Chapter 8. Indecomposable Modules

After simple and projective modules, the goal of this chapter is to understand indecomposable modules in
general. Apart for exceptions, the group algebra is of wild representation type, which, roughly speaking,
means that it is not possible to classify the indecomposable modules over such algebras. However,
representation theorists have developed tools which enable us to organise indecomposable modules
in packages parametrised by parameters that are useful enough to understand essential properties of
these modules. In this respect, first we will generalise the idea of a projective module seen in Chapter 7
by defining what is called relative projectivity. This will lead us to introduce the concepts of vertices
and sources of indecomposable modules, which are two typical examples of parameters bringing us
useful information about indecomposable modules in general.

Notation: throughout this chapter, unless otherwise specified, we let G denote a finite group. We let
(F,O, k) be a p-modular system and K € {F,O, k}. All KG-modules considered are assumed to be
free of finite rank as K-modules.
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27 Relative projectivity

Relative projectivity is a refinement of the idea of projectivity seen in Chapter 7, exploiting induction
and restriction from subgroups.
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Definition 27.1
Let H < G.

(@) A KG-module M is called H-free if there exists a KH-module V such that M x~ VTE,.

(b) A KG-module M is called relatively H-projective, or simply H-projective, if it is isomorphic to
a direct summand of an H-free module, i.e. if there exists a KH-module V such that M | V1§

Remark 27.2

It is easy to see that H-freeness is a generalisation of freeness and relative projectivity is a
generalisation of projectivity.

reeness is the same as -freeness: indeed, as ~ y Example 10, clearly
1 F h 1}-f deed KG KT{G”bE le 10, clearl
(KG)" = (K”)Tﬁ}-

(2) Projectivity is the same as {1}-projectivity: a KG-module is projective < it is a direct sum-
mand of a free KG-module < it is a direct summand of a {1}-free KG-module <> it is relatively
{1}-projective.

To begin with, we would like to characterise relative projectivity in a similar way we characterised pro-
jectivity in Proposition-Definition B.5. To reach this aim, we first take a closer look at the adjunction
between induction and restriction, we have seen in Theorem 17.10.

Notation 27.3
Let H < G.

(1) Let ¢ : Uy —> U, be a KH-homomorphism. Then we denote by 915 the induced KG-
homomorhpism

P16 :=1dkc® ¢ : Ui 1§ = KG @k Uy — Ur 15 = KG @k Us
XQu—x®e(u).

(2) Let U be a KH-module and V be a KG-module. The K-isomorphisms
® =y Homeg (U1, V) —> Homgp (U, V| §)

and
Wim Wy Homen(U, V 1G) =5 Homgo (U1, V)

from Theorem 17.10 tell us that the induction and restriction functors Ind% and Res$ form a
pair of bi-adjoint functors. The first isomorphism translates the fact that Ind¥ is left adjoint
to Res and the second isomorphism translates the fact that Ind¥ is right adjoint to Res{ .

Explained in more details, there may of course be many such isomorphisms, but there is a
choice which is called natural in U and V. Spelled out, this means that whenever a morphism
y € Homg(Uq, U>) is given, the diagram
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[0
Homkg (Us 16, V) —= Homgu(Ur, V 1G)

5] G
Homkg (U216, V) —=— Homgy(Ua, V |§)

Py, v

commutes and whenever a € Homgg(V4, V2) is given, the diagram

LPU,V
Homiy(U, V4 1) —— Homka (U1, V1)

| Je

Homgx(U, Vo f)) ﬁ Homka(U 1§, V2)
V2
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commutes. (For the upper and lower % notation, see again Proposition D.3.) For the case
Indﬁ is right adjoint to Resf, similar diagrams must commute. (Exercise: write down these

diagrams!)

In order to understand relative H-projectivity, we consider the unit and the counit of the

adjunction saying that Indﬁ is left adjoint to Resﬁ, i.e. the KH-homomorphism

pU—Uthli= @ geu=1eUe @ goU
ge[G/H] ge[G/H],g#1
u—1Q®u

(i.e. the natural inclusion of U into the summand 1 ® U) and the KG-homomorphism

e:Vigth= @ ga(Vlh) —V
ge[G/H]

gRvV—gv.

For any u € U, we have o p(u) = e(1®u) = u, so € oy = Idy and thus we deduce that:

- u is a KH-section for €;
- p is injective; and
- € is surjective.

This yields the mutually inverse natural K-isomorphisms
® = dyy : Homgg(U1TE, V) — Homiyy (U, V 19), o — Yo,

W =Wy Homgy(U, V15 — Homkg(U1E, V), B— g0 BTG .
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Proposition 27.4 (Characterisation of relative projectivity)

Proof:

Let H < G. Let U be a KG-module. Then the following are equivalent.

