Representation Theory — Exercise Sheet 1

TU Kaiserslautern FB Mathematik

Jun.-Prof. Dr. Caroline Lassueur

Marie Roth

Due date: Tuesday, 8th of November 2022, 2 p.m.

WS 2022/23

Throughout, *R* denotes a ring, and, unless otherwise stated, all rings are assumed to be *associative rings with* 1, and modules are assumed to be *left* modules.

Exercise 1.

Prove that if $(R, +, \cdot)$ is a ring, then $R^{\circ} := R$ itself may be seen as an R-module via left multiplication in R, i.e. where the external composition law is given by

$$R \times R^{\circ} \longrightarrow R^{\circ}, (r, m) \mapsto r \cdot m$$
.

We call R° the **regular** R-module.

Prove that:

- (a) the *R*-submodules of R° are prescisely the left ideals of *R*;
- (b) $I \triangleleft R$ is a maximal left ideal of $R \Leftrightarrow R^{\circ}/I$ is a simple R-module, and $I \triangleleft R$ is a minimal left ideal of $R \Leftrightarrow I$ is simple when regarded as an R-submodule of R° .

Exercise 2.

Give a concrete example of an *R*-module which is indecomposable but not simple.

Exercise 3.

Prove Part (iii) of Fitting's Lemma.

Exercise 4.

Let p be a prime number and let $R := \{\frac{a}{b} \in \mathbb{Q} \mid p \nmid b\}$. Determine $R \setminus R^{\times}$ and deduce that R is local.

Exercise 5.

- (a) Prove that any simple R-module may be seen as a simple R/J(R)-module.
- (b) Conversely, prove that any simple R/J(R)-module may be seen as a simple R-module. [Hint: use a change of the base ring via the canonical morphism $R \longrightarrow R/J(R)$.]
- (c) Deduce that R and R/J(R) have the same simple modules.

Exercise 6.

- (a) Prove that any submodule and any quotient of a semisimple module is again semisimple.
- (b) Let K be a field and let A be the K-algebra $\left\{ \begin{pmatrix} a_1 & a \\ 0 & a_1 \end{pmatrix} \mid a_1, a \in K \right\}$. Consider the A-module $V := K^2$, where A acts by left matrix multiplication. Prove that:
 - (1) $\{\binom{x}{0} \mid x \in K\}$ is a simple *A*-submodule of *V*; but
 - (2) *V* is not semisimple.
- (b) Prove that $J(\mathbb{Z}) = 0$ and find an example of a \mathbb{Z} -module which is not semisimple.

Exercise 7.

Let *R* be a semisimple ring. Prove the following statements.

- (a) Every non-zero left ideal I of R is generated by an **idempotent** of R, in other words $\exists e \in R$ such that $e^2 = e$ and I = Re. [Hint: choose a complement I' for I, so that $R^\circ = I \oplus I'$ and write 1 = e + e' with $e \in I$ and $e' \in I'$. Prove that I = Re.]
- (b) If I is a non-zero left ideal of R, then every morphism in $\operatorname{Hom}_R(I, R^\circ)$ is given by right multiplication with an element of R.
- (c) If $e \in R$ is an idempotent, then $\operatorname{End}_R(Re) \cong (eRe)^{\operatorname{op}}$ (the opposite ring) as rings via the map $f \mapsto ef(e)e$. In particular $\operatorname{End}_R(R^\circ) \cong R^{\operatorname{op}}$ via $f \mapsto f(1)$.
- (d) A left ideal *Re* generated by an idempotent *e* of *R* is minimal (i.e. simple as an *R*-module) if and only if *eRe* is a division ring.

 [Hint: Use Schur's Lemma.]
- (e) Every simple left R-module is isomorphic to a minimal left ideal in R, i.e. a simple R-submodule of R°.