
Chapter 3. Representation Theory of Finite Groups

Representation theory of finite groups is originally concerned with the ways of writing a finite group G

as a group of matrices, that is, using group homomorphisms from G to the general linear group GL�pK q

of invertible �ˆ�-matrices with coefficients in a field K for some positive integer �. Thus, we shall first
define representations of groups using this approach. Our aim is then to translate such homomorphisms
G ›Ñ GL�pK q into the language of module theory in order to be able to apply the theory we have
developed so far. In particular, our first aim is to understand what the general theory of semisimple
rings and the Artin-Wedderburn theorem bring to the theory of representations of finite groups.

Notation: throughout this chapter, unless otherwise specified, we let G denote a finite group and K be
a commutative ring. Moreover, in order to simplify some arguments, we assume that all KG-modules
considered are free of finite rank when regarded as K -modules. (This implies, in particular, that they
are finitely generated as KG-modules.)
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9 Linear representations of finite groups

To begin with, we review elementary definitions and examples about representations of finite groups.

28



Skript zur Vorlesung: Modular Representation Theory WS 2022/23 29

Definition 9.1 (K -representation, matrix representation)

(a) A K -representation of G is a group homomorphism ρ : G ›Ñ GLpV q, where V – K
�

(� P Z•0) is a free K -module of finite rank and GLpV q :“ AutK pV q.

(b) A matrix representation of G over K is a group homomorphism X : G ›Ñ GL�pK q (� P Z•0).

In both cases the integer � is called the degree of the representation.

(c) If K is a field, then a K -representation (resp. a matrix representation) is called an ordinary

representation if charpK q - |G|, and it is called a modular representation if charpK q | |G|.

Remark 9.2

Both concepts of a representation and of a matrix representation are closely related. Indeed,
choosing a K -basis B of V , then we have a commutative diagram

G GLpV q

GL�pK q �

ρ

ö
D –

In other words, any K -representation of a group G defined a matrix representation of G (with
respect to the basis B), and conversely.

Example 4

(a) If G is an arbitrary finite group, then

ρ : G ›Ñ GLpK q – K
ˆ

� fiÑ ρp�q :“ IdK Ø 1K

is a K -representation of G, called the trivial representation of G.

(b) If X is a finite G-set, i.e. a finite set endowed with a left action ¨ : G ˆ X ›Ñ X , and V is a
free K -module with basis t�� | � P Xu, then

ρX : G ›Ñ GLpV q

� fiÑ ρX p�q : V ›Ñ V � �� fiÑ ��¨�

is a K -representation of G, called the permutation representation associated with X .

Two particularly interesting examples are the following:

(1) if G “ S� (� • 1) is the symmetric group on � letters and and X “ t1� 2� � � � � �u then
ρX is called natural representation of S� ;

(2) if X “ G and the left action ¨ : G ˆ X ›Ñ X is just the multiplication in G, then
ρX “: ρreg is called the regular representation of G.
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Definition 9.3 (Homomorphism of representations, equivalent representations)

Let ρ1 : G ›Ñ GLpV1q and ρ2 : G ›Ñ GLpV2q be two K -representations of G, where V1� V2 are
two non-zero free K -modules of finite rank.

(a) A K -homomorphism α : V1 ›Ñ V2 such that ρ2p�q ˝ α “ α ˝ ρ1p�q for each � P G is called a
homomorphism of representations (or a G-homomorphism) between ρ1 and ρ2.

V1 V1

V2 V2

ρ1p�q

α ö α

ρ2p�q

(b) If, moreover, α is a K -isomorphism, then it is called an isomorphism of representations (or a
G-isomorphism), and the K -representations ρ1 and ρ2 are called equivalent (or similar, or
isomorphic). In this case we write ρ1 „ ρ2.

Remark 9.4

(a) Equivalent representations have the same degree.

(b) Clearly „ is an equivalence relation.

(c) In consequence, it essentially suffices to study representations up to equivalence (as it es-
sentially suffices to study groups up to isomorphism).

