Representation Theory — Exercise Sheet 2

TU Kaiserslautern FB Mathematik

Jun.-Prof. Dr. Caroline Lassueur

Marie Roth

Due date: Tuesday, 22nd of November 2022, 2 p.m.

WS 2022/23

Throughout, all rings are assumed to be *associative rings with* a one, modules are assumed to be *left* modules and finitely generated.

Exercise 1.

Let $G := C_2 \times C_2$ be the Klein-four group and let $K = \overline{K}$ be an algebraically closed field of characteristic 2.

- (i) Prove that $KG \cong K[X, Y]/(X^2, Y^2)$ as K-algebras. (Note: K[X, Y] stands for the commutative polynomial K-algebra in the variables X and Y, i.e. XY = YX in K[X, Y].)
- (ii) Compute $J(K[X,Y]/(X^2,Y^2))$, $|Irr(K[X,Y]/(X^2,Y^2))|$, and describe all simple KG-modules. [Hint: Do not forget that you can consider K-dimensions!]

Exercise 2.

Let K be a field and let $A \neq 0$ be a finite-dimensional K-algebra. The aim of this exercise is to prove that J(A) is the unique maximal nilpotent left ideal of A and $J(Z(A)) = J(A) \cap Z(A)$. Proceed as follows:

- (a) Prove that there exists $n \in \mathbb{Z}_{>0}$ such that $J(A)^n = J(A)^{n+1}$. [Hint: consider dimensions.]
- (b) Apply Nakayama's Lemma to deduce that $J(A)^n = 0$ and conclude that J(A) is nilpotent.
- (c) Prove that if I is an arbitrary nilpotent left ideal of A, then $I \subseteq J(A)$. [Hint: here you should see J(A) as the intersection of the annihilators of the simple A-modules.]
- (d) Use the nilpotency of the Jacobson radical to prove that $J(Z(A)) = J(A) \cap Z(A)$.

Exercise 3.

The aim of this exercise is to prove that if K is a field of positive characteristic p and G is a p-group, then I(KG) = J(KG). Proceed as indicated below.

- (a) Recall that an ideal *I* of a ring *R* is called a **nil ideal** if each element of *I* is nilpotent. Accept the following result: if *I* is a nil left ideal in a left Artinian ring *R* then *I* is nilpotent.
- (b) Prove that g 1 is a nilpotent element for each $g \in G \setminus \{1\}$ and deduce that I(KG) is a nil ideal of KG.
- (c) Deduce from (a) and (b) that $I(KG) \subseteq J(KG)$ using Exercise 2.
- (d) Conclude that I(KG) = J(KG) using Proposition-Definition 10.7.

EXERCISE 4 (**Proof** of the Converse of Maschke's Theorem for *K* a splitting field for *KG*.).

Assume *K* is a field of positive characteristic *p* with $p \mid |G|$ and is a splitting field for *KG*. Set $T := \langle \sum_{g \in G} g \rangle_K$.

- (a) Prove that we have a series of KG-submodules given by $KG^{\circ} \supseteq I(KG) \supseteq T \supseteq 0$.
- (b) Deduce that KG° has at least two composition factors isomorphic to the trivial module.
- (c) Deduce that *KG* is not a semisimple *K*-algebra using Theorem 8.2.

Exercise 5.

Let *O* be a local commutative ring with unique maximal ideal $\mathfrak{p} := J(O)$ and residue field k := O/J(O).

- (a) Let *M*, *N* be finitely generated free *O*-modules.
 - (i) Let $f: M \longrightarrow N$ be an O-linear map and $\overline{f}: \overline{M} \longrightarrow \overline{N}$ be its reduction modulo \mathfrak{p} . Prove that if \overline{f} is surjective (resp. an isomorphism), then f is surjective (resp. an isomorphism).
 - (ii) Prove that if elements $x_1, \ldots, x_n \in M$ $(n \in \mathbb{Z}_{\geq 1})$ are such that their images $\overline{x}_1, \ldots, \overline{x}_2 \in \overline{M}$ form a k-basis of \overline{M} , then $\{x_1, \ldots, x_n\}$ is an O-basis of M. In particular, $\dim_k(\overline{M}) = \operatorname{rk}_O(M)$.

[Hint: Use Nakayama's Lemma.]

- (b) Any direct summand of a finitely generated free *O*-module is free.
- (c) Prove that if *M* is a finitely generated *O*-module, then the following conditions are equivalent:
 - (i) *M* is projective;
 - (ii) M is free.

Exercise 6.

Let (F, O, k) be a *p*-modular system and set $\mathfrak{p} := J(O)$.

- (a) Given an *OG*-lattice *L*, verify that:
 - · setting $L^F := F \otimes_O L$ defines an FG-module, and
 - · reduction modulo \mathfrak{p} of L, i.e. $\overline{L} := L/\mathfrak{p}L \cong k \otimes_{\mathcal{O}} L$, defines a kG-module.
- (b) Let V be a finitely generated FG-module and let $\{v_1, \ldots, v_n\}$ be an F-basis of V. Prove that $L := OGv_1 + \cdots + OGv_n \subseteq V$ is an O-form of V.

Exercise 7.

Let (F, O, k) be a *p*-modular system. Prove the following assertions.

- (a) If $K \in \{F, O, k\}$ and M is a finitely generated KG-lattice, then Tr_M is a KG-homomorphism and $\operatorname{Tr}_M \circ \theta_{M,M}^{-1}$ coincides with the ordinary trace of matrices.
- (b) If *M* is a *kG*-module, then:
 - (i) $M \mid M \otimes_k M^* \otimes_k M$, and
 - (ii) $M \oplus M \mid M \otimes_k M^* \otimes_k M$ provided char(k) $\mid \dim_k(M)$. [This is more challenging!]