yields

$$
\left|C_{G}(x)\right|=\frac{|G|}{|[x]|}
$$

Moreover, a function $f: G \longrightarrow \mathbb{C}$ which is constant on each conjugacy class of G, i.e. such that $f\left(g x g^{-1}\right)=f(x) \forall g, x \in G$, is called a class function (on G).

Lemma 7.8

Characters are class functions.
Proof: Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation and let χ_{V} be its character. Again, because by the properties of the trace we have $\operatorname{Tr}(\beta \circ \gamma)=\operatorname{Tr}(\gamma \circ \beta)$ for all \mathbb{C}-endomorphisms β, γ of V (GDM!), it follows that for all $g, x \in G$,

$$
\begin{aligned}
\chi_{V}\left(g \times g^{-1}\right)=\operatorname{Tr}\left(\rho_{V}\left(g x g^{-1}\right)\right) & =\operatorname{Tr}\left(\rho_{V}(g) \rho_{V}(x) \rho_{V}(g)^{-1}\right) \\
& =\operatorname{Tr}(\rho_{V}(x) \underbrace{\rho_{V}(g)^{-1} \rho_{V}(g)}_{=\operatorname{ld}})=\operatorname{Tr}\left(\rho_{V}(x)\right)=\chi_{V}(x) .
\end{aligned}
$$

Exercise 7.9

Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation and let χ_{V} be its character. Prove the following statements.
(a) If $g \in G$ is conjugate to g^{-1}, then $\chi_{V}(g) \in \mathbb{R}$.
(b) If $g \in G$ is an element of order 2 , then $\chi_{V}(g) \in \mathbb{Z}$ and $\chi_{V}(g) \equiv \chi_{V}(1)(\bmod 2)$.

Exercise 7.10 (The dual representation / the dual character)

Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation.
(a) Prove that:
(i) the dual space $V^{*}:=\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ is endowed with the structure of a $\mathbb{C} G$-module via

$$
\begin{array}{ccc}
G \times V^{*} & \longrightarrow & V^{*} \\
(g, f) & \mapsto & g . f
\end{array}
$$

where $(g . f)(v):=f\left(g^{-1} v\right) \forall v \in V$;
(ii) the character of the associated \mathbb{C}-representation $\rho_{V *}$ is then $\chi_{V^{*}}=\overline{X_{V}}$; and
(iii) if ρ_{V} decomposes as a direct sum $\rho_{V_{1}} \oplus \rho_{V_{2}}$ of two subrepresentations, then $\rho_{V^{*}}$ is equivalent to $\rho_{V_{1}^{*}} \oplus \rho_{V_{2}^{*}}$.
(b) Determine the duals of the 3 irreducible representations of S_{3} given in Example 2(d).

8 Orthogonality of Characters

We are now going to make use of results from the linear algebra (GDM) on the \mathbb{C}-vector space of \mathbb{C}-valued functions on G in order to develop further fundamental properties of characters.

Notation 8.1

We let $\mathcal{F}(G, \mathbb{C}):=\{f: G \longrightarrow \mathbb{C} \mid f$ function $\}$ denote the \mathbb{C}-vector space of \mathbb{C}-valued functions on G. Clearly $\operatorname{dim}_{\mathbb{C}} \mathcal{F}(G, \mathbb{C})=|G|$ because $\left\{\delta_{g}: G \longrightarrow \mathbb{C}, h \mapsto \delta_{g h} \mid g \in G\right\}$ is a \mathbb{C}-basis (see GDM).
Set $\mathcal{C l}(G):=\{f \in \mathcal{F}(G, \mathbb{C}) \mid f$ is a class function $\}$. This is clearly a \mathbb{C}-subspace of $\mathcal{F}(G, \mathbb{C})$, called the space of class functions on G.

Exercise 8.2

Find a \mathbb{C}-basis of $\mathcal{C l}(G)$ and deduce that $\operatorname{dim}_{\mathbb{C}} \mathcal{C l}(G)=|C(G)|$.

Proposition 8.3

The binary operation

\[

\]

is a scalar product on $\mathcal{F}(G, \mathbb{C})$.
Proof: It is straightforward to check that \langle,\rangle_{G} is sesquilinear and Hermitian (Exercise on Sheet 3); it is positive definite because for every $f \in \mathcal{F}(G, \mathbb{C})$,

$$
\langle f, f\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} f(g) \overline{f(g)}=\frac{1}{|G|} \sum_{g \in G} \underbrace{|f(g)|^{2}}_{\in \mathbb{R} \geqslant 0} \geqslant 0
$$

and moreover $\langle f, f\rangle_{G}=0$ if and only if $f=0$.

