Ó
G

H
q ›Ñ HomKGpM Ò

G

H
� Nq

� fiÑ �̃

where �̃ is the KG-homomorphism induced by � by the universal property of the induction. Since
�̃ is the unique KG-homomorphism such that �̃ ˝ � “ �, setting

Ψ : HomKGpM Ò
G

H
� Nq ›Ñ HomKHpM� N Ó

G

H
q

ψ fiÑ ψ ˝ �

provides us with an inverse map for Φ. Finally, it is straightforward to check that both Φ and Ψ
are K -linear.

(b) Exercise: check that the so-called exterior trace map

pTr
G

H
: HomKHpN Ó

G

H
� Mq ›Ñ HomKGpN� M Ò

G

H
q

� fiÑ pTr
G

H
p�q : N ›Ñ M Ò

G

H
� � fiÑ

∞
�PrG{Hs � b �p�

´1
�q

provides us with the required K -isomorphism.

Proposition 17.11
Let H § G be a subgroup. Let N be a KG-module and let M be a KH-module. Then, there are
KG-isomorphisms:

(a) pM bK N Ó
G

H
qÒ

G

H
– M Ò

G

H
bK N; and

(b) HomK pM� N Ó
G

H
qÒ

G

H
– HomK pM Ò

G

H
� Nq.

Proof : (a) It follows from the associativity of the tensor product that

pM bK N Ó
G

H
qÒ

G

H
“ KG bKH pM bK N Ó

G

H
q – pKG bKH Mq bK N “ M Ò

G

H
bK N

(b) We push back the proof until we have introduced the concept of an H-free module. (We will then
prove that if M is a KH-module, then pM

˚
qÒ

G

H
– pM Ò

G

H
q

˚ and (b) will follow directly from (a) and
the KG-isomorphism of Lemma 15.4.)

Exercise 17.12
Let K be a field. Let U� V � W be KG-modules. Prove that there are isomorphisms of KG-modules:

(i) HomK pU bK V � W q – HomK pU� V
˚

bK W q; and

(ii) HomKGpU bK V � W q – HomKGpU� V
˚

bK W q – HomKGpU� HomK pV � W qq.