(@) The KG-module U is relatively H-projective.
(b) If ¢ : U — W is a KG-homomorphism, ¢ : V — W is a sur-

jective KG-homomorphism and there exists a KH-homomorphism . . u
a -
ay : U Lﬁ—» % l,f, such that ¢ o ay = ¢ on U l,g, then there GO o
exists a KG-homomorphism ag : U — V such that ¢ o ag = ¢ so v < . W
that the diagram on the right commutes. ¢
(c) Whenever ¢ : V — U is a surjective KG-homomorphism such that the restriction

@ Vlf,—> Ulf, splits as KH-homomorphism, then ¢ splits as a KG-homomorhpism.

(d) The surjective KG-homomorphism

Ulith= KG®kn U — U

XQUu+— xu

is split.

(e) The KG-module U is a direct summand of UlﬁTg.

(f) There exists a KG-module N such that U | KTﬁ ®kN.

(a)=(b): First we consider the case in which U = T TE, is an induced module. Suppose that we have

KG-homomorphisms ¢ : T 1% — W and ¢ : V — W as shown in the diagram shown on the left
below. Suppose, moreover, that there exists a KH-homomorhpism ay : T 141%— V | such that
¢ = @ o ay, that is, the diagram on the right below commutes:

716 Tr6LG
Jay e
[} - [}
J/ k// O J/
V— W VI —— WG

letp: T — T15]% and e: V |G S— V be the unit and the counit of the adjunction of Res{; and
Ind$ as defined in Notation 27.3, so p is an injective KH-homomorphism and ¢ is a surjective KG-
homomorphism. Then, precomposing with p, we obtain that the following triangle of KH-modules

and KH-homomorphisms commutes:
T

V10G — WL

By the naturality of ® and W from Notation 27.3, since ¢ : V — W is a KG-homomorphism, we
have the following commutative diagram:
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G Yry G
HomKH(T, VlH) —_— H0m/<0<TTH, V)

T,
>~

“| [

Hom (T, Wf;) = Homka(T 1, W)
W

In other words,

W(po(anon)=go(W(ayop).
By the commutativity of the previous triangle, the left hand side of this equation is equal to
W(ou)=W(®(Y)) = ¢ since ¥ and ® are inverse to one another. Thus

Y=poeo((ayomp)
and so the triangle of KG-homomorphisms
Tt
eo((aromt)
Gl
®

Vi——s W

commutes, proving the implication for U = T 1§ an induced module.

Now let U be any direct summand of TT,E. Let U & TTE,L U denote the canonical inclusion and
projection. Suppose that there is a KH-homomorphism oy, : U |&—— V|G such that the diagram

Ulg

Jay
oG s
VI —» WG

commutes, i.e. o ay = ¢y on U|%. Then we consider the following diagrams:
Tth

TT,(_;, TTﬁlﬁ V ldl
on oI
Joor TG e <
VIGE — s W
V — W VI —— Wip ’

The middle diagram of KH-homomorphisms commutes by definition of ay, and hence by the first
part there is a KG-homomorphism ag : T 14— V such that ¢ o ag = o 7, so the third diagram
of KG-homomorhpisms also commutes.

Now poagot=omor=4, so the triangle

U

(XCOI
ol L

VT»W

commutes, as required.

: Let ¢ : V — U be a surjective KG-homomorphism which is split as a KH-homomorphism, and let

a; be a KH-section for ¢. Thus, we have the following commutative diagram of KH-modules:
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ulg

25 e

V1§ — ULG

Then assuming (b) is true, there exists a KG-homomorphism a¢ : U — V such that ¢ o ag = Idy.
In particular, a¢ is a KG-section for ¢.

(c)=(d): Since p: U — U [415 is a KH-section for € : U |51%— U (see Notation 27.3), applying
condition (c) yields that € splits as a KG-homomorhpism, and hence (d) holds.

(d)=(e): immediate.

(e)=(f): Recall that by Proposition 17.11 we have K15 @k N =~ (K ®x N 1%) 149>~ N |&1G. Thus, setting
N := U yields the claim.

(f)=(a): straightforward from the fact that K15 @xN =~ N |55 seen above. m

Exercise 27.5
Let H < J < G. Let U be a KG-module and let V be a K/-module. Prove the following statements.

(a) If U is H-projective then U is J-projective.
(b) If U is a direct summand of VTJC and V is H-projective, then U is H-projective.
c) For any g € G, U is H-projective if and only i is 9H-projective.

F y g € G, U is H-projective if and only if 9U is I9H-projecti

(d) Using part (f) of Proposition 27.4, prove that if U is H-projective and W is any KG-module,
then U®k W is H-projective.

