
Chapter 2. The Structure of Semisimple Algebras

In this chapter we study an important class of rings: the class of rings R which are such that any
R-module can be expressed as a direct sum of simple R-submodules. We study the structure of such
rings through a series of results essentially due to Artin and Wedderburn. At the end of the chapter
we will assume that the ring is a finite dimensional algebra over a field and start the study of its
representation theory.

Notation: throughout this chapter, unless otherwise specified, we let R denote a unital and associative
ring, and we recall that IrrpRq denotes a set of representatives for the simple R-modules.
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6 Semisimplicity of rings and modules

To begin with, we prove three equivalent characterisations for the notion of semisimplicity.

Proposition 6.1

If M is an R-module, then the following assertions are equivalent:
(a) M is semisimple, i.e. M “

À
�PI

S� for some family tS�u�PI of simple R-submodules of M;

(b) M “
∞

�PI
S� for some family tS�u�PI of simple R-submodules of M;

(c) every R-submodule M1 Ñ M admits a complement in M , i.e. D an R-submodule M2 Ñ M

such that M “ M1 ‘ M2.

16
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Proof :

(a)ñ(b): is trivial.

(b)ñ(c): Write M “
∞

�PI
S�, where S� is a simple R-submodule of M for each � P I . Let M1 Ñ M be an

R-submodule of M . Then consider the family, partially ordered by inclusion, of all subsets J Ñ I

such that
(1)

∞
�PJ

S� is a direct sum, and
(2) M1 X

∞
�PJ

S� “ 0.
Clearly this family is non-empty since it contains the empty set. Thus Zorn’s Lemma yields the
existence of a maximal element J0. Now, set

M
1 :“ M1 `

ÿ

�PJ0

S� “ M1 ‘

ÿ

�PJ0

S� �

where the second equality holds by (1) and (2). Therefore, it suffices to prove that M “ M
1, i.e.

that S� Ñ M
1 for every � P I . But if � P I is such that S� Ü M

1, the simplicity of S� implies that
S� X M

1
“ 0 and it follows that

M
1
` S� “ M1 ‘

˜
ÿ

�PJ0

S�

¸
‘ S�

in contradiction with the maximality of J0. The claim follows.

(b)ñ(a): follows from the argument above with M1 “ 0.

(c)ñ(b): Let M1 be the sum of all simple R-submodules in M . By (c) there exists a complement M2 Ñ M

to M1, i.e. such that M “ M1 ‘ M2. If M2 “ 0, we are done. If M2 ‰ 0, then M2 must contain a
simple R-submodule (Exercise: prove this fact), say N . But then N Ñ M1 by definition of M1, a
contradiction. Thus M2 “ 0 and so M “ M1.

Example 2

(a) The zero module is completely reducible.

(b) If S1� � � � � S� are simple R-modules, then their direct sum S1 ‘ � � �‘S� is completely reducible
by definition.

(c) The following exercise shows that there exists modules which are not completely reducible.

Exercise: Let K be a field and let A be the K -algebra
 `

�1 �

0 �1

˘
| �1� � P K

(
. Consider the

A-module V :“ K
2, where A acts by left matrix multiplication. Prove that:

(1) tp
�

0 q | � P K u is a simple A-submodule of V ; but
(2) V is not semisimple.

(d) Exercise: Prove that any submodule and any quotient of a completely reducible module is
again completely reducible.
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Theorem-Definition 6.2 (Semisimple ring)

A ring R satisfying the following equivalent conditions is called semisimple.

(a) All short exact sequences of R-modules split.

(b) All R-modules are semisimple.

(c) All finitely generated R-modules are semisimple.

(d) The regular left R-module R
˝ is semisimple, and is a direct sum of a finite number of minimal

left ideals.

