
Appendix 1: Background Material Module Theory

This appendix provides you with a short recap of the notions of the theory of modules, which we will
assume as known for this lecture. We quickly review elementary definitions and constructions such as
quotients, direct sum, direct products, tensor products and exact sequences, where we emphasise the
approach via universal properties.

Notation: throughout this appendix we let R and S denote rings, and unless otherwise specified, all
rings are assumed to be unital and associative.

Most of the results are stated without proof, as they have been studied in the B.Sc. lecture Commutative
Algebra. As further reference I recommend for example:

A Modules, submodules, morphisms
Definition A.1 (Left R-module, right R-module, pR � Sq-bimodule)

(a) A left R-module is an ordered triple pM� `� ¨q, where pM� `q is an abelian group and
¨ : R ˆ M ›Ñ M�p�� �q fiÑ � ¨ � is a binary operation such that the map

λ : R ›Ñ EndpMq

� fiÑ λp�q :“ λ� : M ›Ñ M� � fiÑ � ¨ �

is a ring homomorphism. The operation ¨ is called a scalar multiplication or an external
composition law.

(b) A right R-module is defined analogously using a scalar multiplication ¨ : M ˆ R ›Ñ M�
p�� �q fiÑ � ¨ � on the right-hand side.

(c) An pR � Sq-bimodule is an abelian group pM� `q which is both a left R-module and a right
S-module, and which satisfies the axiom

� ¨ p� ¨ �q “ p� ¨ �q ¨ � @ � P R � @ � P S� @ � P M �

Convention: Unless otherwise stated, in this lecture we always work with left modules. When no
confusion is to be made, we will simply write "R-module" to mean "left R-module", denote R-modules
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by their underlying sets and write �� instead of � ¨ �. Definitions for right modules and bimodules are
similar to those for left modules, hence in the sequel we omit them.

Definition A.2 (R-submodule)
An R-submodule of an R-module M is a subgroup U § M such that � ¨ � P U @ � P R , @ � P U .

Definition A.3 (Morphisms)
A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map of R-
modules � : M ›Ñ N such that:

(i) � is a group homomorphism; and

(ii) �p� ¨ �q “ � ¨ �p�q @ � P R , @ � P M .

Furthermore:

¨ An injective (resp. surjective) morphism of R-modules is sometimes called a monomorphism
(resp. an epimorphism) and we often denote it with a hook arrow "ãÑ" (resp. a two-head
arrow "⇣").

¨ A bijective morphism of R-modules is called an isomorphism (or an R-isomorphism), and we
write M – N if there exists an R-isomorphism between M and N .

¨ A morphism from an R-module to itself is called an endomorphism and a bijective endomor-
phism is called an automorphism .

Notation: We let RMod denote the category of left R-modules (with R-linear maps as morphisms),
we let ModR denote the category of right R-modules (with R-linear maps as morphisms), and we let
RModS denote the category of pR � Sq-bimodules (with pR � Sq-linear maps as morphisms).

Example A.4

(a) Exercise: Check that Definition A.1(a) is equivalent to requiring that pM� `� ¨q satisfies the
following axioms:

(M1) pM� `q is an abelian group;
(M2) p�1 ` �2q ¨ � “ �1 ¨ � ` �2 ¨ � for each �1� �2 P R and each � P M;
(M3) � ¨ p�1 ` �2q “ � ¨ �1 ` � ¨ �2 for each � P R and all �1� �2 P M;
(M4) p��q ¨ � “ � ¨ p� ¨ �q for each �� � P R and all � P M .
(M5) 1R ¨ � “ � for each � P M .

In other words, modules over rings satisfy the same axioms as vector spaces over fields. Hence:
Vector spaces over a field K are K -modules, and conversely.

(b) Abelian groups are Z-modules, and conversely.
Exercise: check it! What is the external composition law?
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(c) If the ring R is commutative, then any right module can be made into a left module, and
conversely.
Exercise: check it! Where does the commutativity come into play?

(d) If � : M ›Ñ N is a morphism of R-modules, then the kernel kerp�q :“ t� P M | �p�q “ 0Nu

of � is an R-submodule of M and the image Imp�q :“ �pMq “ t�p�q | � P Mu of � is an
R-submodule of N .
If M “ N and � is invertible, then the inverse is the usual set-theoretic inverse map �´1 and
is also an R-homomorphism.
Exercise: check it!