Definition 9.5 (G-invariant subspace, irreducibility)

Let ρ : G ›Ñ GLpV q be a K -representation of G.

(a) A K -submodule W Ñ V is called G-invariant if

ρp�q
`
W

˘
Ñ W @� P G �

(In fact in this case the reverse inclusion holds as well, since for each � P W we can write
� “ ρp��

´1
qp�q “ ρp�q

`
ρp�

´1
qp�q

˘
P ρp�q

`
W

˘
, hence ρp�q

`
W

˘
“ W .)

(b) The representation ρ is called irreducible if it admits exactly two G-invariant K -submodules,
namely 0 and V itself; it is called reducible if there exists a proper non-zero G-invariant
K -submodule 0 § W Ñ V .

Notice that V itself and the zero K -module 0 are always G-invariant.

Definition 9.6 (Subrepresentation)

If ρ : G ›Ñ GLpV q is a K -representation and W Ñ V is a G-invariant K -submodule, then
ρ

W
: G ›Ñ GLpW q

� fiÑ ρ
W

p�q :“ ρp�q|
W

: W ›Ñ W

is called a subrepresentation of ρ. (This is clearly again a K -representation of G.)
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10 The group algebra and its modules

We now want to be able to see K -representations of a group G as modules, and more precisely as
modules over a K -algebra depending on the group G, which is called the group algebra:

Lemma-Definition 10.1 (Group algebra)

The group ring KG is the ring whose elements are the K -linear combinations
∞

�PG
λ�� with

λ� P K @� P G, and addition and multiplication are given by
ÿ

�PG

λ�� `

ÿ

�PG

µ�� “

ÿ

�PG

pλ� ` µ�q� and
` ÿ

�PG

λ��
˘

¨
` ÿ

�PG

µ��
˘

“

ÿ

���PG

pλ�µ�q��

respectively. Thus KG is a K -algebra, which as a K -module is free with basis G. Hence we usually
call KG the group algebra of G over K rather than simply group ring.

Proof : By definition KG is a free K -module with basis G, and the multiplication in G is extended by K -
bilinearity to the given multiplication ¨ : KG ˆ KG ›Ñ KG. It is then straightforward that KG bears both
the structures of a ring and of a K -module. Finally, axiom (A3) of K -algebras follows directly from the
definition of the multiplication and the commutativity of K .

Remark 10.2

Clearly:

¨ 1KG “ 1G ;

¨ the K -rank of KG is |G|;

¨ KG is commutative if and only if G is an abelian group;

¨ if K is a field, or more generally (left) Artinian, then KG is a left Artinian ring, so that by
Hopkins’ Theorem a KG-module is finitely generated if and only if it admits a composition
series.

Also notice that since G is a group, the map KG ›Ñ KG defined by � fiÑ �
´1 for each � P G is an

anti-automorphism. It follows that any left KG-module M may be regarded as a right KG-module
via the right G-action � ¨ � :“ �

´1
¨ �. Thus the sidedness of KG-modules is not usually an issue.

As KG is a K -algebra, we may of course consider modules over KG and we recall that any KG-module
is in particular a K -module. Moreover, we adopt the following convention, which is automatically
satisfied if K is a field.

Convention: in the sequel all KG-modules considered are assumed to be free of finite rank when
regarded as K -modules.
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Proposition 10.3

(a) Any K -representation ρ : G ›Ñ GLpV q of G gives rise to a KG-module structure on V , where
the external composition law is defined by the map

¨ : G ˆ V ›Ñ V

p�� �q fiÑ � ¨ � :“ ρp�qp�q

extended by K -linearity to the whole of KG.

(b) Conversely, every KG-module pV � `� ¨q defines a K -representation

ρV : G ›Ñ GLpV q

� fiÑ ρV p�q : V ›Ñ V � � fiÑ ρV p�q :“ � ¨ �

of the group G.

Proof : (a) Since V is a K -module it is equipped with an internal addition ` such that pV � `q is an abelian
group. It is then straightforward to check that the given external composition law defined above
verifies the KG-module axioms.