Remark 8.4

Obviously, the scalar product \langle,\rangle_{G} restricts to a scalar product on $\mathcal{C l}(G)$. Moreover, if f_{2} is a character of G, then by Property $7.5(\mathrm{~d})$ we can write

$$
\left\langle f_{1}, f_{2}\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) f_{2}\left(g^{-1}\right)
$$

The next theorem is the third key result of this lecture. It tells us that the irreducible characters of a finite group form an orthonormal system in $\mathcal{C l}(G)$ with respect to the scalar product \langle,\rangle_{G}.

Theorem 8.5 (1st Orthogonality Relations)

If $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ and $\rho_{W}: G \longrightarrow \mathrm{GL}(W)$ are two irreducible \mathbb{C}-representations affording the characters χ_{V} and χ_{W} respectively, then

$$
\left\langle\chi_{V}, \chi_{W}\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \chi_{W}\left(g^{-1}\right)= \begin{cases}1 & \text { if } \rho_{V} \sim \rho_{W} \\ 0 & \text { if } \rho_{V} \nsim \rho_{W}\end{cases}
$$

Proof: Choose ordered \mathbb{C}-bases $E:=\left(e_{1}, \ldots, e_{n}\right)$ and $F:=\left(f_{1}, \ldots, f_{m}\right)$ of V and W respectively. Then for each $g \in G$ write $Q(g):=\left(\rho_{V}(g)\right)_{E}$ and $P(g):=\left(\rho_{W}(g)\right)_{F}$. If $\rho_{V} \nsucc \rho_{W}$ compute

$$
\begin{aligned}
\left\langle\chi_{V}, \chi_{W}\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \chi_{W}\left(g^{-1}\right) & =\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(Q(g)) \operatorname{Tr}\left(P\left(g^{-1}\right)\right) \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\sum_{i=1}^{n} Q(g)_{i i}\right)\left(\sum_{j=1}^{m} P\left(g^{-1}\right)_{j j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \underbrace{\frac{1}{|G|} \sum_{g \in G} Q(g)_{i i} P\left(g^{-1}\right)_{i j} \text { of Schur's Relations }}_{=0}=0
\end{aligned}
$$

and similarly if $\rho_{V} \sim \rho_{W}$, then by Lemma 7.3, we may assume w.l.o.g. that $W=V$, so $P=Q$ and we obtain

$$
\left\langle\chi_{V}, \chi_{V}\right\rangle_{G}=\sum_{i=1}^{n} \sum_{j=1}^{m} \underbrace{\frac{1}{|G|} \sum_{g \in G} Q(g)_{i i} Q\left(g^{-1}\right)_{j j}}_{=\frac{1}{n} \delta_{i j} \delta_{i j} \text { by (b) of Schur's Relations }}=\sum_{i=1}^{n} \frac{1}{n}=1 .
$$

9 Consequences of the 1st Orthogonality Relations

In this section we use the 1st Orthogonality Relations in order to deduce a series of fundamental properties of the (irreducible) characters of finite groups.

Corollary 9.1 (Linear independence)

The irreducible characters of G are \mathbb{C}-linearly independent.
Proof: Assume $\sum_{i=1}^{s} \lambda_{i} \chi_{i}=0$, where $\chi_{1}, \ldots, \chi_{s}$ are pairwise distinct irreducible characters of $G, \lambda_{1}, \ldots, \lambda_{s} \in$ \mathbb{C} and $s \in \mathbb{Z}_{>0}$. Then the 1st Orthogonality Relations yield

$$
0=\left\langle\sum_{i=1}^{s} \lambda_{i} X_{i}, \chi_{j}\right\rangle_{G}=\sum_{i=1}^{s} \lambda_{i} \underbrace{\left\langle\chi_{i}, \chi_{j}\right\rangle_{G}}_{=\delta_{i j}}=\lambda_{j}
$$

for each $1 \leqslant j \leqslant s$. The claim follows.

Corollary 9.2 (Finiteness)

There are at most $|C(G)|$ irreducible characters of G. In particular, there are only a finite number of them.

Proof: By Corollary 9.1 the irreducible characters of G are \mathbb{C}-linearly independent. By Lemma 7.8 irrreducible characters are elements of the \mathbb{C}-vector space $\mathcal{C l}(G)$. Therefore there exists at most $\operatorname{dim}_{\mathbb{C}} \mathcal{C l}(G)=$ $|C(G)|<\infty$ of them.