(e) Change of the base ring: if � : S ›Ñ R is a ring homomorphism, then every R-module M
can be endowed with the structure of an S-module with external composition law given by

¨ : S ˆ M ›Ñ M� p�� �q fiÑ � ¨ � :“ �p�q ¨ � �

Exercise: check it!

Notation A.5
Given R-modules M and N , we set HomR pM� Nq :“ t� : M ›Ñ N | � is an R-homomorphismu.
This is an abelian group for the pointwise addition of maps:

` : HomR pM� Nq ˆ HomR pM� Nq ›Ñ HomR pM� Nq

p�� ψq fiÑ � ` ψ : M ›Ñ N� � fiÑ �p�q ` ψp�q .

In case N “ M , we write EndR pMq :“ HomR pM� Mq for the set of endomorphisms of M and
AutR pMq for the set of automorphisms of M , i.e. the set of invertible endomorphisms of M .

Lemma-Definition A.6 (Quotients of modules)
Let U be an R-submodule of an R-module M . The quotient group M{U can be endowed with the
structure of an R-module in a natural way via the external composition law

R ˆ M{U ›Ñ M{U
`
�� � ` U

˘
fi›Ñ � ¨ � ` U

The canonical map π : M ›Ñ M{U� � fiÑ � ` U is R-linear and we call it the canonical (or
natural) homomorphism.

Definition A.7 (Cokernel, coimage)
Let � P HomR pM� Nq. The cokernel of � is the quotient R-module cokerp�q :“ N{ Im �, and the
coimage of � is the quotient R-module M{ ker �.

Theorem A.8 (The universal property of the quotient and the isomorphism theorems)

(a) Universal property of the quotient: Let � : M ›Ñ N be a homomorphism of R-modules.
If U is an R-submodule of M such that U Ñ kerp�q, then there exists a unique R-module
homomorphism � : M{U ›Ñ N such that � ˝ π “ �, or in other words such that the following
diagram commutes:
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M N

M{U

π

�

ö
D! �

Concretely, �p� ` Uq “ �p�q @ � ` U P M{U .

(b) 1st isomorphism theorem: With the notation of (a), if U “ kerp�q, then

� : M{ kerp�q ›Ñ Imp�q

is an isomorphism of R-modules.

(c) 2nd isomorphism theorem: If U1� U2 are R-submodules of M , then so are U1XU2 and U1`U2,
and there is an isomorphism of R-modules

pU1 ` U2q{U2 – U1{pU1 X U2q �

(d) 3rd isomorphism theorem: If U1 Ñ U2 are R-submodules of M , then there is an isomorphism
of R-modules

pM{U1q {pU2{U1q – M{U2 �

(e) Correspondence theorem: If U is an R-submodule of M , then there is a bijection

tR-submodules X of M | U Ñ Xu –Ñ tR-submodules of M{Uu

X fiÑ X{U
π´1

pZ q –[ Z .

B Free modules and projective modules
Free modules

Definition B.1 (Generating set / R-basis / finitely generated/free R-module)
Let M be an R-module and let X Ñ M be a subset. Then:

(a) M is said to be generated by X if every element � P M may be written as an R-linear
combination � “

∞
�PX λ�� , i.e. where λ� P R is almost everywhere 0. In this case we write

M “ xXyR or M “
∞

�PX R� .

(b) M is said to be finitely generated if it admits a finite set of generators.

(c) X is an R-basis (or simply a basis) if X generates M and if every element of M can be written
in a unique way as an R-linear combination

∞
�PX λ�X (i.e. with λ� P R almost everywhere 0).

(d) M is called free if it admits an R-basis X , and |X | is called the R-rank of M .
Notation: In this case we write M “

À
�PX R� –

À
�PX R .
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Remark B.2

(a) Warning: If the ring R is not commutative, then it is not true in general that two different
bases of a free R-module have the same number of elements.

(b) Let X be a generating set for M . Then, X is a basis of M if and only if S is R-linearly
independent.

(c) If R is a field, then every R-module is free. (R-modules are R-vector spaces in this case!)

Proposition B.3 (Universal property of free modules)
Let M be a free R-module with R-basis X . If N is an R-module and � : X ›Ñ N is a map (of
sets), then there exists a unique R-homomorphism p� : M ›Ñ N such that the following diagram
commutes:

X N

M
inc

�

ö
D!p�

We say that p� is obtained by extending � by R-linearity.

Proof : Given an R-linear combination
∞

�PX λ�� P M , set p�p
∞

�PX λ��q :“
∞

�PX λ��p�q. The claim follows.