(b) A KG-module is in particular a K -module for the scalar multiplication defined for all λ P K and all
� P V by

λ� :“ p λ 1Gloomoon
PKG

q ¨ � �

Moreover, it follows from the KG-module axioms that ρV p�q P GLpV q and also that

ρV p�1�2q “ ρV p�1q ˝ ρV p�2q

for all �1� �2 P G, hence ρV is a group homomorphism.

Example 5

Via Proposition 10.3 the trivial representation (Example 4(a)) corresponds to the so-called trivial

KG-module, that is the commutative ring K itself seen as a KG-module via the G-action

¨ : G ˆ K ›Ñ K

p�� λq fi›Ñ � ¨ λ :“ λ

extended by K -linearity to the whole of KG .

Exercise 10.4

Prove that the regular representation ρ��� of G defined in Exampale 4(b)(2) corresponds to the
regular KG-module KG

˝ via Proposition 10.3.

Convention: In the sequel, when no confusion is to be made, we drop the ˝-notation to denote the
regular KG-module and simply write KG instead of KG

˝.
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Lemma 10.5

Two representations ρ1 : G ›Ñ GLpV1q and ρ2 : G ›Ñ GLpV2q are equivalent if and only if V1 – V2
as KG-modules.

Proof : If ρ1 „ ρ2 and α : V1 ›Ñ V2 is a K -isomorphism such that ρ2p�q “ α ˝ ρ1p�q ˝ α
´1 for each � P G,

then by Proposition 10.3 for every � P V1 and every � P G we have

� ¨ αp�q “ ρ2p�qpαp�qq “ αpρ1p�qp�qq “ αp� ¨ �q �

hence α is a KG-isomorphism. Conversely, if α : V1 ›Ñ V2 is a KG-isomorphism, then certainly it is a
K -homomorphism and for each � P G and by Proposition 10.3 for each � P V2 we have

α ˝ ρ1p�q ˝ α
´1

p�q “ αpρ1p�qpα
´1

p�qq “ αp� ¨ α
´1

p�qq “ � ¨ αpα
´1

p�qq “ � ¨ � “ ρ2p�qp�q �

hence ρ2p�q “ α ˝ ρ1p�q ˝ α
´1 for each � P G.

Remark 10.6 (Dictionary)

More generally, through Proposition 10.3, we may transport terminology and properties from KG-
modules to K -representations and conversely.
This lets us build the following translation dictionary:

K -R�������������� KG-M������

K -representation of G –Ñ KG-module
degree –Ñ K -rank
homomorphism of K -representations –Ñ homomorphism of KG-modules
equivalent K -representations –Ñ isomorphism of KG-modules
subrepresentation –Ñ KG-submodule
direct sum of representations ρ

V1
‘ ρ

V2
–Ñ direct sum of KG-modules V1 ‘ V2

irreducible representation –Ñ simple (“ irreducible) KG-module
the trivial representation –Ñ the trivial KG-module K

the regular representation of G –Ñ the regular KG-module KG

completely reducible K -representation –Ñ semisimple KG-module
(= completely reducible)

every K -representation of G is –Ñ KG is semisimple
completely reducible
� � � � � �
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Finally we introduce an ideal of KG which encodes a lot of information about KG-modules.

Proposition-Definition 10.7 (The augmentation ideal)

The map ε : KG ›Ñ K �
∞

�PG
λ�� fiÑ

∞
�PG

λ� is an algebra homomorphism, called augmentation

homomorphism (or map). Its kernel kerpεq “: IpKGq is an ideal and it is called the augmentation

ideal of KG. The following statements hold:

(a) IpKGq “ t
∞

�PG
λ�� P KG |

∞
�PG

λ� “ 0u “ annKGpK q and if K is a field IpKGq Ö JpKGq ;

(b) KG{IpKGq – K as K -algebras;

(c) IpKGq is a free K -module of rank |G|-1 with K -basis t� ´ 1 | � P Gzt1uu;

Proof : Clearly, the map ε : KG ›Ñ K is the unique extension by K -linearity of the trivial representation
G ›Ñ K

ˆ
Ñ K � � fiÑ 1K to KG, hence is an algebra homomorphism and its kernel is an ideal of the

algebra KG.