Corollary 9.3 (Multiplicities)

Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation and let $\rho_{V}=\rho_{V_{1}} \oplus \cdots \oplus \rho_{V_{s}}$ be a decomposition of ρ_{V} into irreducible subrepresentations. Then the following assertions hold.
(a) If $\rho_{W}: G \longrightarrow \mathrm{GL}(W)$ is an irreducible \mathbb{C}-representation of G, then the multiplicity of ρ_{W} in $\rho_{V_{1}} \oplus \cdots \oplus \rho_{V_{s}}$ is equal to $\left\langle\chi_{V}, \chi_{W}\right\rangle_{G}$.
(b) This multiplicity is independent of the choice of the chosen decomposition of ρ_{V} into irreducible subrepresentations.

Proof: (a) W.lo.g., we may assume that we have chosen the labelling such that

$$
\rho_{V}=\rho_{V_{1}} \oplus \cdots \oplus \rho_{V_{l}} \oplus \rho_{V_{l+1}} \oplus \cdots \oplus \rho_{V_{s}}
$$

where $\rho_{V_{i}} \sim \rho_{W} \forall 1 \leqslant i \leqslant l$ and $\rho_{V_{j}} \ngtr \rho_{W} \forall l+1 \leqslant j \leqslant s$. Thus $\chi_{V_{i}}=\chi_{W} \forall 1 \leqslant i \leqslant l$ by Lemma 7.3. Therefore the 1st Orthogonality Relations yield

$$
\left\langle\chi_{V}, x_{W}\right\rangle_{G}=\sum_{i=1}^{l}\left\langle\chi_{V_{i}}, \chi_{W}\right\rangle_{G}+\sum_{j=l+1}^{s}\left\langle\chi_{v_{j}}, \chi_{W}\right\rangle_{G}=\sum_{i=1}^{l} \underbrace{\left\langle\chi_{W}, \chi_{W}\right\rangle_{G}}_{=1}+\sum_{j=l+1}^{s} \underbrace{\left\langle x_{V_{j}}, \chi_{W}\right\rangle_{G}}_{=0}=l .
$$

(b) Obvious, since $\left\langle\chi_{V}, \chi_{W}\right\rangle_{G}$ depends only on V and W, but not on the chosen decomposition.

We can now prove that the converse of Lemma 7.3 holds.

Corollary 9.4 (Equality of characters)

Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ and $\rho_{W}: G \longrightarrow \mathrm{GL}(W)$ be \mathbb{C}-representations with characters χ_{V} and χ_{W} respectively. Then,

$$
\chi_{V}=\chi_{W} \quad \Leftrightarrow \quad \rho_{V} \sim \rho_{W}
$$

Proof: " \Leftarrow ": The sufficient condition is the statement of Lemma 7.3.
$" \Rightarrow$ ": To prove the necessary condition decompose ρ_{V} and ρ_{W} into direct sums of irreducible subrepresentations

$$
\begin{aligned}
& \rho_{V}=\underbrace{\rho_{V_{1,1}} \oplus \cdots \oplus \rho_{V_{1, m_{1}}}}_{\text {all } \sim \rho_{V_{1}}} \oplus \cdots \oplus \underbrace{\rho_{V_{s, 1}} \oplus \cdots \oplus \rho_{V_{s, m_{s}}}}_{\text {all } \sim \rho_{V_{s}}}, \\
& \rho_{W}=\underbrace{\rho_{W_{1,1}} \oplus \cdots \oplus \rho_{W_{1, p_{1}}}}_{\text {all } \sim \rho_{V_{1}}} \oplus \cdots \oplus \underbrace{\rho_{W_{s, 1}} \oplus \cdots \oplus \rho_{W_{s, p_{s}}}}_{\text {all } \sim \rho_{V_{s}}},
\end{aligned}
$$

where $m_{i}, p_{i} \geqslant 0$ for all $1 \leqslant i \leqslant s$ and the $\rho_{V_{i}}$'s are pairwise non-equivalent irreducible \mathbb{C} representations of G. (Some of the m_{i}, p_{i} 's may be zero!) Now, as we assume that $\chi_{V}=\chi_{W}$, for each $1 \leqslant i \leqslant s$ Corollary 9.3 yields

$$
m_{i}=\left\langle\chi_{V}, \chi v_{v_{i}}\right\rangle_{G}=\left\langle\chi_{W}, \chi_{v_{i}}\right\rangle_{G}=p_{i}
$$

hence $\rho_{V} \sim \rho_{W}$.