Proof : First, (a) and (b) are equivalent as a consequence of Lemma ?? and the characterisation of semisimple
modules given by Proposition 6.1(c). The implication (b) ñ (c) is trivial, and it is also trivial that (c)
implies the first claim of (d), which in turn implies the second claim of (d). Indeed, if R

˝
“

À
�PI

L� for
some family tL�u�PI of minimal left ideals. Then, by definition of a direct sum, there exists a finite number
of indices �1� � � � � �� P I such that 1R “ ��1 ` � � � ` ���

with ���
P L��

for each 1 § � § �. Therefore each
� P R may be expressed in the form

� “ � ¨ 1R “ ���1 ` � � � ` ����

and hence R
˝

“ L�1 ` � � � ` L��
.

Therefore, it remains to prove that (d) ñ (b). So, assume that R satisfies (d) and let M be an arbitrary
non-zero R-module. Then write M “

∞
�PM

R ¨ �. Now, each cyclic submodule R ¨ � of M is isomorphic
to an R-submodule of R

˝, which is semisimple by (d). Thus R ¨ � is semisimple as well by Example 2(d).
Finally, it follows from Proposition 6.1(b) that M is semisimple.

Example 3

Fields are semisimple. Indeed, if V is a finite-dimensional vector space over a field K of dimension �,
then choosing a K -basis t�1� ¨ ¨ ¨ � ��u of V yields V “ K�1 ‘ � � � ‘ K��, where dimK pK��q “ 1,
hence K�� is a simple K -module for each 1 § � § �. Hence, the claim follows from Theorem-
Definition 6.2(c).

Corollary 6.3

Let R be a semisimple ring. Then:

(a) R
˝ has a composition series;

(b) R is both left Artinian and left Noetherian.

Proof :

(a) By Theorem-Definition 6.2(d) the regular module R
˝ admits a direct sum decomposition into a finite

number of minimal left ideals. Removing one ideal at a time, we obtain a composition series for R
˝.

(b) Since R
˝ has a composition series, it satisfies both D.C.C. and A.C.C. on submodules by Corol-

lary 3.4. In other words, R is both left Artinian and left Noetherian.

Next, we show that semisimplicity is detected by the Jacobson radical. This leads us to introduce a
slightly weaker concept: the notion of J-semisimplicity.
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Definition 6.4 (J-semimplicity)

A ring R is said to be J-semisimple if JpRq “ 0.

Exercise 6.5

Let R “ Z. Prove that JpZq “ 0, but not all Z-modules are semisimple. In other words, Z is
J-semisimple but not semisimple.

Proposition 6.6

Any left Artinian ring R is J-semisimple if and only if it is semisimple.

Proof : “ñ”: Assume R ‰ 0 and R is not semisimple. Pick a minimal left ideal I0ER (e.g. a minimal element
of the family of non-zero principal left ideals of R ). Then 0 ‰ I0 ‰ R since I0 seen as an R-module
is simple.
Claim: I0 is a direct summand of R

˝.
Indeed: since

I0 ‰ 0 “ JpRq “

£

ICR �

I maximal
left ideal

I

there exists a maximal left ideal m0 C R which does not contain I0. Thus I0 X m0 “ t0u and so we
must have R

˝
“ I0 ‘ m0, as R{m0 is simple. Hence the Claim.

Notice that then m0 ‰ 0, and pick a minimal left ideal I1 in m0. Then 0 ‰ I1 ‰ m0, else R would
be semisimple. The Claim applied to I1 yields that I1 is a direct summand of R

˝, hence also in m0.
Therefore, there exists a non-zero left ideal m1 such that m0 “ I1 ‘ m1. Iterating this process, we
obtain an infinite descending chain of ideals

m0 â m1 â m2 â ¨ ¨ ¨

contradicting D.C.C. and proving the claim.

“”: Conversely, if R is semisimple, then R
˝

– R{JpRq ‘ JpRq by Theorem-Definition 6.2 and so as
R-modules,

JpRq “ JpRq ¨ pR{JpRq ‘ JpRqq “ JpRq ¨ JpRq

so that by Nakayama’s Lemma JpRq “ 0.

Proposition 6.7

The quotient ring R{JpRq is J-semisimple.