(a) IpKGq “ kerpεq “ t
∞

�PG
λ�� P KG |

∞
�PG

λ� “ 0u by definition of ε. The second equality is
obvious by definition of annKGpK q, and the last inclusion follows from the definition of the Jacobson
radical.

(b) follows from the 1st isomorphism theorem.
(c) Let

∞
�PG

λ�� P IpKGq. Then
∞

�PG
λ� “ 0 and hence

ÿ

�PG

λ�� “

ÿ

�PG

λ�� ´ 0 “

ÿ

�PG

λ�� ´

ÿ

�PG

λ� “

ÿ

�PG

λ�p� ´ 1q “

ÿ

�PGzt1u
λ�p� ´ 1q �

which proves that the set t� ´ 1 | � P Gzt1uu generates IpKGq as a K -module. The above
computations also show that

ÿ

�PGzt1u
λ�p� ´ 1q “ 0 ùñ

ÿ

�PG

λ�� “ 0

Hence λ� “ 0 @ � P G, which proves that the set t�´1 | � P Gzt1uu is also K -linearly independent,
hence a K -basis of IpKGq.

Lemma 10.8

If K is a field of positive characteristic � and G is �-group, then IpKGq “ JpKGq.

Exercise 10.9 (Proof of Lemma 10.8. Proceed as indicated.)

(a) Recall that an ideal I of a ring R is called a nil ideal if each element of I is nilpotent. Accept
the following result: if I is a nil left ideal in a left Artinian ring R then I is nilpotent.

(b) Prove that � ´ 1 is a nilpotent element for each � P Gzt1u and deduce that IpKGq is a nil
ideal of KG.

(c) Deduce from (a) and (b) that IpKGq Ñ JpKGq using Exercise 2 on Sheet 2.

(d) Conclude that IpKGq “ JpKGq using Proposition-Definition 10.7.
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11 Semisimplicity and Maschke’s Theorem

Throughout this section, we assume that K is a field.

Our first aim is to prove that the semisimplicity of the group algebra depends on both the characteristic
of the field and the order of the group.

Theorem 11.1 (Maschke)

If charpK q - |G|, then KG is a semisimple K -algebra.

Proof : By Theorem-Definition 6.2, we need to prove that every s.e.s. 0 L M N 0� ψ of KG-
modules splits. However, the field K is clearly semisimple (again by Proposition-Definition 6.2). Hence
any such sequence regarded as a s.e.s. of K -vector spaces and K -linear maps splits. So let σ : N ›Ñ M

be a K -linear section for ψ and set

rσ :“ 1
|G|

∞
�PG

�
´1

σ� : N ›Ñ M

� fiÑ
1

|G|
∞

�PG
�

´1
σp��q.

We may divide by |G|, since charpK q - |G| implies that |G| P K
ˆ. Now, if � P G and � P N , then

rσp��q “
1

|G|

ÿ

�PG

�
´1

σp���q “ �
1

|G|

ÿ

�PG

p��q
´1

σp���q “ �rσp�q

and
ψrσp�q “

1
|G|

ÿ

�PG

ψ
`
�

´1
σp��q

˘ ψ KG-lin
“

1
|G|

ÿ

�PG

�
´1

ψσp��q “
1

|G|

ÿ

�PG

�
´1

�� “ � �

where the last-but-one equality holds because ψσ “ IdN . Thus rσ is a KG-linear section for ψ.

Example 6

If K “ C is the field of complex numbers, then CG is a semisimple C-algebra, since charpCq “ 0.

It turns out that the converse to Maschke’s theorem also holds, and follows from the properties of the
augmentation ideal.

Theorem 11.2 (Converse of Maschke’s Theorem)

If KG is a semisimple K -algebra, then charpK q - |G|.

