

Throughout, *G* denotes a finite group, and for simplicity, *K* is a field. All *KG*-modules considered are assumed to be finitely generated.

EXERCISE 1.

Prove that $\operatorname{Coind}_{\{1\}}^G(K) \cong (KG)^*$ as $KG\text{-modules}$ by defining an explicit $KG\text{-isomorphism.}$

Exercise 2. Let *U*, *V*, *W* be *KG*-modules. Prove that there are isomorphisms of *KG*-modules:

- (i) $\text{Hom}_K(U \otimes_K V, W) \cong \text{Hom}_K(U, V^* \otimes_K W)$; and
- (iii) $Hom_{KG}(U \otimes_K V, W) \cong Hom_{KG}(U, V^* \otimes_K W) \cong Hom_{KG}(U, Hom_K(V, W)).$

EXERCISE 3.

(a) Let $H, L \le G$. Prove that the set of (H, L) -double cosets is in bijection with the set of orbits $H\setminus (G/L)$, and also with the set of orbits $(H\setminus G)/L$ under the mappings

$$
HgL \mapsto H(gl) \in H \backslash (G/L)
$$

$$
HgL \mapsto (Hg)L \in (H \backslash G)/L.
$$

This justifies the notation $H\ G/L$ for the set of (H, L) -double cosets.

(b) Let $G = S_3$. Consider $H = L := S_2 = \{Id, (1\ 2)\}\$ as a subgroup of S_3 . Prove that

$$
[S_2 \backslash S_3 / S_2] = \{ \text{Id}, (1 \ 2 \ 3) \}
$$

while

$$
S_2 \setminus S_3 / S_2 = \{ \{ \text{Id}, (1\ 2) \}, \{ (1\ 2\ 3), (1\ 3\ 2), (1\ 3), (2\ 3) \} \}.
$$

EXERCISE 4.

If $H \leq G$ and P is a projective KH-module, then $P \uparrow^G_H$ *H* is a projective *KG*-module.

Exercise 5.

Let $H, L \le G$, let M be a KL -module and let N be a KH -module. Use the Mackey formula to prove that:

- (a) $M \uparrow^G_L$ *L* ⊗*KN*↑ *G* $\bigoplus_{H \in \mathcal{H}}^G \mathcal{L}_{\mathcal{B}} = \bigoplus_{g \in [H \setminus G/L]} (\mathcal{B} M \downarrow_{H \cap \mathcal{K}}^{\mathcal{B}} \mathcal{B}_{K} N \downarrow_{H \cap \mathcal{K}}^H) \uparrow_{H \cap \mathcal{K}}^G;$
- (b) $\text{Hom}_K(M \uparrow^G_L)$ *L* , *N*↑ *G* $\bigoplus_{H \in \mathcal{H}} G$ $\bigoplus_{g \in [H \setminus G / L]} (\text{Hom}_K(\mathcal{M} \downarrow_{H \cap \mathcal{L}}^{\mathcal{K}} N \downarrow_{H \cap \mathcal{K}}^H)) \uparrow_{H \cap \mathcal{K}}^G$.

Exercise 6.

Let *M* be a *KG*-module.

- (a) Prove that the following *KG*-submodules of *M* are equal:
	- (1) soc(*M*);
	- (2) the largest semisimple *KG*-submodule of *M*;
	- (3) ${m \in M \mid J(KG) \cdot m = 0}.$

[Hint: In words, $\{m \in M \mid J(KG) \cdot m = 0\}$ is the largest submodule of *M* annihilated by $J(KG)$.]

- (b) Prove that $rad^{n}(M) = J(KG)^{n} \cdot M$ and $soc^{n}(M) = \{m \in M \mid J(KG)^{n} \cdot m = 0\}$ for every $n \in \mathbb{Z}_{\geq 2}$.
- (c) Check that we have chains of *KG*-submodules of *M* given by: \cdots \subseteq rad³(M) \subseteq rad (M) \subseteq M and 0 \subseteq soc(\overline{M}) \subseteq soc³(M) \subseteq \cdots

Exercise 7.

Let *M* and *N* be *KG*-modules. Prove the following assertions.

(a) For every $n \in \mathbb{Z}_{\geq 1}$, we have

 $\operatorname{rad}^n(M \oplus N) \cong \operatorname{rad}^n(M) \oplus \operatorname{rad}^n$ (*N*) and $\operatorname{soc}^n(M \oplus N) \cong \operatorname{soc}^n(M) \oplus \operatorname{soc}^n(N)$.

(b) The radical series of *M* is the fastest descending series of *KG*-submodules of *M* with semisimple quotients, and the socle series of *M* is the fastest ascending series of *M* with semisimple quotients. The two series terminate, and if *r* and *n* are the least integers for which $rad^{r}(M) = 0$ and $soc^{n}(U) = M$ then $r = n$.

EXERCISE 8.

Let *S* be a simple *KG*-module and let P_S denote the corresponding PIM (i.e. P_S / rad(P_S) \cong *S*). Let *M* be an arbitrary *KG*-module. Prove the following assertions.

(a) If *T* is a simple *KG*-module then

$$
\dim_K \text{Hom}_{KG}(P_S, T) = \begin{cases} \dim_K \text{End}_{KG}(S) & \text{if } S \cong T, \\ 0 & \text{otherwise.} \end{cases}
$$

(b) The multiplicity of *S* as a composition factor of *M* is

 $\dim_K \text{Hom}_{KG}(P_S, M) / \dim_K \text{End}_{KG}(S)$.