Proposition B.4 (Properties of free modules)

(a) Every R-module M is isomorphic to a quotient of a free R-module.

(b) If P is a free R-module, then HomR pP� ´q is an exact functor.

Projective modules

Proposition-Definition B.5 (Projective module)
Let P be an R-module. Then the following are equivalent:

(a) The functor HomR pP� ´q is exact.

(b) If ψ P HomR pM� Nq is a surjective morphism of R-modules, then the morphism of abelian
groups ψ˚ : HomR pP� Mq ›Ñ HomR pP� Nq is surjective.

(c) If π : M ›Ñ P is a surjective R-linear map, then π splits, i.e., there exists σ : P ›Ñ M such
that π ˝ σ “ IdP .

(d) P is isomorphic to a direct summand of a free R-module.

If P satisfies these equivalent conditions, then P is called projective.
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Example B.6

(a) If R “ Z, then every submodule of a free Z-module is again free (main theorem on Z-modules).

(b) Let � be an idempotent in R , that is �2
“ �. Then, R – R� ‘ Rp1 ´ �q and R� is projective

but not free if � ‰ 0� 1.

(d) A direct sum of modules
À

�PI P� is projective if and only if each P� is projective.

C Direct products and direct sums
Let tM�u�PI be a family of R-modules. Then the abelian group

±
�PI M�, that is the product of tM�u�PI

seen as a family of abelian groups, becomes an R-module via the following external composition law:

R ˆ

π

�PI
M� ›Ñ

π

�PI
M�

`
�� p��q�PI

˘
fi›Ñ

`
� ¨ ��

˘
�PI �

Furthermore, for each � P I , we let π� :
±

�PI M� ›Ñ M� � p��q�PI fiÑ �� denotes the �-th projection from
the product to the module M� .

Proposition C.1 (Universal property of the direct product)
If t�� : L ›Ñ M�u�PI is a family of R-homomorphisms, then there exists a unique R-homomorphism
� : L ›Ñ

±
�PI M� such that π� ˝ � “ �� for every � P I .

L

¨¨¨ �� ö

��

�� ¨¨¨
ö

⌘⌘

�

✏✏±
�PI M�

π�
{{

π�
##

M� M�

Thus,

HomR
´

L�
π

�PI
M�

¯
›Ñ

π

�PI
HomR pL� M�q

� fi›Ñ
`
π� ˝ �

˘
�PI

is an isomorphism of abelian groups.

Now let
À

�PI M� be the subgroup of
±

�PI M� consisting of the elements p��q�PI such that �� “ 0 al-
most everywhere (i.e. �� “ 0 exept for a finite subset of indices � P I). This subgroup is called the
direct sum of the family tM�u�PI and is in fact an R-submodule of the product. For each � P I , we let
η� : M� ›Ñ

À
�PI M�� �� fiÑ denote the canonical injection of M� in the direct sum.
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Proposition C.2 (Universal property of the direct sum)
If t�� : M� ›Ñ Lu�PI is a family of R-homomorphisms, then there exists a unique R-homomorphism
� :

À
�PI M� ›Ñ L such that � ˝ η� “ �� for every � P I .

L

À
�PI M�

�

OO

M�

η�

;;

¨¨¨ �� ö

CC

M�

η�

cc

�� ¨¨¨
ö

[[

Thus,

HomR
´ à

�PI
M�� L

¯
›Ñ

π

�PI
HomR pM�� Lq

� fi›Ñ
`
� ˝ η�

˘
�PI

is an isomorphism of abelian groups.

Remark C.3
It is clear that if |I| † 8, then

À
�PI M� “

±
�PI M�.

The direct sum as defined above is often called an external direct sum. This relates as follows with the
usual notion of internal direct sum:

Definition C.4 (“Internal” direct sums)
Let M be an R-module and N1� N2 be two R-submodules of M . We write M “ N1 ‘ N2 if every

� P M can be written in a unique way as � “ �1 ` �2, where �1 P N1 and �2 P N2.

In fact M “ N1 ‘ N2 (internal direct sum) if and only if M “ N1 ` N2 and N1 X N2 “ t0u.

Proposition C.5
If N1� N2 and M are as above and M “ N1 ‘ N2 then the homomorphism of R-modules

� : M ›Ñ N1 ˆ N2 “ N1 ‘ N2 (external direct sum)
� “ �1 ` �2 fiÑ p�1� �2q ,

is an isomorphism of R-modules.