Corollary 9.5 (Irreducibility criterion)

A \mathbb{C}-representation $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ is irreducible if and only if $\left\langle\chi_{V}, \chi_{V}\right\rangle_{G}=1$.
Proof: " \Rightarrow ": holds by the 1st Orthogonality Relations.
$" \Leftarrow "$ As in the previous proof, write

$$
\rho_{V}=\underbrace{\rho_{V_{1,1}} \oplus \cdots \oplus \rho_{V_{1, m_{1}}}}_{\text {all } \sim \rho_{V_{1}}} \oplus \cdots \oplus \underbrace{\rho_{V_{s, 1}} \oplus \cdots \oplus \rho_{V_{s, m m_{s}}}}_{\text {all } \sim \rho_{V_{s}}},
$$

where $m_{i} \geqslant 1$ for all $1 \leqslant i \leqslant s$ and the $\rho_{V_{i}}$'s are pairwise non-equivalent irreducible \mathbb{C} representations of G. Then, using the assumption, the sesquilinearity of the scalar product and the 1st Orthogonality Relations, we obtain that

$$
1=\left\langle\chi_{v}, \chi_{v}\right\rangle_{G}=\sum_{i=1}^{s} m_{i}^{2} \underbrace{\left\langle\chi_{v_{i}}, \chi_{v_{i}}\right\rangle_{G}}_{=1}=\sum_{i=1}^{s} m_{i}^{2}
$$

Hence, w.l.o.g. we may assume that $m_{1}=1$ and $m_{i}=0 \forall 2 \leqslant i \leqslant s$, so that $\rho_{V}=\rho_{V_{1}}$ is irreducible.

Theorem 9.6

The set $\operatorname{lrr}(G)$ is an orthonormal \mathbb{C}-basis (w.r.t. $\left.\langle,\rangle_{G}\right)$ of the \mathbb{C}-vector space $\mathcal{C l}(G)$ of class functions on G.

Proof: We already know that $\operatorname{Irr}(G)$ is a \mathbb{C}-linearly independent set and also that it forms an orthonormal system of $\mathcal{C l}(G)$ w.r.t. \langle,\rangle_{G}. Hence it remains to prove that $\operatorname{Irr}(G)$ generates $\mathcal{C l}(G)$ as a \mathbb{C}-vector space. So let $X:=\langle\operatorname{lrr}(G)\rangle_{\mathbb{C}}$ be the \mathbb{C}-subspace of $\mathcal{C l}(G)$ generated by $\operatorname{lrr}(G)$. It follows that

$$
\mathcal{C l}(G)=X \oplus X^{\perp}
$$

where X^{\perp} denotes the orthogonal of X with respect to the scalar product \langle,\rangle_{G} (see GDM). Thus it is enough to prove that $X^{\perp}=0$. So let $f \in X^{\perp}$, set $\breve{f}:=\sum_{g \in G} \overline{f(g)} g \in \mathbb{C} G$ and we prove the following assertions:
(1) $\breve{f} \in Z(\mathbb{C} G)$ (the centre of $\mathbb{C} G$): let $h \in G$ and compute

$$
h \breve{f} h^{-1}=\sum_{g \in G} \overline{f(g)} h g \cdot h^{-1} s:=\frac{h g h^{-1}}{=} \sum_{s \in G} \underbrace{\overline{f\left(h^{-1} s h\right)}}_{=f(s)} s=\sum_{s \in G} \overline{f(s)} s=\breve{f} .
$$

Hence $h \breve{f}=\breve{f} h$ and this equality extends by \mathbb{C}-linearity to the whole of $\mathbb{C} G$, so that $\breve{f} \in Z(\mathbb{C} G)$.
(2) If V is a simple $\mathbb{C} G$-module with character χ_{V}, then the external multiplication by \breve{f} on V is scalar $\underline{\text { multiplication by } \frac{|G|}{\operatorname{dim}_{\mathbb{C}} V}\left\langle\chi_{V}, f\right\rangle_{G} \in \mathbb{C} \text { : first notice that the external multiplication by } \breve{f} \text { on } V \text {, i.e. the map }}$

$$
\breve{f} \cdot-: V \longrightarrow V, v \mapsto \breve{f} \cdot v
$$

is $\mathbb{C} G$-linear (i.e. an element of $\operatorname{End}_{\mathbb{C} G}(V)$). Indeed, for each $x \in \mathbb{C} G$ and each $v \in V$ we have

$$
\breve{f} \cdot(x \cdot v)=(\breve{f} x) \cdot v=(x \breve{f}) \cdot v=x \cdot(\breve{f} \cdot v)
$$

because $\breve{f} \in Z(\mathbb{C} G)$. Therefore, by Schur's Lemma, there exists a scalar $\lambda \in \mathbb{C}$ such that $\breve{f} \cdot-=\lambda \operatorname{ld}_{V}$. Now, setting $n:=\operatorname{dim}_{\mathbb{C}}(V)$, we have