Proof : Since by Exercise 4.2 the rings R and R :“ R{JpRq have the same simple modules (seen as abelian
groups), Proposition-Definition 4.1(a) yields

JpRq “

£

V PIrrpRq
ann

R
pV q “

£

V PIrrpRq
annR pV q ` JpRq “ JpRq{JpRq “ 0 �

7 The Artin-Wedderburn structure theorem

The next step in analysing semisimple rings and modules is to sort simple modules into isomorphism
classes. We aim at proving that each isomorphism type of simple modules actually occurs as a direct
summand of the regular module. The first key result in this direction is the following proposition:
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Proposition 7.1

Let M be a semisimple R-module. Let tM�u�PI be a set of representatives of the isomorphism classes
of simple R-submodules of M and for each � P I set

H� :“
ÿ

V ÑM

V –M�

V �

Then the following statements hold:

(i) M –
À

�PI
H� ;

(ii) every simple R-submodule of H� is isomorphic to M� ;

(iii) HomR pH�� H�1q “ t0u if � ‰ �
1; and

(iv) if M “
À

�PJ
V� is an arbitrary decomposition of M into a direct sum of simple submodules,

then
rH� :“

ÿ

�PJ

V� –M�

V� “

à

�PJ

V� –M�

V� “ H� �

Proof : We shall prove several statements which, taken together, will establish the theorem.

Claim 1: If M “
À

�PJ
V� as in (iv) and W is an arbitrary simple R-submodule of M , then D � P J such

that W – V� .
Indeed: if tπ� : M “

À
�PJ

V� ›Ñ V�u�PJ denote the canonical projections on the �-th summand, then
D � P J such that π�pW q ‰ 0. Hence π� |W : W ›Ñ V� is an R-isomorphism as both W and V� are simple.

Claim 2: If M “
À

�PJ
V� as in (iv), then M “

À
�PI

rH� and for each � P I , every simple R-submodule of
rH� is isomorphic to M�.
Indeed: the 1st statement of the claim is obvious and the 2nd statement follows from Claim 1 applied
to rH�.

Claim 3: If W is an arbitrary simple R-submodule of M , then there is a unique � P I such that W Ñ rH�.
Indeed: it is clear that there is a unique � P I such that W – M�. Now consider � P W zt0u and write
� “

∞
�PJ

�� P
À

�PJ
V� with �� P V� . The proof of Claim 1 shows that if any summand �� ‰ 0, then

π�pW q ‰ 0, and hence W – V� . Therefore �� “ 0 unless V� – M�, and hence � P rH�, so that W Ñ rH�.

Claim 4: HomR p rH��
rH�1 q “ t0u if � ‰ �

1.
Indeed: if 0 ‰ � P HomR p rH��

rH�1 q and � ‰ �
1, then there must exist a simple R-submodule W of rH� such

that �pW q ‰ 0, hence as W is simple, � |W : W ›Ñ �pW q is an R-isomorphism. It follows from Claim 2,
that �pW q is a simple R-submodule of rH�1 isomorphic to M�. This contradicts Claim 2 saying that every
simple R-submodule of rH�1 is isomorphic to M�1 fl M�.

Now, it is clear that rH� Ñ H� by definition. On the other hand it follows from Claim 3, that H� Ñ rH�.
Hence H� “ rH� for each � P I , hence (iv). Then Claim 2 yields (i) and (ii), and Claim 4 yields (iii).

We give a name to the submodules tH�u�PI defined in Propostion 7.1:
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Definition 7.2

If M is a semisimple R-module and S is a simple R-module, then the S-homogeneous component

of M , denoted SpMq, is the sum of all simple R-submodules of M isomorphic to S.

Exercise 7.3

Let R be a semisimple ring. Prove the following statements.

(a) Every non-zero left ideal I of R is generated by an idempotent of R , in other words D � P R

such that �
2

“ � and I “ R�. (Hint: choose a complement I
1 for I , so that R

˝
“ I ‘ I

1 and
write 1 “ � ` �

1 with � P I and �
1

P I
1. Prove that I “ R�.)

(b) If I is a non-zero left ideal of R , then every morphism in HomR pI� R
˝
q is given by right

multiplication with an element of R .

(c) If � P R is an idempotent, then EndR pR�q – p�R�q
op (the opposite ring) as rings via the map

� fiÑ ��p�q�. In particular EndR pR
˝
q – R

op via � fiÑ �p1q.

