
Chapter 1. Foundations of Representation Theory

In this chapter we review four important module-theoretic theorems, which lie at the foundations of
representation theory of finite groups:

1. Schur’s Lemma: about homomorphisms between simple modules.

2. The Jordan-Hölder Theorem: about "uniqueness" properties of composition series.

3. Nakayama’s Lemma: about an essential property of the Jacobson radical.

4. The Krull-Schmidt Theorem: about direct sum decompositions into indecomposable submodules.

Notation: throughout this chapter, unless otherwise specified, we let R denote an arbitrary unital and
associative ring.
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1 (Ir)Reducibility and (in)decomposability

Submodules and direct sums of modules allow us to introduce the two main notions that will enable us
to break modules in elementary pieces in order to simplify their study: simplicity and indecomposability.
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Definition 1.1 (simple/irreducible module / indecomposable module / semisimple module)

(a) An R-module M is called reducible if it admits an R-submodule U such that 0 à U à M .
An R-module M is called simple, or irreducible, if it is non-zero and not reducible.
We let IrrpRq denote a set of representative of the isomorphism classes of simple R-modules.

(b) An R-module M is called decomposable if M possesses two non-zero proper submodules
M1� M2 such that M “ M1 ‘ M2. An R-module M is called indecomposable if it is non-zero
and not decomposable.

(c) An R-module M is called completely reducible or semisimple if it admits a direct sum
decomposition into simple R-submodules.

Our primary goal in Chapter 1 and Chapter 2 is to investigate each of these three concepts in details.

Remark 1.2

Clearly any simple module is also indecomposable, resp. semisimple. However, the converse does
not hold in general.

Exercise 1.3

Prove that if pR � `� ¨q is a ring, then R
˝ :“ R itself maybe seen as an R-module via left multiplication

in R , i.e. where the external composition law is given by

R ˆ R
˝

›Ñ R
˝
� p�� �q fiÑ � ¨ � �

We call R
˝ the regular R-module. Prove that:

(a) the R-submodules of R
˝ are precisely the left ideals of R ;

(b) I C R is a maximal left ideal of R ô R
˝
{I is a simple R-module, and I C R is a minimal left

ideal of R ô I is simple when regarded as an R-submodule of R
˝.

2 Schur’s Lemma

Schur’s Lemma is a basic result, which lets us understand homomorphisms between simple modules,
and, more importantly, endomorphisms of such modules.

Theorem 2.1 (Schur’s Lemma)

(a) Let V � W be simple R-modules. Then:

(i) EndR pV q is a skew-field, and
(ii) if V fl W , then HomR pV � W q “ 0.

(b) If K is an algebraically closed field, A is a K -algebra, and V is a simple A-module such that
dimK V † 8, then

EndApV q “ tλ IdV | λ P K u – K �



Skript zur Vorlesung: Modular Representation Theory WS 2022/23 9

Proof :

(a) First, we claim that every � P HomR pV � W qzt0u admits an inverse in HomR pW � V q.
Indeed, � ‰ 0 ùñ ker � à V is a proper R-submodule of V and t0u ‰ Im � is a non-zero R-
submodule of W . But then, on the one hand, ker � “ t0u, because V is simple, hence � is injective,
and on the other hand, Im � “ W because W is simple. It follows that � is also surjective, hence
bijective. Therefore, by Example ??(d), � is invertible with inverse �

´1
P HomR pW � V q.

Now, (ii) is straightforward from the above. For (i), first recall that EndR pV q is a ring, which is
obviously non-zero as EndR pV q Q IdV and IdV ‰ 0 because V ‰ 0 since it is simple. Thus, as any
� P EndR pV qzt0u is invertible, EndR pV q is a skew-field.

