

Throughout, all rings are assumed to be *associative rings with* 1, and modules are assumed to be *left* modules.

A. Exercises for the tutorial.

EXERCISE 1.

Let *R* be a semisimple ring. Prove the following statements.

- (a) Every non-zero left ideal *I* of *R* is generated by an **idempotent** of *R*, in other words $\exists e \in R$ such that $e^2 = e$ and $I = Re$. [Hint: choose a complement *I'* for *I*, so that $R^{\circ} = I \oplus I'$ and write $1 = e + e'$ with $e \in I$ and $e' \in I'$. Prove that $I = Re.$
- (b) If *I* is a non-zero left ideal of *R*, then every morphism in $Hom_R(I, R^{\circ})$ is given by right multiplication with an element of *R*.
- (c) If $e \in R$ is an idempotent, then $\text{End}_R(Re) \cong (eRe)^{\text{op}}$ (the opposite ring) as rings via the map *f* \mapsto *ef*(*e*)*e*. In particular End_{*R*}(*R*[°]) ≅ *R*^{op} via *f* $\mapsto f(1)$.
- (d) A left ideal *Re* generated by an idempotent *e* of *R* is minimal (i.e. simple as an *R*module) if and only if *eRe* is a division ring. [Hint: Use Schur's Lemma.]
- (e) Every simple left *R*-module is isomorphic to a minimal left ideal in *R*, i.e. a simple *R*-submodule of *R* ◦ .

Exercise 2.

Let *K* be a commutative ring and *A* be a *K*-algebra.

- (a) Prove that *Z*(*A*) is a *K*-subalgebra of *A*;
- (b) Prove that if *K* is a field and $A \neq 0$, then $K \longrightarrow Z(A)$, $\lambda \mapsto \lambda 1_A$ is an injective *K*homomorphism.
- (c) Prove that if $A = M_n(K)$ ($n \in \mathbb{Z}_{>0}$), then $Z(A) = K I_n$, i.e. the *K*-subalgebra of scalar matrices. [Hint: $\forall 1 \le i, j \le n$ denote by $E_{i,j}$ the elementary matrix with (i, j) -th entry equal to 1 (and all other

entries equal to zero). Remember that $E_{p,q}E_{s,t} = E_{p,t}$ if $q = s$ and is 0 otherwise.] (d) Assume *A* is the algebra of 2 × 2 upper-triangular matrices over *K*. Prove that

$$
x \sim \frac{1}{2}
$$

$$
Z(A) = \left\{ \left(\begin{smallmatrix} a & 0 \\ 0 & a \end{smallmatrix} \right) \mid a \in K \right\}.
$$

B. Exercises to hand in.

Exercise 3.

Let *K* be a field and let $A \neq 0$ be a finite-dimensional *K*-algebra. The aim of this exercise is to prove that *J*(*A*) is the unique maximal nilpotent left ideal of *A* and *J*(*Z*(*A*)) = *J*(*A*) \cap *Z*(*A*). Proceed as follows:

- (a) Prove that there exists $n \in \mathbb{Z}_{>0}$ such that $J(A)^n = J(A)^{n+1}$. (Hint: consider dimensions.)
- (b) Apply Nakayama's Lemma to deduce that $J(A)^n = 0$ and conclude that $J(A)$ is nilpotent.
- (c) Prove that if *I* is an arbitrary nilpotent left ideal of *A*, then $I \subseteq J(A)$. (Hint: here you should see *J*(*A*) as the intersection of the annihilators of the simple *A*-modules.)
- (d) Use the nilpotency of the Jacobson radical (of both *A* and *Z*(*A*)) to prove that

$$
J(Z(A)) = J(A) \cap Z(A).
$$

Exercise 4.

- (a) Let *G* be a finite group and *K* be a commutative ring. Verify that the regular representation ρ_{reg} corresponds to the regular *KG*-module KG° .
- (b) Let $G := C_2 \times C_2$ be the Klein-four group and let $K = \overline{K}$ be an algebraically closed field of characteristic 2.
	- (i) Prove that $KG \cong K[X, Y]/(X^2, Y^2)$ as *K*-algebras. (Note: *K*[*X*,*Y*] stands for the commutative polynomial *K*-algebra in the variables *X* and *Y*, i.e. $XY = YX$ in $K[X, Y]$.)
	- (ii) Compute $J(K[X, Y]/(X^2, Y^2))$ and $\vert \mathcal{M}(K[X, Y]/(X^2, Y^2)) \vert$, and describe all simple *KG*-modules.

(Hint: Do not forget that you can consider *K*-dimensions!)

Exercise 5.

The aim of this exercise is to prove that if *K* is a field of positive characteristic *p* and *G* is a p -group, then $I(KG) = J(KG)$. Proceed as indicated:

- (a) Recall that an ideal *I* of a ring *R* is called a **nil ideal** if each element of *I* is nilpotent. Accept the following result: if *I* is a nil left ideal in a left Artinian ring *R* then *I* is nilpotent.
- (b) Prove that *g* − 1 is a nilpotent element for each *g* ∈ *G* \ {1} and deduce that *I*(*KG*) is a nil ideal of *KG*.
- (c) Deduce from (a) and (b) that $I(KG) \subseteq I(KG)$ using Exercise 3.
- (d) Conclude that $I(KG) = J(KG)$ using Proposition-Definition 10.7.