Projectivity relative to a subgroup can be generalised as follows to projectivity relative to a KG-module:

Remark 27.6 (Projectivity relative to KG-modules)

(@) Let V be a KG-module. A KG-module M is termed projective relative to the module V or
relatively V -projective, or simply V-projective if there exists a KG-module N such that M is
isomorphic to a direct summand of V ®x N, t.e. M| V®k N.

We let Proj(V) denote the class of all V-projective KG-modules.

(b) Proposition 27.4(f) shows that projectivity relative to a subgroup H < G is in fact projectivity
relative to the KG-module V := KTE,.

Note that the concept of projectivity relative to a subgroup is proper to the group algebra, but the
concept of projectivity relative to a module is not and makes sense in general over algebras/rings.

The following exercise provides us with some elementary properties of projectivity relative to a module,
which also hold for projectivity relative to a subgroup, by part (b) of the remark.
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Exercise 27.7

Assu

(a)

Hint

me K is a field of characteristc p > 0 and let A, B, C, U, V be KG-modules. Prove that:
Any direct summand of a V-projective KG-module is V-projective;

If U e Proj(V), then Proj(U) < Proj(V);

If ptdimg (V) then any KG-module is V-projective;

Proj(V) = Proj(V*);

Proj(U@® V) = Proj(U) @ Proj(V);

Proj(U) n Proj(V) = Proj(U ®« V);

Proj(@j_; V) = Proj(V) = Proj(®j_; V) Ym,n e Z-o;

C =~ A® B is V-projective if and only if both A and B are V-projective;

Proj(V) = Proj(V* ®k V).
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: you may want to use Lemma 13.8 and Exercise 4(c) on Sheet 3. Proceed in the given order.

After this small parenthesis on projectivity relative to modules, we come back to projectivity relative
to subgroups. We investigate further what information this concept brings to the understanding of

indecom

posable KG-modules in general.

Next we see that any indecomposable KG-module can be seen as a relatively projective module with
respect to some subgroup of G.

Theorem 27.8

(a)

Proof:

Let H < G.

If |G : H| is invertible in K, then every KG-module is H-projective.

then every KG-module is H-projective.

(@) Let V be a KG-module. To prove that V is H-projective, we prove that V satisfies The-
orem 27.4(c). So let ¢ : U — V be a surjective KG-homomorphism which splits as a KH-
homomorphism. We need to prove that ¢ splits as a KG-homomorphism.

So let 0: V — U be a KH-linear section for ¢ and set

c: V. — U
v = |c1:H\de[c/H]9_10(9V)-

We may divide by |G : H| since |G : H| € K* and clearly ¢ is well-defined. Now, if ¢’ € G and
v eV, then

= e, 5, 9769 9T 3, (991009 =970

ge[G/H ge[G/H]

(b) In particular, if K is a field of characteristic p > 0 and H contains a Sylow p-subgroup of G,
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and

~oy ] 1 pKG-lin. 1 1 1 1
¢0(V)—7|C:H|QEZC<P(9 a(gv)) "= |G:H|gezcg ¢0(QV)—7|G:H|96209 gv=v

where the last-but-one equality holds because ¢o = Idy. Thus ¢ is a KG-linear section for ¢.
(b) follows immediately from (a). Indeed, if P € Syl,(G) and H 2 P, then p{ |G : H|, so |G: H[e K*. B

Considering the case H = {1} shows that the previous Theorem is in some sense a generalisation of
Maschke’s Theorem (Theorem 11.1).

&emark 27.9

Assume that K is a field of characteristic p > 0 and H = {1} is the trivial subgroup. If H contains
a Sylow p-subgroup of G then the Sylow p-subgroups of G are trivial, so p { |G|. The theorem
then says that all KG-modules are {1}-projective and hence projective.

We know this already, however! If p 1 |G| then KG is semisimple by Maschke’s Theorem (Theo-
rem 11.1), and so all KG-modules are projective by Example 13(d).

Corollary 27.10

Let H < G and suppose that |G : H| is invertible in K. Then a KG-module U is projective if and
only if Ulf, is projective.

Again, this holds in particular if K is a field of characteristic p = 0 and H contains a Sylow p-subgroup
of G.

Proof: The necessary condition is given by Proposition 23.1(b). To prove the sufficient condition, suppose
that Ulﬁ is projective. Then, on the one hand,

US| (KH)" for some ne Z.g.
On the other hand, U is H-projective by Theorem 27.8, and it follows from Proposition 27.4(e) that
Ul ULt -

Hence
U UL | (KH)" 15 = (KG)",

so U is projective. |