(b) Let � P EndApV q. By the assumptions on K , � has an eigenvalue λ P K . Let � P V zt0u be an
eigenvector of � for λ. Then p� ´ λ IdV qp�q “ 0. Therefore, � ´ λ IdV is not invertible and

� ´ λ IdV P EndApV q
p�q

ùñ � ´ λ IdV “ 0 ùñ � “ λ IdV �

Hence EndApV q Ñ tλ IdV | λ P K u, but the reverse inclusion also obviously holds, so that

EndApV q “ tλ IdV u – K �

3 Composition series and the Jordan-Hölder Theorem

From Chapter 2 on, we will assume that all modules we work with can be broken into simple modules
in the sense of the following definition.

Definition 3.1 (Composition series / composition factors / composition length)

Let M be an R-module.

(a) A series (or filtration) of M is a finite chain of submodules

0 “ M0 Ñ M1 Ñ � � � Ñ M� “ M p� P Z•0q �

(b) A composition series of M is a series

0 “ M0 Ñ M1 Ñ � � � Ñ M� “ M p� P Z•0q

where M�{M�´1 is simple for each 1 § � § �. The quotient modules M�{M�´1 are called the
composition factors (or the constituents) of M and the integer � is called the composition

length of M .

Notice that, clearly, in a composition series all inclusions are in fact strict because the quotient modules
are required to be simple, hence non-zero.

Next we see that the existence of a composition series implies that the module is finitely generated.
However, the converse does not hold in general. This is explained through the fact that the existence
of a composition series is equivalent to the fact that the module is both Noetherian and Artinian.
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Definition 3.2 (Chain conditions / Artinian and Noetherian rings and modules)

(a) An R-module M is said to satisfy the descending chain condition (D.C.C.) on submodules
(or to be Artinian) if every descending chain M “ M0 Ö M1 Ö � � � Ö M� Ö � � � Ö t0u of
submodules eventually becomes stationary, i.e. D �0 such that M� “ M�0 for every � • �0.

(b) An R-module M is said to satisfy the ascending chain condition (A.C.C.) on submodules (or to
be Noetherian) if every ascending chain 0 “ M0 Ñ M1 Ñ � � � Ñ M� Ñ � � � Ñ M of submodules
eventually becomes stationary, i.e. D �0 such that M� “ M�0 for every � • �0.

(c) The ring R is called left Artinian (resp. left Noetherian) if the regular module R
˝ is Artinian

(resp. Noetherian).

Theorem 3.3 (Jordan-Hölder )

Any series of R-submodules 0 “ M0 Ñ M1 Ñ � � � Ñ M� “ M (� P Z•0) of an R-module M may be
refined to a composition series of M . In addition, if

0 “ M0 à M1 à � � � à M� “ M p� P Z•0q

and
0 “ M

1
0 à M

1
1 à � � � à M

1
� “ M p� P Z•0q

are two composition series of M , then � “ � and there exists a permutation π P S� such that
M

1
�
{M

1
�´1 – Mπp�q{Mπp�q´1 for every 1 § � § �. In particular, the composition length is well-defined.

Proof : See Commutative Algebra.

Corollary 3.4

If M is an R-module, then TFAE:

(a) M has a composition series;

(b) M satisfies D.C.C. and A.C.C. on submodules;

(c) M satisfies D.C.C. on submodules and every submodule of M is finitely generated.

Proof : See Commutative Algebra.

Theorem 3.5 (Hopkins’ Theorem)

If M is a module over a left Artinian ring, then TFAE:

(a) M has a composition series;

(b) M satisfies D.C.C. on submodules;

(c) M satisfies A.C.C. on submodules;

(d) M is finitely generated.

Proof : Without proof.
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4 The Jacobson radical and Nakayama’s Lemma

The Jacobson radical is one of the most important two-sided ideals of a ring. As we will see in the next
sections and Chapter 2, this ideal carries a lot of information about the structure of a ring and that of
its modules.

Proposition-Definition 4.1 (Annihilator / Jacobson radical)

(a) Let M be an R-module. Then annR pMq :“ t� P R | �� “ 0 @ � P Mu is a two-sided ideal
of R , called the annihilator of M .