The above generalises to arbitrary internal direct sums M “
À

�PI N�.

D Exact sequences
Exact sequences constitute a very useful tool for the study of modules. Often we obtain valuable infor-
mation about modules by plugging them in short exact sequences, where the other terms are known.
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Definition D.1 (Exact sequence)

A sequence L �
›Ñ M ψ

›Ñ N of R-modules and R-linear maps is called exact (at M) if Im � “ ker ψ.

Remark D.2 (Injectivity/surjectivity/short exact sequences)

(a) L �
›Ñ M is injective ñ 0 ›Ñ L �

›Ñ M is exact at L.

(b) M ψ
›Ñ N is surjective ñ M ψ

›Ñ N ›Ñ 0 is exact at N .

(c) 0 ›Ñ L �
›Ñ M ψ

›Ñ N ›Ñ 0 is exact (i.e. at L, M and N) if and only if � is injective, ψ is
surjective and ψ induces an R-isomorphism ψ : M{ Im � ›Ñ N� � ` Im � fiÑ ψp�q.
Such a sequence is called a short exact sequence (s.e.s. for short).

(d) If � P HomR pL� Mq is an injective morphism, then there is a s.e.s.

0 ›Ñ L �
›Ñ M π

›Ñ cokerp�q ›Ñ 0

where π is the canonical projection.

(e) If ψ P HomR pM� Nq is a surjective morphism, then there is a s.e.s.

0 ›Ñ kerpψq
�

›Ñ M ψ
›Ñ N ›Ñ 0 �

where � is the canonical injection.

Proposition D.3
Let Q be an R-module. Then the following holds:

(a) HomR pQ� ´q : RMod ›Ñ Ab is a left exact covariant functor. In other words, if
0 ›Ñ L �

›Ñ M ψ
›Ñ N ›Ñ 0 is a s.e.s of R-modules, then the induced sequence

0 // HomR pQ� Lq
�˚
// HomR pQ� Mq

ψ˚
// HomR pQ� Nq

is an exact sequence of abelian groups. Here �˚ :“ HomR pQ� �q, that is �˚pαq “ � ˝ α for
every α P HomR pQ� Lq and similarly for ψ˚.

(b) HomR p´� Qq : RMod ›Ñ Ab is a left exact contravariant functor. In other words, if
0 ›Ñ L �

›Ñ M ψ
›Ñ N ›Ñ 0 is a s.e.s of R-modules, then the induced sequence

0 // HomR pN� Qq
ψ˚
// HomR pM� Qq

�˚
// HomR pL� Qq

is an exact sequence of abelian groups. Here �˚ :“ HomR p�� Qq, that is �˚
pαq “ α ˝ � for

every α P HomR pM� Qq and similarly for ψ˚.

Exercise: verify that HomR pQ� ´q and HomR p´� Qq are functors.
Notice that HomR pQ� ´q and HomR p´� Qq are not right exact in general. Exercise: find counter-
examples!
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Lemma-Definition D.4 (Split short exact sequence)

A s.e.s. 0 ›Ñ L �
›Ñ M ψ

›Ñ N ›Ñ 0 of R-modules is called split if it satisfies one of the following
equivalent conditions:

(a) ψ admits an R-linear section, i.e. if D σ P HomR pN� Mq such that ψ ˝ σ “ IdN ;

(b) � admits an R-linear retraction, i.e. if D ρ P HomR pM� Lq such that ρ ˝ � “ IdL;

(c) D an R-isomorphism α : M ›Ñ L ‘ N such that the following diagram commutes:

0 // L �
//

IdL
✏✏

ö

M ψ
//

α
✏✏

ö

N //

IdN
✏✏

0

0 // L �
// L ‘ N �

// N // 0 �

where �, resp. �, are the canonical inclusion, resp. projection.

Remark D.5
If the sequence splits and σ is a section, then M “ �pLq ‘ σpNq. If the sequence splits and ρ is a
retraction, then M “ �pLq ‘ kerpρq.

Example D.6
The s.e.s. of Z-modules

0 // Z{2Z
�
// Z{2Z ‘ Z{2Z π

// Z{2Z // 0

defined by �pr1sq “ pr1s� r0sq and where π is the canonical projection onto the cokernel of � is
split but the sequence

0 // Z{2Z
�
// Z{4Z π

// Z{2Z // 0

defined by �pr1sq “ pr2sq and π is the canonical projection onto the cokernel of � is not split.
Exercise: justify this fact using a straightforward argument.