(d) A left ideal R� generated by an idempotent � of R is minimal (i.e. simple as an R-module) if
and only if �R� is a division ring. (Hint: Use Schur’s Lemma.)

(e) Every simple left R-module is isomorphic to a minimal left ideal in R , i.e. a simple R-
submodule of R

˝.

We recall that:

Definition 7.4 (Centre)

The centre of a ring pR � `� ¨q is Z pRq :“ t� P R | � ¨ � “ � ¨ � @ � P Ru.

Theorem 7.5 (Wedderburn)

If R is a semisimple ring, then the following assertions hold.

(a) If S P IrrpRq, then SpR
˝
q ‰ 0. Furthermore, | IrrpRq| † 8.

(b) We have
R

˝
“

à

SPIrrpRq
SpR

˝
q �

where each homogenous component SpR
˝
q is a two-sided ideal of R and SpR

˝
qT pR

˝
q “ 0 if

S ‰ T P IrrpRq.

(c) Each SpR
˝
q is a simple left Artinian ring, the identity element of which is an idempotent

element of R lying in Z pRq.
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Proof :

(a) By Exercise 7.3(e) every simple left R-module is isomorphic to a minimal left ideal of R , i.e. a
simple submodule of R

˝. Hence if S P IrrpRq, then SpR
˝
q ‰ 0. Now, by Theorem-Definition 6.2,

the regular module admits a decomposition

R
˝

“

à

�PJ

V�

into a direct sum of a finite number of minimal left ideals V� of R , and by Claim 1 in the proof of
Proposition 7.1 any simple submodule of R

˝ is isomorphic to V� for some � P J . Hence | IrrpRq| † 8.
(b) Proposition 7.1(iv) also yields SpR

˝
q “

À
V� –S

V� and Proposition 7.1(i) implies that

R
˝

“

à

SPIrrpRq
SpR

˝
q �

Next notice that each homogeneous component is a left ideal of R , since it is by definition a sum of
left ideals. Now let L be a minimal left ideal contained in SpR

˝
q, and let � P T pR

˝
q for a T P IrrpRq

with S ‰ T . Then L� Ñ T pR
˝
q and because �� : R

˝
›Ñ R

˝
� � fiÑ �� is an R-endomorphism

of R
˝, then either L� “ ��pLq is zero or it is again a minimal left ideal, isomorphic to L. However,

as S ‰ T , we have L� “ 0. Therefore SpR
˝
qT pR

˝
q “ 0, which implies that SpR

˝
q is also a right

ideal, hence two-sided.
(c) Part (b) implies that the homogeneous components are rings. Then, using Exercise 7.3(a), we may

write 1R “
∞

SPIrrpRq �S , where SpR
˝
q “ R�S with �S idempotent. Since SpR

˝
q is a two-sided

ideal, in fact SpR
˝
q “ R�S “ �SR . It follows that �S is an identity element for SpR

˝
q.

To see that �S is in the centre of R , consider an arbitrary element � P R and write � “
∞

T PIrrpRq �T

with �T P T pR
˝
q. Since SpR

˝
qT pR

˝
q “ 0 if S ‰ T P IrrpRq, we have �S�T “ δST . Thus, as �T is

an identity element for the T -homogeneous component, we have

�S� “ �S

ÿ

T PIrrpRq
�T “ �S

ÿ

T PIrrpRq
�T �T “

ÿ

T PIrrpRq
�S�T �T

“ �S�S

“ �S�S

“

ÿ

T PIrrpRq
�T �T �S “ p

ÿ

T PIrrpRq
�T �T q�S “ p

ÿ

T PIrrpRq
�T q�S “ ��S �

Finally, if L ‰ 0 is a two-sided ideal in SpR
˝
q, then L must contain all the minimal left ideals of

R isomorphic to S as a consequence of Exercise 7.3 (check it!). It follows that L “ SpR
˝
q and

therefore SpR
˝
q is a simple ring. It is left Artinian, because it is semissimple as an R-module.