(b) The Jacobson radical of R is the two-sided ideal

JpRq :“
£

V PIrrpRq
annR pV q “ t� P R | 1 ´ ��� P R

ˆ
@ �� � P Ru �

(c) If V is a simple R-module, then there exists a maximal left ideal I C R such that V – R
˝
{I

(as R-modules) and
JpRq “

£

ICR �

I maximal
left ideal

I �

Proof : See Commutative Algebra.

Exercise 4.2

(a) Prove that any simple R-module may be seen as a simple R{JpRq-module.

(b) Conversely, prove that any simple R{JpRq-module may be seen as a simple R-module.
[Hint: use a change of the base ring via the canonical morphism R ›Ñ R{JpRq.]

(c) Deduce that R and R{JpRq have the same simple modules.

Theorem 4.3 (Nakayama’s Lemma)

If M is a finitely generated R-module and JpRqM “ M , then M “ 0.

Proof : See Commutative Algebra.

Remark 4.4

One often needs to apply Nakayama’s Lemma to a finitely generated quotient module M{U , where
U is an R-submodule of M . In that case the result may be restated as follows:

M “ U ` JpRqM ùñ U “ M
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5 Indecomposability and the Krull-Schmidt Theorem

We now consider the notion of indecomposability in more details. Our first aim is to prove that inde-
composability can be recognised at the endomorphism algebra of a module.

Definition 5.1

A ring R is said to be local :ñ RzR
ˆ is a two-sided ideal of R .

Example 1

(a) Any field K is local because K zK
ˆ

“ t0u by definition.

(b) Exercise: Let � be a prime number and R :“ t
�

�
P Q | � - �u. Prove that RzR

ˆ
“ t

�

�
P R | �|�u

and deduce that R is local.

(c) Exercise: Let K be a field and let R :“
!

A “

¨

˝
�1 �2 ��� ��

0 �1 ��� ��´1
... . . . ...
0 0 ��� �1

˛

‚ P M�pK q

)
. Prove that

RzR
ˆ

“ tA P R | �1 “ 0u and deduce that R is local.

Proposition 5.2

Let R be a ring. Then TFAE:

(a) R is local;

(b) RzR
ˆ

“ JpRq, i.e. JpRq is the unique maximal left ideal of R ;

(c) R{JpRq is a skew-field.

Proof : Set N :“ RzR
ˆ.

(a)ñ(b): Clear: I C R proper left ideal ñ I Ñ N . Hence, by Proposition-Definition 4.1(c),

JpRq “

£

ICR �

I maximal
left ideal

I Ñ N �

Now, by (a) N is an ideal of R , hence N must be a maximal left ideal, even the unique one. It
follows that N “ JpRq.

(b)ñ(c): If JpRq is the unique maximal left ideal of R , then in particular R ‰ 0 and R{JpRq ‰ 0. So let
� P RzJpRq

p�q
“ R

ˆ. Then obviously � ` JpRq P pR{JpRqq
ˆ. It follows that R{JpRq is a skew-field.

(c)ñ(a): Since R{JpRq is a skew-field by (c), R{JpRq ‰ 0, so that R ‰ 0 and there exists � P RzJpRq.
Moreover, again by (c), � ` JpRq P pR{JpRqq

ˆ, so that D � P RzJpRq such that

�� ` JpRq “ 1 ` JpRq P R{JpRq

Therefore, D � P JpRq such that �� “ 1´�, which is invertible in R by Proposition-Definition 4.1(b).
Hence D � P R such that ��� “ p1 ´ �q� “ 1 ñ � P R

ˆ. Therefore RzJpRq “ R
ˆ, and it follows

that RzR
ˆ

“ JpRq which is a two-sided ideal of R .
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Proposition 5.3 (Fitting’s Lemma)

Let M be an R-module which has a composition series and let � P EndR pMq be an endomorphism
of M . Then there exists � P Z°0 such that