E Tensor products
Definition E.1 (Tensor product of R-modules)

Let M be a right R-module and let N be a left R-module. Let F be the free abelian group (= free
Z-module) with basis M ˆ N . Let G be the subgroup of F generated by all the elements

p�1 ` �2� �q ´ p�1� �q ´ p�2� �q� @�1� �2 P M� @� P N�
p�� �1 ` �2q ´ p�� �1q ´ p�� �2q� @� P M� @�1� �2 P N� and
p��� �q ´ p�� ��q� @� P M� @� P N� @� P R �
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The tensor product of M and N (balanced over R ), is the abelian group M bR N :“ F{G . The
class of p�� �q P F in M bR N is denoted by � b �.

Remark E.2

(a) M bR N “ x� b � | � P M� � P NyZ.

(b) In M bR N , we have the relations

p�1 ` �2q b � “ �1 b � ` �2 b �� @�1� �2 P M� @� P N�
� b p�1 ` �2q “ � b �1 ` � b �2� @� P M� @�1� �2 P N� and
�� b � “ � b ��� @� P M� @� P N� @� P R �

In particular, � b 0 “ 0 “ 0 b � @ � P M , @ � P N and p´�q b � “ ´p� b �q “ � b p´�q

@ � P M , @ � P N .

Definition E.3 (R-balanced map)
Let M and N be as above and let A be an abelian group. A map � : M ˆ N ›Ñ A is called
R-balanced if

�p�1 ` �2� �q “ �p�1� �q ` �p�2� �q� @�1� �2 P M� @� P N�
�p�� �1 ` �2q “ �p�� �1q ` �p�� �2q� @� P M� @�1� �2 P N�
�p��� �q “ �p�� ��q� @� P M� @� P N� @� P R �

Remark E.4
The canonical map � : M ˆ N ›Ñ M bR N� p�� �q fiÑ � b � is R-balanced.

Proposition E.5 (Universal property of the tensor product)
Let M be a right R-module and let N be a left R-module. For every abelian group A and every
R-balanced map � : M ˆ N ›Ñ A there exists a unique Z-linear map � : M bR N ›Ñ A such that
the following diagram commutes: M ˆ N �

//

�
✏✏

A

M bR N
�

ö
;;

Proof : Let � : M ˆ N ›Ñ F denote the canonical inclusion, and let π : F ›Ñ F{G denote the canonical
projection. By the universal property of the free Z-module, there exists a unique Z-linear map �̃ : F ›Ñ A
such that �̃ ˝ � “ � . Since � is R-balanced, we have that G Ñ kerp�̃q. Therefore, the universal property of
the quotient yields the existence of a unique homomorphism of abelian groups � : F{G ›Ñ A such that
� ˝ π “ �̃ :

M ˆ N �
//

�
✏✏

�

  

A

F

�̃

::

π
✏✏

M bR N – F{G
�

JJ

Clearly � “ π ˝ �, and hence � ˝ � “ � ˝ π ˝ � “ �̃ ˝ � “ � .
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Remark E.6
Let M and N be as in Definition E.1.

(a) Let tM�u�PI be a collection of right R-modules, M be a right R-module, N be a left R-module
and tN�u�PJ be a collection of left R-modules. Then, we have

à

�PI
M� bR N –

à

�PI
pM� bR Nq

M bR
à

�PJ
N� –

à

�PJ
pM bR N�q�

(This is easily proved using both the universal property of the direct sum and of the tensor
product.)

(b) There are natural isomorphisms of abelian groups given by R bR N – N via � b � fiÑ ��, and
M bR R – M via � b � fiÑ ��.

(c) It follows from (b), that if P is a free left R-module with R-basis X , then N bR P –
À

�PX N ,
and if P is a free right R-module with R-basis X , then P bR M –

À
�PX M .

(d) Let Q be a third ring. Then we obtain module structures on the tensor product as follows:

(i) If M is a pQ� Rq-bimodule and N a left R-module, then M bR N can be endowed with
the structure of a left Q-module via

� ¨ p� b �q “ � ¨ � b � @� P Q� @� P M� @� P N�

(ii) If M is a right R-module and N an pR � Sq-bimodule, then M bR N can be endowed with
the structure of a right S-module via

p� b �q ¨ � “ �� b � ¨ � @� P S� @� P M� @� P N�

(iii) If M is a pQ� Rq-bimodule and N an pR � Sq-bimodule. Then M bR N can be endowed
with the structure of a pQ� Sq-bimodule via the external composition laws defined in (i)
and (ii).

