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Throughout, all rings are assumed to be associative rings with a one, modules are assumed
to be left modules and finitely generated.

Exercise 1.
Let G := C2 × C2 be the Klein-four group and let K = K be an algebraically closed field of
characteristic 2.

(i) Prove that KG � K[X,Y]/(X2,Y2) as K-algebras.
(Note: K[X,Y] stands for the commutative polynomial K-algebra in the variables X and Y, i.e. XY = YX
in K[X,Y].)

(ii) Compute J
(
K[X,Y]/(X2,Y2)

)
,
∣∣∣Irr

(
K[X,Y]/(X2,Y2)

)∣∣∣, and describe all simple KG-modules.
[Hint: Do not forget that you can consider K-dimensions!]

Exercise 2.
Let K be a field and let A , 0 be a finite-dimensional K-algebra. The aim of this exercise is
to prove that J(A) is the unique maximal nilpotent left ideal of A and J(Z(A)) = J(A)∩Z(A).
Proceed as follows:

(a) Prove that there exists n ∈ Z>0 such that J(A)n = J(A)n+1.
[Hint: consider dimensions.]

(b) Apply Nakayama’s Lemma to deduce that J(A)n = 0 and conclude that J(A) is nilpo-
tent.

(c) Prove that if I is an arbitrary nilpotent left ideal of A, then I ⊆ J(A).
[Hint: here you should see J(A) as the intersection of the annihilators of the simple A-modules.]

(d) Use the nilpotency of the Jacobson radical to prove that J(Z(A)) = J(A) ∩ Z(A) .

Exercise 3.
The aim of this exercise is to prove that if K is a field of positive characteristic p and G is a
p-group, then I(KG) = J(KG). Proceed as indicated below.

(a) Recall that an ideal I of a ring R is called a nil ideal if each element of I is nilpotent.
Accept the following result: if I is a nil left ideal in a left Artinian ring R then I is
nilpotent.

(b) Prove that g − 1 is a nilpotent element for each g ∈ G \ {1} and deduce that I(KG) is a
nil ideal of KG.

(c) Deduce from (a) and (b) that I(KG) ⊆ J(KG) using Exercise 2.

(d) Conclude that I(KG) = J(KG) using Proposition-Definition 10.7.



Exercise 4 (Proof of the Converse of Maschke’s Theorem for K a splitting field for KG.).
Assume K is a field of positive characteristic p with p | |G| and is a splitting field for KG. Set
T := 〈

∑
g∈G g〉K.

(a) Prove that we have a series of KG-submodules given by KG◦ ) I(KG) ⊇ T ) 0.

(b) Deduce that KG◦ has at least two composition factors isomorphic to the trivial module.

(c) Deduce that KG is not a semisimple K-algebra using Theorem 8.2.

Exercise 5.
Let O be a local commutative ring with unique maximal ideal p := J(O) and residue field
k := O/J(O).

(a) Let M,N be finitely generated free O-modules.

(i) Let f : M −→ N be an O-linear map and f : M −→ N be its reduction modulo p.
Prove that if f is surjective (resp. an isomorphism), then f is surjective (resp. an
isomorphism).

(ii) Prove that if elements x1, . . . , xn ∈ M (n ∈ Z≥1) are such that their images
x1, . . . x2 ∈M form a k-basis of M, then {x1, . . . , xn} is an O-basis of M.
In particular, dimk(M) = rkO(M).

[Hint: Use Nakayama’s Lemma.]

(b) Any direct summand of a finitely generated free O-module is free.

(c) Prove that if M is a finitely generated O-module, then the following conditions are
equivalent:

(i) M is projective;
(ii) M is free.

Exercise 6.
Let (F,O, k) be a p-modular system and set p := J(O).

(a) Given an OG-lattice L, verify that:

· setting LF := F ⊗O L defines an FG-module, and

· reduction modulo p of L, i.e. L := L/pL � k ⊗O L, defines a kG-module.

(b) Let V be a finitely generated FG-module and let {v1, . . . , vn} be an F-basis of V. Prove
that L := OGv1 + · · · + OGvn ⊆ V is an O-form of V.

Exercise 7.
Let (F,O, k) be a p-modular system. Prove the following assertions.

(a) If K ∈ {F,O, k}and M is a finitely generated KG-lattice, then TrM is a KG-homomorphism
and TrM ◦ θ−1

M,M coincides with the ordinary trace of matrices.

(b) If M is a kG-module, then:
(i) M |M ⊗k M∗ ⊗k M, and

(ii) M ⊕M |M ⊗k M∗ ⊗k M provided char(k) | dimk(M). [This is more challenging!]