Scholium 7.6

If R is a semisimple ring, then there exists a set of idempotent elements t�S | S P IrrpRqu such that

(i) �S P Z pRq for each S P IrrpRq;

(ii) �S�T “ δST �S for all S� T P IrrpRq;

(iii) 1R “
∞

SPIrrpRq �S ;

(iv) R “
À

SPIrrpRq R�S , where each R�S is a simple ring.

Idempotents satisfying Property (i) are called central idempotents, and idempotents satisfying Prop-
erty (ii) are called orthogonal.



Skript zur Vorlesung: Modular Representation Theory WS 2022/23 23

Remark 7.7

Remember that if R is a semisimple ring, then the regular module R
˝ admits a composition series.

Therefore it follows from the Jordan-Hölder Theorem that

R
˝

“

à

SPIrrpRq
SpR

˝
q –

à

SPIrrpRq

�Sà

�“1
S

for uniquely determined integers �S P Z°0.

Theorem 7.8 (Artin-Wedderburn)

If R is a semisimple ring, then, as a ring,

R –

π

SPIrrpRq
M�S

pDSq �

where DS :“ EndR pSq
op is a division ring.

Before we proceed with the proof of the theorem, first recall that if we have a direct sum decomposition
U “ U1 ‘ ¨ ¨ ¨ ‘ U� (� P Z°0), then EndR pUq is isomorphic to the ring of � ˆ �-matrices in which the
p�� �q entry lies in HomR pU� � U�q. This is because any R-endomorphism φ : U ›Ñ U may be written as
a matrix of components φ “ pφ��q1§���§� where φ�� : U�

����
›Ñ U

φ
›Ñ U

�����
›Ñ U�, and when viewed in this

way R-endomorphisms compose in the manner of matrix multiplication. (Known from the GDM-lecture
if R is a field. The same holds over an arbitrary ring R .)

Proof : By Exercise 7.3(c), we have
EndR pR

˝
q – R

op

as rings. On the other hand, since HomR pSpR
˝
q� T pR

˝
qq “ 0 for S fl T (e.g. by Schur’s Lemma, or by

Proposition 7.1), the above observation yields

EndR pR
˝
q –

π

SPIrrpRq
EndR pSpR

˝
qq

where EndR pSpR
˝
qq – M�S

pEndR pSqq – M�S
pEndR pSq

op
q
op. Therefore, setting DS :“ EndR pSq

op yields
the result. For by Schur’s Lemma EndR pSq is a division ring, hence so is the opposite ring.

8 Semisimple algebras and their simple modules

From now on we leave the theory of modules over arbitrary rings and focus on finite-dimensional
algebras over a field K . Algebras are in particular rings, and since K -algebras and their modules
are in particular K -vector spaces, we may consider their dimensions to obtain further information. In
particular, we immediately see that finite-dimensional K -algebras are necessarily left Artinian rings.
Furthermore, the structure theorems of the previous section tell us that if A is a semisimple algebra
over a field K , then

A
˝

“

à

SPIrrpAq
SpA

˝
q –

à

SPIrrpAq

�Sà

�“1
S

where �S corresponds to the multiplicity of the isomorphism class of the simple module S as a direct
summand of A

˝ in any given decomposition of A
˝ into a finite direct sum of simple submodules. We shall
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see that over an algebraically closed field the number of simple A-modules is detected by the centre
of A and also obtain information about the simple modules of algebras, which are not semisimple.

Exercise 8.1

Let A be an arbitrary K -algebra over a commutative ring K .

(a) Prove that Z pAq is a K -subalgebra of A.

(b) Prove that if K is a field and A ‰ 0, then K ›Ñ Z pAq� λ fiÑ λ1A is an injective K -
homomorphism.

(c) Prove that if A “ M�pK q, then Z pAq “ K I�, i.e. the K -subalgebra of scalar matrices. (Hint:
use the standard basis of M�pK q.)

(d) Assume A is the algebra of 2 ˆ 2 upper-triangular matrices over K . Prove that

Z pAq “
 `

� 0
0 �

˘
| � P K

(
�

We obtain the following Corollary to Wedderburn’s and Artin-Wedderburn’s Theorems:

Theorem 8.2

Let A be a semisimple finite-dimensional algebra over an algebraically closed field K , and let
S P IrrpAq be a simple A-module. Then the following statements hold:

(a) SpA
˝
q – M�S

pK q and dimK pSpA
˝
qq “ �

2
S

;

(b) dimK pSq “ �S ;

(c) dimK pAq “
∞

SPIrrpAq dimK pSq
2 ;

(d) | IrrpAq| “ dimK pZ pAqq.

Proof :

(a) Since K “ K , Schur’s Lemma implies that EndApSq – K . Hence the division ring DS in the
statement of the Artin-Wedderburn Theorem is DS “ EndApSq

op
– K

op
“ K . Hence Artin-

Wedderburn (and its proof) applied to the case R “ SpA
˝
q yields SpA

˝
q – M�S

pK q. Hence
dimK pSpA

˝
qq “ �

2
S
.

(b) Since SpA
˝
q is a direct sum of �S copies of S, (a) yields:

�
2
S

“ �S ¨ dimK pSq ùñ dimK pSq “ �S

(c) follows directly from (a) and (b).
(d) Since by Artin-Wedderburn and (a) we have A –

±
SPIrrpAq M�S

pK q, clearly

Z pAq –

π

SPIrrpAq
Z pM�S

pK qq “

π

SPIrrpAq
K I�S

�

where dimK pK I�S
q “ 1. The claim follows.
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Corollary 8.3

Let A be a finite-dimensional algebra over an algebraically closed field K . Then the number of
simple A-modules is equal to dimK pZ pA{JpAqqq.

Proof : We have observed that A and A{JpAq have the same simple modules (see Exercise 4.2), hence
| IrrpAq| “ | IrrpA{JpAqq|. Moreover, the quotient A{JpAq is J-semisimple by Proposition 6.7, hence
semisimple by Proposition 6.6 because finite-dimensional algebras are left Artinian rings. Therefore
it follows from Theorem 8.2(d) that

| IrrpAq| “ | IrrpA{JpAqq| “ dimK

`
Z pA{JpAqq

˘
�

Corollary 8.4

Let A be a finite-dimensional algebra over an algebraically closed field K . If A is commutative, then
any simple A-module has K -dimension 1.

Proof : First assume that A is semisimple. As A is commutative, A “ Z pAq. Hence parts (d) and (c) of
Theorem 8.2 yield

| IrrpAq| “ dimK pAq “

ÿ

SPIrrpAq
dimK pSq

2
loooomoooon

•1

�

which forces dimK pSq “ 1 for each S P IrrpAq.
Now, if A is not semissimple, then again we use the fact that A and A{JpAq have the same simple modules
(that is seen as abelian groups). Because A{JpAq is semisimple and also commutative, the argument
above tells us that all simple A{JpAq-modules have K -dimension 1. The claim follows.

Finally, we emphasise that in this section the assumption that the field K is algebraically closed is in
general too strong and that it is possible to weaken this hypothesis so that Theorem 8.2, Corollary 8.3
and Corollary 8.4 still hold.

Indeed, if K “ K is algebraically closed, then Part (b) of Schur’s Lemma tells us that EndApSq – K

for any simple A-module S. This is the crux of the proof of Theorem 8.2. The following terminology
describes this situation.

Definition 8.5

Let A be a finite-dimensional K -algebra. Then:

(a) A is called split if EndApSq – K for every simple A-module S; and

(b) an extension field K
1 of K is called a splitting field for A if the K

1-algebra K
1
bK A is split.

Of course if A is split then K itself is a splitting field for A.

Remark 8.6

In fact for a finite-dimensional K -algebra A, the following assertions are equivalent:

(a) A is split;

(b) the product, for S running through IrrpAq, of the structural homomorphisms A ›Ñ EndK pSq
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(mapping � P A to the K -linear map S ›Ñ S� � fiÑ ��) induces an isomorphism of K -algebras

A{JpAq –

π

SPIrrpAq
EndK pSq �

This is a variation of the Artin-Wedderburn Theorem we have seen in the previous section.