(e) Assume R is commutative. Then any R-module can be viewed as an pR � Rq-bimodule. Then,
in particular, M bR N becomes an R-module (both on the left and on the right).

(f ) For instance, it follows from (e) that if K is a field and M and N are K -vector spaces with
K -bases t��u�PI and t��u�PJ resp., then M bK N is a K -vector space with a K -basis given by
t�� b ��up���qPIˆJ .

(g) Tensor product of morphisms: Let � : M ›Ñ M 1 be a morphism of right R-modules and
� : N ›Ñ N 1 be a morphism of left R-modules. Then, by the universal property of the
tensor product, there exists a unique Z-linear map � b � : M bR N ›Ñ M 1

bR N 1 such that
p� b �qp� b �q “ �p�q b �p�q.
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Exercise E.7

(a) Assume R is a commutative ring and I is an ideal of R . Let M be a left R-module. Prove that
there is an isomorphism of left R-modules R{I bR M – M{IM .

(b) Let �� � be coprime positive integers. Compute Z{�Z bZ Z{�Z, Q bZ Q, and Q{Z bZ Q.

(c) Let K be a field and let U� V be finite-dimensional K -vector spaces. Prove that there is a
natural isomorphism of K -vector spaces:

HomK pU� V q – U˚
bK V �

Proposition E.8 (Right exactness of the tensor product)

(a) Let N be a left R-module. Then ´ bR N : ModR ›Ñ Ab is a right exact covariant functor.

(b) Let M be a right R-module. Then M bR ´ :R Mod ›Ñ Ab is a right exact covariant functor.

Remark E.9
The functors ´ bR N and M bR ´ are not left exact in general.

F Algebras
In this lecture we aim at studying modules over specific rings, which are in particular algebras.

Definition F.1 (Algebra)
Let R be a commutative ring.

(a) An R-algebra is an ordered quadruple pA� `� ¨� ˚q such that the following axioms hold:

(A1) pA� `� ¨q is a ring;
(A2) pA� `� ˚q is a left R-module; and
(A3) � ˚ p� ¨ �q “ p� ˚ �q ¨ � “ � ¨ p� ˚ �q @ �� � P A, @ � P R .

(b) A map � : A Ñ B between two R-algebras is called an algebra homomorphism iff:

(i) � is a homomorphism of R-modules;
(ii) � is a ring homomorphism.

Example F.2 (Algebras)

(a) The ring R itself is an R-algebra.
[The internal composition law "¨" and the external composition law "˚" coincide in this case.]

(b) For each � P Z•1 the set M�pRq of � ˆ �-matrices with coefficients in R is an R-algebra for
its usual R-module and ring structures.
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[Note: in particular R-algebras need not be commutative rings in general!]

(c) Let K be a field. Then for each � P Z•1 the polynom ring K rX1� � � � � X�s is a K -algebra for
its usual K -vector space and ring structure.

(d) R and C are Q-algebras, C is an R-algebra, . . .

(e) Rings are Z-algebras.
Exercise: Check it!

Example F.3 (Modules over algebras)

(a) A “ M�pRq ñ R� is an A-module for the external composition law given by left matrix
multiplication A ˆ R�

›Ñ R�� pB� �q fiÑ B� .

(b) If K is a field and V a K -vector space, then V becomes an A-algebra for A :“ EndK pV q

together with the external composition law

A ˆ V ›Ñ V � p�� �q fiÑ �p�q �

Exercise: Check it!

(c) An arbitrary A-module M can be seen as an R-module via a change of the base ring since
R ›Ñ A� � fiÑ � ˚ 1A is a homomorphism of rings by the algebra axioms.

Exercise F.4
Let R be a commutative ring.

(a) Let M� N be R-modules. Prove that:

(1) EndR pMq, endowed with the pointwise addition of maps and the usual composition of
maps, is a ring. (Note that the commutativity of R is not necessary!)

(2) The abelian group HomR pM� Nq is a left R-module for the external composition law
defined by

p��qp�q :“ �p��q “ ��p�q @ � P R � @� P HomR pM� Nq� @� P M �

(b) Let now A be an R-algebra and M be an A-module. Prove that EndR pMq and EndApMq are
R-algebras.



Appendix 2: The Language of Category Theory

This appendix gives a short introduction to some of the basic notions of category theory used in this
lecture.

G Categories
Definition G.1 (Category)

A category � consists of:

‚ a class Ob � of objects,

‚ a set Hom�pA� Bq of morphisms for every ordered pair pA� Bq of objects, and

‚ a composition function

Hom�pA� Bq ˆ Hom�pB� Cq ›Ñ Hom�pA� Cq

p� � �q fiÑ � ˝ �

for each ordered triple pA� B� Cq of objects,

satisfying the following axioms:

(C1) Unit axiom: for each object A P Ob �, there exists an identity morphism 1A P Hom�pA� Aq

such that for every � P Hom�pA� Bq for all B P Ob �,

� ˝ 1A “ � “ 1B ˝ � �

(C2) Associativity axiom: for every � P Hom�pA� Bq, � P Hom�pB� Cq and � P Hom�pC � Dq with
A� B� C � D P Ob �,

� ˝ p� ˝ �q “ p� ˝ �q ˝ � �

Let us start with some remarks and examples to enlighten this definition:
Remark G.2

(a) Ob � need not be a set!

1013
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(b) The only requirement on Hom�pA� Bq is that it be a set, and it is allowed to be empty.

(c) It is common to write � : A ›Ñ B or A �
›Ñ B instead of � P Hom�pA� Bq, and to talk about

arrows instead of morphisms. It is also common to write "A P �" instead of "A P Ob �".

(d) The identity morphism 1A P Hom�pA� Aq is uniquely determined: indeed, if �A P Hom�pA� Aq

were a second identity morphisms, then we would have �A “ �A ˝ 1A “ 1A.

Example G.3

(a) � “ 1 : category with one object and one morphism (the identity morphism):

‚

1‚

(b) � “ 2 : category with two objects and three morphism, where two of them are identity
morphisms and the third one goes from one object to the other:

A B
1A 1B

(c) A group G can be seen as a category �pGq with one object: Ob �pGq “ t‚u, Hom�pGqp‚� ‚q “ G
(notice that this is a set) and composition is given by multiplication in the group.

(d) The � ˆ �-matrices with entries in a field � for �� � ranging over the positive integers form
a category Mat� : Ob Mat� “ Z°0, morphisms � ›Ñ � from � to � are the � ˆ �-matrices,
and compositions are given by the ordinary matrix multiplication.

Example G.4 (Categories and algebraic structures)

(a) � “ Set, the category of sets: objects are sets, morphisms are maps of sets, and composition
is the usual composition of functions.

(b) � “ Vec� , the category of vector spaces over the field � : objects are �-vector spaces, mor-
phisms are �-linear maps, and composition is the usual composition of functions.

(c) � “ Top, the category of topological spaces: objects are topological spaces, morphisms are
continous maps, and composition is the usual composition of functions.

(d) � “ Grp, the category of groups: objects are groups, morphisms are homomorphisms of groups,
and composition is the usual composition of functions.

(e) � “ Ab, the category of abelian groups: objects are abelian groups, morphisms are homomor-
phisms of groups, and composition is the usual composition of functions.

(f ) � “ Rng, the category of rings: objects are rings, morphisms are homomorphisms of rings,
and composition is the usual composition of functions.
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(g) � “R Mod, the category of left R-modules: objects are left modules over the ring R , morphisms
are R-homomorphisms, and composition is the usual composition of functions.

(g’) � “ ModR , the category of left R-modules: objects are right modules over the ring R ,
morphisms are R-homomorphisms, and composition is the usual composition of functions.

(g”) � “R ModS , the category of pR � Sq-bimodules: objects are pR � Sq-bimodules over the rings
R and S, morphisms are pR � Sq-homomorphisms, and composition is the usual composition of
functions.

(h) Examples of your own � � �

Definition G.5 (Monomorphism/epimorphism)
Let � be a category and let � P Hom�pA� Bq be a morphism. Then � is called

(a) a monomorphism iff for all morphisms �1� �2 : C ›Ñ A,

� ˝ �1 “ � ˝ �2 ùñ �1 “ �2 �

(b) an epimorphism iff for all morphisms �1� �2 : B ›Ñ C ,

�1 ˝ � “ �2 ˝ � ùñ �1 “ �2 �

Remark G.6
In categories, where morphisms are set-theoretic maps, then injective morphisms are monomorphisms,
and surjective morphisms are epimorphisms.
In module categories (RMod, ModR , RModS , . . . ), the converse holds as well, but:
Warning: It is not true in general, that all monomorphisms must be injective, and all epimorphisms
must be surjective.
For example in Rng, the canonical injection � : Z ›Ñ Q is an epimorphism. Indeed, if C is a ring
and �1� �2 P HomRngpQ� Cq