(i) �
�
pMq “ �

�`�
pMq for every � • 1;

(ii) kerp��
q “ kerp��`�

q for every � • 1; and

(iii) M “ �
�
pMq ‘ kerp��

q �

Proof : By Corollary 3.4 the module M satisfies both A.C.C. and D.C.C. on submodules. Hence the two chains
of submodules

�pMq Ö �
2
pMq Ö � � � �

kerp�q Ñ kerp�2
q Ñ � � �

eventually become stationary. Therefore we can find an index � satisfying both (i) and (ii).
Exercise: Prove that M “ �

�
pMq ‘ kerp��

q.

Proposition 5.4

Let M be an R-module which has a composition series. Then:

M is indecomposable ñ EndR pMq is a local ring.

Proof : “ñ”: Assume that M is indecomposable. Let � P EndR pMq. Then by Fitting’s Lemma there exists
� P Z°0 such that M “ �

�
pMq ‘ kerp��

q. As M is indecomposable either �
�
pMq “ M and

kerp��
q “ 0 or �

�
pMq “ 0 and kerp��

q “ M .
¨ In the first case � is bijective, hence invertible.
¨ In the second case � is nilpotent.

Therefore, N :“ EndR pMqz EndR pMq
ˆ

“ tnilpotent elements of EndR pMqu.
Claim: N is a two-sided ideal of EndR pMq.
Let � P N and � P Z°0 minimal such that �

�
“ 0. Then

�
�´1

p�ρq “ 0 “ pρ�q�
�´1

@ ρ P EndR pMq �

As �
�´1

‰ 0, �ρ and ρ� cannot be invertible, hence �ρ� ρ� P N .
Next let �� ρ P N . If � ` ρ “: ψ were invertible in EndR pMq, then by the previous argument we
would have ψ

´1
ρ� ψ

´1
� P N , which would be nilpotent. Hence

ψ
´1

� “ ψ
´1

pψ ´ ρq “ IdM ´ψ
´1

ρ

would be invertible.
(Indeed, ψ

´1
ρ nilpotent ñ pIdM ´ψ

´1
ρqpIdM `ψ

´1
ρ ` pψ

´1
ρq

2
` ¨ ¨ ¨ ` pψ

´1
ρq

�´1
q “ IdM , where

� is minimal such that pψ
´1

ρq
�

“ 0.)
This is a contradiction. Therefore � ` ρ P N , which proves that N is an ideal.
Finally, it follows from the Claim and the definition that EndR pMq is local.

“”: Assume M is decomposable and let M1� M2 be proper submodules such that M “ M1 ‘ M2. Then
consider the two projections

π1 : M1 ‘ M2 ›Ñ M1 ‘ M2� p�1� �2q fiÑ p�1� 0q
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onto M1 along M2 and

π2 : M1 ‘ M2 ›Ñ M1 ‘ M2� p�1� �2q fiÑ p0� �2q

onto M2 along M1. Clearly π1� π2 P EndR pMq but π1� π2 R EndR pMq
ˆ since they are not surjective

by construction. Now, as π2 “ IdM ´π1 is not invertible it follows from the characterisation of the
Jacobson radical of Proposition-Definition 4.1(b) that π1 R JpEndR pMqq. Therefore

EndR pMqz EndR pMq
ˆ

‰ J pEndR pMqq

and it follows from Proposition 5.2 that EndR pMq is not a local ring.

Next, we want to be able to decompose R-modules into direct sums of indecomposable submodules. The
Krull-Schmidt Theorem will then provide us with certain uniqueness properties of such decompositions.

Proposition 5.5

Let M be an R-module. If M satisfies either A.C.C. or D.C.C., then M admits a decomposition into
a direct sum of finitely many indecomposable R-submodules.