Proof : Set charpK q “: � and let us assume that � | |G|. In particular � must be a prime number. We have
to prove that then KG is not semisimple.
Claim: If 0 ‰ V Ä KG is a KG-submodule of KG

˝, then V X IpKGq ‰ 0.
Indeed: Let � “

∞
�PG

λ�� P V zt0u. If εp�q “ 0 we are done. Else, set � :“
∞

�PG
�. Then

εp�q “

ÿ

�PG

1 “ |G| “ 0

as charpK q | |G|. Hence � P IpKGq. Now consider the element �� . On the one hand �� P V since V is a
submodule of KG

˝, and on the other hand �� P IpKGqzt0u since

�� “

´ ÿ

�PG

�

¯´ ÿ

�PG

λ��

¯
“

ÿ

���PG

p1K ¨λ�q��“

ÿ

�PG

´ ÿ

�PG

λ�

¯
� “

ÿ

�PG

εp�q� ñ εp��q“

ÿ

�PG

εp�q “ |G|εp�q“0 �
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The Claim implies that IpKGq, which is a KG-submodule by definition, cannot have a complement in KG
˝.

Therefore, by Proposition 6.1, KG
˝ is not semisimple and hence KG is not semisimple by Theorem-

Definition 6.2.

In the case in which the field K is algebraically closed, or a splitting field for KG, the following exercise
offers a second proof of the converse of Maschke’s Theorem exploiting the Artin-Wedderburn Theorem
(Theorem 8.2).

Exercise 11.3 (Proof of the Converse of Maschke’s Theorem for K splitting field for KG.)

Assume K is a field of positive characteristic � with � | |G| and is a splitting field for KG. Set
T :“ x

∞
�PG

�yK .

(a) Prove that we have a series of KG-submodules given by KG
˝

â IpKGq Ö T â 0.

(b) Deduce that KG
˝ has at least two composition factors isomorphic to the trivial module K .

(c) Deduce that KG is not a semisimple K -algebra using Theorem 8.2.

12 Simple modules over splitting fields

Assumption 12.1

Throughout this section, we assume that K is a splitting field for KG, and we
simply say that K is a splitting field for G.

As explained at the end of Chapter 2 this assumption, slightly weaker than
requiring that K “ K , implies that the conclusions of Theorem 8.2, Corollary 8.3
and Corollary 8.4 still hold.

We state here some elementary facts about simple KG-modules, which we obtain as consequences of
the Artin-Wedderburn structure theorem.

Corollary 12.2

If K is a splitting field for G, then there are only finitely many isomorphism classes of simple
KG-modules.

Proof : The claim follows directly from Assumption 12.1 and Corollary 8.3.

Corollary 12.3

If G is an abelian group and K is a splitting field for G, then any simple KG-module is one-
dimensional.

Proof : Since KG is commutative the claim follows directly from Assumption 12.1 and Corollary 8.4.
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Corollary 12.4

Let � be a prime number. If G is a �-group, K is a splitting field for G and charpK q “ �, then the
trivial module is the unique simple KG-module, up to isomorphism.

Proof : By Lemma 10.8 we have JpKGq “ IpKGq. Thus KG{JpKGq – K as K -algebras by Proposition-
Definition 10.7(b). Now, as K is commutative, Z pK q “ K , and it follows from Assumption 12.1 and
Corollary 8.3 that

| IrrpKGq| “ dimK Z pKG{JpKGqq “ dimK K “ 1 �

Remark 12.5

Another standard proof for Corollary 12.4 consists in using a result of Brauer’s stating that | IrrpKGq|

equals the number of conjugacy classes of G of order not divisible by the characteristic of the field K .

Corollary 12.6

If K is a splitting field for G and charpK q - |G|, then |G| “
∞

SPIrrpKGq dimK pSq
2.

Proof : Since charpK q - |G|, the group algebra KG is semisimple by Maschke’s Theorem. Thus it follows
from Assumption 12.1 and Theorem 8.2 that

ÿ

SPIrrpKGq
dimK pSq

2
“ dimK pKGq “ |G| �


