Throughout, *G* denotes a finite group. Furthermore, all modules considered are assumed to be *left* modules and finitely generated.

A. Exercises for the tutorial.

Exercise 1.

Let (F, O, k) be a *p*-modular system and write p := J(O). Let *L* be an *OG*-module. Verify that

• setting $L^F := F \otimes_O L$ defines an *FG*-module, and

• reduction modulo \mathfrak{p} of *L*, that is $\overline{L} := L/\mathfrak{p}L \cong k \otimes_O L$ defines a *kG*-module.

Exercise 2.

Let *O* be a complete discrete valuation ring and let F := Frac(O) be the fraction field of *O*. Let *V* be a finitely generated *FG*-module and let $\{v_1, \ldots, v_n\}$ be an *F*-basis of *V*. Prove that $L := OGv_1 + \cdots + OGv_n \subseteq V$ is an *O*-form of *V*.

Exercise 3.

Let *O* be a commutative ring. Let *A* be a finitely-generated *O*-algebra of finite *O*-rank and let $e \in A$ be an idempotent element. Let *V* be an *A*-module. Prove that

$$\operatorname{Hom}_A(Ae, V) \cong eV$$

as $\operatorname{End}_A(V)$ -modules.

B. Exercises to hand in.

Exercise 4.

Let *O* be a local commutative ring with unique maximal ideal $\mathfrak{p} := J(O)$ and residue field k := O/J(O).

- (a) Let *M*, *N* be finitely generated free *O*-modules.
 - (i) Let $f : M \longrightarrow N$ is an *O*-linear map and $\overline{f} : \overline{M} \longrightarrow \overline{N}$ its reduction modulo \mathfrak{p} . Prove that if \overline{f} is surjective (resp. an isomorphism), then f is surjective (resp. an isomorphism).
 - (ii) Prove that if elements $x_1, \ldots, x_n \in M$ $(n \in \mathbb{Z}_{\geq 1})$ are such that their images $\overline{x}_1, \ldots, \overline{x}_2 \in \overline{M}$ form a *k*-basis of \overline{M} , then $\{x_1, \ldots, x_n\}$ is an *O*-basis of *M*. In particular, dim_k(\overline{M}) = rk_O(M).

Deduce that any direct summand of a finitely generated free *O*-module is free.

- (b) Prove that if *M* is a finitely generated *O*-module, then the following conditions are equivalent:
 - (i) *M* is projective;
 - (ii) M is free.

[Hint: Use Nakayama's Lemma.]

Exercise 5.

Let *O* be a complete discrete valuation ring. Let *A* and *B* be a finitely generated *O*-algebras of finite *O*-rank and let $f : A \rightarrow B$ be a surjective *O*-algebra homomorphism. Prove that:

- (a) f maps J(A) onto J(B); and
- (b) f maps A^{\times} onto B^{\times} .

Exercise 6.

Let *O* be a complete discrete valuation ring and write $\mathfrak{p} := J(O)$. Let *A* be a finitely generated *O*-algebra of finite *O*-rank. Set $\overline{A} := A/\mathfrak{p}A$ and for $a \in A$ write $\overline{a} := a + \mathfrak{p}A$. Prove that:

- (a) For every idempotent $x \in \overline{A}$, there exists an idempotent $e \in A$ such that $\overline{e} = x$.
- (b) $A^{\times} = \{a \in A \mid \overline{a} \in \overline{A}^{\times}\}.$
- (c) If $e_1, e_2 \in A$ are idempotents such that $\overline{e}_1 = \overline{e}_2$ then there is a unit $u \in A^{\times}$ such that $e_1 = ue_2u^{-1}$.
- (d) The quotient morphism $A \to \overline{A}$ induces a bijection between the central idempotents of *A* and the central idempotents of \overline{A} .