Proof : Let us assume that M is not expressible as a finite direct sum of indecomposable submodules. Then
in particular M is decomposable, so that we may write M “ M1 ‘ W1 as a direct sum of two proper
submodules. W.l.o.g. we may assume that the statement is also false for W1. Then we also have a
decomposition W1 “ M2 ‘ W2, where M2 and W2 are proper sumbodules of W1 with the statement being
false for W2. Iterating this argument yields the following infinite chains of submodules:

W1 â W2 â W3 â ¨ ¨ ¨ �

M1 à M1 ‘ M2 à M1 ‘ M2 ‘ M3 à ¨ ¨ ¨ �

The first chain contradicts D.C.C. and the second chain contradicts A.C.C.. The claim follows.

Theorem 5.6 (Krull–Schmidt)

Let M be an R-module which has a composition series. If

M “ M1 ‘ ¨ ¨ ¨ ‘ M� “ M
1
1 ‘ ¨ ¨ ¨ ‘ M

1
�1 p�� �

1
P Z°0q

are two decomposition of M into direct sums of finitely many indecomposable R-submodules, then
� “ �

1, and there exists a permutation π P S� such that M� – M
1
πp�q for each 1 § � § � and

M “ M
1
πp1q ‘ ¨ ¨ ¨ ‘ M

1
πp�q ‘

�à

�“�`1
M� for every 1 § � § ��

Proof : For each 1 § � § � let

π� : M “ M1 ‘ ¨ ¨ ¨ ‘ M� Ñ M�� �1 ` � � � ` �� fiÑ ��

be the projection on the �-th factor of first decomposition, and for each 1 § � § �
1 let

ψ� : M “ M
1
1 ‘ ¨ ¨ ¨ ‘ M

1
�1 Ñ M

1
�
� �

1
1 ` � � � ` �

1
�1 fiÑ �

1
�

be the projection on the �-th factor of second decomposition.
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Claim: if ψ P EndR pMq is such that π1 ˝ ψ|
M1

: M1 Ñ M1 is an isomorphism, then

M “ ψpM1q ‘ M2 ‘ ¨ ¨ ¨ ‘ M� and ψpM1q – M1 �

Indeed : By the assumption of the claim, both ψ|
M1

: M1 Ñ ψpM1q and π1|ψpM1q : ψpM1q Ñ M1 must be
isomorphisms. Therefore ψpM1q X kerpπ1q “ 0, and for every � P M there exists �

1
1 P ψpM1q such that

π1p�q “ π1p�
1
1q, hence � ´ �

1
1 P kerpπ1q. It follows that

M “ ψpM1q ` kerpπ1q “ ψpM1q ‘ kerpπ1q “ ψpM1q ‘ M2 ‘ ¨ ¨ ¨ ‘ M� �

Hence the Claim holds.
Now, we have IdM “

∞
�

1
�“1 ψ� , and so IdM1 “

∞
�

1
�“1 π1 ˝ ψ� |M1

P EndR pM1q. But as M has a composition
series, so has M1, and therefore EndR pM1q is local by Proposition 5.4. Thus if all the π1 ˝ ψ� |M1

P

EndR pM1q are not invertible, they are all nilpotent and then so is IdM1 , which is in turn not invertible.
This is not possible, hence it follows that there exists an index � such that

π1 ˝ ψ� |M1 : M1 Ñ M1

is an isomorphism and the Claim implies that M “ ψ�pM1q ‘ M2 ‘ ¨ ¨ ¨ ‘ M� and ψ�pM1q – M1.
We then set πp1q :“ � . By definition ψ�pM1q Ñ M

1
�

as M
1
�

is indecomposbale, so that

ψ�pM1q – M
1
�

“ M
1
πp1q �

Finally, an induction argument (Exercise!) yields:

M “ M
1
πp1q ‘ ¨ ¨ ¨ ‘ M

1
πp�q ‘

�à

�“�`1
M� �

mit M
1
πp�q – M� (1 § � § �). In particular, the case � “ � implies the equality � “ �

1.