Z �
// Q

�1
//

�2
// C

are such that �1 ˝ � “ �2 ˝ �, then we must have �1 “ �2 by the universal property of the field of
fractions. However, � is clearly not surjective.
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H Functors
Definition H.1 (Covariant functor )

Let � and � be categories. A covariant functor F : � ›Ñ � is a collection of maps:

‚ F : Ob � ›Ñ Ob � � X fiÑ F pXq, and

‚ FA�B : Hom�pA� Bq fiÑ Hom� pF pAq� F pBqq,

satisfying:

(a) If A �
›Ñ B �

›Ñ C are morphisms in �, then F p� ˝ �q “ F p�q ˝ F p�q; and

(b) F p1Aq “ 1FpAq for every A P Ob �.

Definition H.2 (Contravariant functor )
Let � and � be categories. A contravariant functor F : � ›Ñ � is a collection of maps:

‚ F : Ob � ›Ñ Ob � � X fiÑ F pXq, and

‚ FA�B : Hom�pA� Bq fiÑ Hom� pF pBq� F pAqq,

satisfying:

(a) If A �
›Ñ B �

›Ñ C are morphisms in �, then F p� ˝ �q “ F p�q ˝ F p�q; and

(b) F p1Aq “ 1FpAq for every A P Ob �.

Remark H.3
Often in the literature functors are defined only on objects of categories. When no confusion is to
be made and the action of functors on the morphism sets are implicitely obvious, we will also adopt
this convention.

Example H.4
Let Q P ObpRModq. Then

HomR pQ� ´q : RMod ›Ñ Ab
M fiÑ HomR pQ� Mq ,

is a covariant functor, and

HomR p´� Qq : RMod ›Ñ Ab
M fiÑ HomR pM� Qq ,

is a contravariant functor.

Exact Functors.
We are now interested in the relations between functors and exact sequences in categories where it
makes sense to define exact sequences, that is categories that behave essentially like module categories
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such as RMod. These are the so-called abelian categories. It is not the aim, to go into these details,
but roughly speaking abelian categories are categories satisfying the following properties:

‚ they have a zero object (in RMod: the zero module)

‚ they have products and coproducts (in RMod: products and direct sums)

‚ they have kernels and cokernels (in RMod: the usual kernels and cokernels of R-linear maps)

‚ monomorphisms are kernels and epimorphisms are cokernels (in RMod: satisfied)

Definition H.5 (Pre-additive categories/additive functors)

(a) A category � in which all sets of morphisms are abelian groups is called pre-additive.

(b) A functor F : � ›Ñ � between pre-additive categories is called additive iff the maps FA�B
are homomorphisms of groups for all A� B P Ob �.

Definition H.6 (Left exact/right exact/exact functors)
Let F : � ›Ñ � be a covariant (resp. contravariant) additive functor between two abelian categories,
and let 0 ›Ñ A �

›Ñ B �
›Ñ C ›Ñ 0 be a s.e.s. of objects and morphisms in �. Then F is called:

(a) left exact if 0 ›Ñ F pAq
Fp�q
›Ñ F pBq

Fp�q
›Ñ F pCq (resp. 0 ›Ñ F pCq

Fp�q
›Ñ F pBq

Fp�q
›Ñ F pAqq) is an

exact sequence.

(b) right exact if F pAq
Fp�q
›Ñ F pBq

Fp�q
›Ñ F pCq ›Ñ 0 (resp. F pCq

Fp�q
›Ñ F pBq

Fp�q
›Ñ F pAqq ›Ñ 0) is an

exact sequence.

(c) exact if 0 ›Ñ F pAq
Fp�q
›Ñ F pBq

Fp�q
›Ñ F pCq ›Ñ 0 (resp. 0 ›Ñ F pCq

Fp�q
›Ñ F pBq

Fp�q
›ÑF pAqq ›Ñ0)

is a short exact sequence.

Example H.7
The functors HomR pQ� ´q and HomR p´� Qq of Example H.4 are both left exact functors. Moreover
HomR pQ� ´q is exact if and only if Q is projective, and HomR p´� Qq is exact if and only if Q is
injective.


