Representation Theory — Exercise Sheet 6RPTU Kaiserslautern-LandauJun.-Prof. Dr. Caroline LassueurFB MathematikMarie RothUltion of February 2023, 2 p.m.Due date: Tuesday, 7th of February 2023, 2 p.m.WS 2022/23

Throughout, *G* denotes a finite group, *p* is a prime number and (F, O, k) is a splitting *p*-modular system for *G* and its subgroups. Furthermore, all modules considered are assumed to be *left* modules and finitely generated.

Exercise 1.

Let $\sigma : G \longrightarrow H$ be an isomorphism of groups. If ψ is a class function defined on *G* (resp. on $G_{p'}$), we define

$$\psi^{\sigma}(x) := \psi(x^{\sigma^{-1}}) \qquad \forall x \in H \text{ (resp. } \forall x \in H_{p'})$$

Prove that ψ is a Brauer character of *G* if and only if ψ^{σ} is a Brauer character of *H*. Prove that moreover $d_{\chi\varphi} = d_{\chi^{\sigma}\varphi^{\sigma}}$ for every $\chi \in Irr(G)$ and every $\varphi \in IBr(G)$.

Exercise 2.

Let *U* be a *kG*-module and let *P* be a PIM of *kG*. Prove that

$$\dim_k \operatorname{Hom}_{kG}(P, U) = \frac{1}{|G|} \sum_{g \in G_{p'}} \varphi_P(g^{-1}) \varphi_U(g) \,.$$

Exercise 3.

Let $G := \mathfrak{A}_5$ be the alternating group on 5 letters. Calculate the Brauer character table, the Cartan matrix and the decomposition matrix of *G* for p = 3.

[Hints. (1.) Use the ordinary character table of \mathfrak{A}_5 and reduction modulo *p*. (2.) Use the fact that a simple group does not have any irreducible Brauer character of degree 2.]

Exercise 4.

Let *A* be a ring and let $A = A_1 \oplus \cdots \oplus A_r$ ($r \in \mathbb{Z}_{\geq 1}$) be the block decomposition of *A* and let *M* be an arbitrary *A*-module. Prove that *M* admits a unique direct sum decomposition $M = M_1 \oplus \cdots \oplus M_r$ where for each $1 \leq i \leq r$ the summand M_i belongs to the block A_i of *A*. Deduce that every indecomposable *A*-module lies in a uniquely determined block of *A*.

Exercise 5.

Let $B \in Bl_p(OG)$. Prove that an *OG*-module *M* belongs to *B* if and only if *M*/pM belongs to the image $\overline{B} \in Bl_p(kG)$ of *B*.

Exercise 6.

Prove Proposition 40.3.

[Hints for (a): Let *E* be a defect group of $B := b^G$. Then *B* is a direct summand of $V\Delta(E)G \times G$ for some $\Delta(E)$ -module *V*. Consider $V\Delta(E)G \times G \downarrow_{H \times H}^{G \times G}$.

Hints for (b): Part (b) essentially follows from the definitions.

Hints for (c): Justify that it is enough to prove that *b* occurs precisely once in a decomposition of $kG \downarrow_{H \times H}^{G \times G}$ into indecomposable modules. Use the remark before the proposition.]

Exercise 7.

Verify that the Brauer correspondence is a particular case of the Green correspondence.