$$
\lambda=\frac{1}{n} \operatorname{Tr}\left(\lambda \mid \mathrm{Id}_{V}\right)=\frac{1}{n} \operatorname{Tr}(\breve{f} \cdot-)=\frac{1}{n} \sum_{g \in G} \overline{f(g)} \underbrace{\operatorname{Tr}(\text { mult. by } g \text { on } V)}_{=\chi_{V}(g)}=\frac{1}{n} \sum_{g \in G} \overline{f(g)} \chi_{V}(g)=\frac{|G|}{n}\left\langle\chi_{V}, f\right\rangle_{G} .
$$

(3) If V is a simple $\mathbb{C} G$-module with character χ_{V}, then the external multiplication by \breve{f} on V is zero: indeed, $\left\langle\chi_{V}, f\right\rangle_{G}=0$ because $f \in X^{\perp}$ and the claim follows from (2).
(4) $f=0$: indeed, as the external multiplication by \breve{f} is zero on every simple $\mathbb{C} G$-module, it is zero on every $\mathbb{C} G$-module, because any $\mathbb{C} G$-module can be decomposed as the direct sum of simple submodules
by the Corollary to Maschke's Theorem. In particular, the external multiplication by \breve{f} is zero on $\mathbb{C} G$. Hence

$$
0=\breve{f} \cdot 1_{\mathbb{C} G}=\breve{f}=\sum_{g \in G} \overline{f(g)} g
$$

and we obtain that $\overline{f(g)}=0$ for each $g \in G$ because G is a \mathbb{C}-basis of $\mathbb{C} G$. But then $f(g)=0$ for each $g \in G$ and it follows that $f=0$.

Corollary 9.7

The number of pairwise distinct irreducible characters of G is equal to the number of conjugacy classes of G. In other words,

$$
|\operatorname{lrr}(G)|=|C(G)|
$$

Proof: By Theorem 9.6 the set $\operatorname{Irr}(G)$ is a \mathbb{C}-basis of the \mathbb{C}-vector space $\mathcal{C l}(G)$ of class functions on G. Hence,

$$
|\operatorname{lrr}(G)|=\operatorname{dim}_{\mathbb{C}} \mathcal{C l}(G)=|C(G)|
$$

where the second equality holds by Exercise 8.2.

Corollary 9.8

Let $f \in \mathcal{C l}(G)$. Then the following assertions hold:
(a) $f=\sum_{\chi \in \operatorname{lrr}(G)}\langle f, \chi\rangle_{G} \chi$;
(b) $\langle f, f\rangle_{G}=\sum_{\chi \in \operatorname{lrr}(G)}\langle f, \chi\rangle_{G}^{2}$;
(c) f is a character $\Longleftrightarrow\langle f, \chi\rangle_{G} \in \mathbb{Z}_{\geqslant 0} \quad \forall \chi \in \operatorname{Irr}(G)$; and
(d) $f \in \operatorname{Irr}(G) \Longleftrightarrow f$ is a character and $\langle f, f\rangle_{G}=1$.

Proof: (a)+(b) hold for any orthonormal basis with respect to a given scalar product. (GDM!)
(c) ' \Rightarrow ': If f is a character, then by Corollary 9.3 the complex number $\langle f, \chi\rangle_{G}$ is the multiplicity of χ as a constituent of f for each $\chi \in \operatorname{Irr}(G)$, hence a non-negative integer.
' \Leftarrow ': If for each $\chi \in \operatorname{lrr}(G),\langle f, \chi\rangle_{G}=: m_{\chi} \in \mathbb{Z}_{\geqslant 0}$, then f is the character of the representation

$$
\rho:=\bigoplus_{x \in \operatorname{lr}(G)} \bigoplus_{j=1}^{m_{\chi}} \rho(\chi)
$$

where $\rho(\chi)$ is a \mathbb{C}-representation affording the character χ.
(d) The necessary condition is given by the 1st Orthogonality Relations. The sufficient condition follows from (b) and (c).

Exercise 9.9

Let V be a $\mathbb{C} G$-module affording the character χ_{V}. Consider the \mathbb{C}-subspace of fixed points under the action of G, that is, $V^{G}:=\{v \in V \mid g \cdot v=v \forall g \in G\}$. Prove that

$$
\operatorname{dim}_{\mathbb{C}} V^{G}=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g)
$$

in two different ways:

1. considering the scalar product of χ_{V} with the trivial character 1_{G};
2. seeing V^{G} as the image of the projector $\pi: V \longrightarrow V, v \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot v$.
