Representation Theory — Exercise Sheet 3

TU Kaiserslautern FB Mathematik

Jun.-Prof. Dr. Caroline Lassueur

Bernhard Böhmler

Due date: Wednesday, 9th of December 2020, 10 a.m.

WS 2020/21

Throughout, *K* denotes a **field** and *G* a finite group. Furthermore, all *KG*-modules considered are assumed to be *left* modules and finite-dimensional over *K*.

Recall that $M \mid N$ means that the KG-module M is (isomorphic to) a direct summand of the KG-module N.

A. Exercises for the tutorial.

EXERCISE 1 (Proof of the Converse of Maschke's Theorem for K splitting field for G.). Assume K is a splitting field for G of positive characteristic p with $p \mid |G|$. Set $T := \langle \sum_{g \in G} g \rangle_K$.

- (a) Prove that there is a series of KG-submodules given by $KG^{\circ} \supseteq I(KG) \supseteq T \supseteq 0$.
- (b) Deduce that the regular module KG° has at least two composition factors isomorphic to the trivial module K.
- (c) Deduce that KG is not a semisimple K-algebra using Theorem 8.2.

Exercise 2.

Let *M*, *N* be *KG*-modules. Prove that:

- (a) $M \cong (M^*)^*$ as KG-modules (in a natural way);
- (b) $M^* \oplus N^* \cong (M \oplus N)^*$ and $M^* \otimes_K N^* \cong (M \otimes_K N)^*$ as KG-modules (in a natural way);
- (c) M is simple, resp. indecomposable, resp. semisimple, if and only if M^* is simple, resp. semisimple, resp. indecomposable.

Exercise 3.

Let $0 \longrightarrow L \stackrel{\varphi}{\longrightarrow} M \stackrel{\psi}{\longrightarrow} N \longrightarrow 0$ be a s.e.s. of *KG*-modules. Prove that if $M \cong L \oplus N$, then the s.e.s. splits.

[Hint: Consider the exact sequence induced by the functor $\operatorname{Hom}_{KG}(N, -)$ and use the fact that the modules considered are all finite-diemensional.]

B. Exercises to hand in.

Exercise 4.

Let *M*, *N* be *KG*-modules. Prove that:

(a) the map

$$\begin{array}{cccc} \theta := \theta_{M,N} \colon & M^* \otimes_K N & \longrightarrow & \operatorname{Hom}_K(M,N) \\ & f \otimes n & \mapsto & \theta(f \otimes n) : M \longrightarrow N, m \mapsto \theta(f \otimes n)(m) = f(m)n \end{array}$$

is a K-isomorphism;

- (b) Tr_M is a KG-homomorphism and $\operatorname{Tr}_M \circ \theta_{M,M}^{-1}$ coincides with the ordinary trace of matrices;
- (c) $M \mid M \otimes_K M^* \otimes_K M$ and if char(K) | dimK(M), then $M \oplus M \mid M \otimes_K M^* \otimes_K M$. (This is more challenging!)

Exercise 5.

Prove that $Coind_{\{1\}}^G(K) \cong (KG)^*$ as KG-modules by defining an explicit KG-isomorphism. [Warning: with their KG-module structures $Coind_{\{1\}}^G(K)$ and $(KG)^*$ are isomorphic but not equal!]

Exercise 6.

Let *U*, *V*, *W* be *KG*-modules. Prove that there are isomorphisms of *KG*-modules:

- (i) $\operatorname{Hom}_K(U \otimes_K V, W) \cong \operatorname{Hom}_K(U, V^* \otimes_K W)$; and
- (ii) $\operatorname{Hom}_{KG}(U \otimes_K V, W) \cong \operatorname{Hom}_{KG}(U, V^* \otimes_K W) \cong \operatorname{Hom}_{KG}(U, \operatorname{Hom}_K(V, W)).$

Exercise 7 (Optional Exercise).

Investigate whether the statements of Exercise 2, Exercise 4, and Exercise 5 can be generalised to the case in which *K* is an arbitrary commutative ring and the *KG*-modules are free of finite rank when seen as *K*-modules.