yields

$$|C_G(x)| = \frac{|G|}{|[x]|}.$$

Moreover, a function $f: G \longrightarrow \mathbb{C}$ which is constant on each conjugacy class of G, i.e. such that $f(gxg^{-1}) = f(x) \ \forall \ g, x \in G$, is called a **class function** (on G).

Lemma 7.8

Characters are class functions.

Proof: Let $\rho_V: G \longrightarrow \operatorname{GL}(V)$ be a \mathbb{C} -representation and let χ_V be its character. Again, because by the properties of the trace we have $\operatorname{Tr}(\beta \circ \gamma) = \operatorname{Tr}(\gamma \circ \beta)$ for all \mathbb{C} -endomorphisms β, γ of V (GDM!), it follows that for all $g, x \in G$,

$$\chi_{V}(gxg^{-1}) = \operatorname{Tr}\left(\rho_{V}(gxg^{-1})\right) = \operatorname{Tr}\left(\rho_{V}(g)\rho_{V}(x)\rho_{V}(g)^{-1}\right)$$

$$= \operatorname{Tr}\left(\rho_{V}(x)\underbrace{\rho_{V}(g)^{-1}\rho_{V}(g)}_{=\operatorname{Id}_{V}}\right) = \operatorname{Tr}\left(\rho_{V}(x)\right) = \chi_{V}(x).$$

Exercise 7.9

Let $\rho_V:G\longrightarrow \mathrm{GL}(V)$ be a $\mathbb C$ -representation and let χ_V be its character. Prove the following statements.

- (a) If $g \in G$ is conjugate to g^{-1} , then $\chi_V(g) \in \mathbb{R}$.
- (b) If $g \in G$ is an element of order 2, then $\chi_V(g) \in \mathbb{Z}$ and $\chi_V(g) \equiv \chi_V(1) \pmod{2}$.

Exercise 7.10 (The dual representation / the dual character)

Let $\rho_V : G \longrightarrow \operatorname{GL}(V)$ be a \mathbb{C} -representation.

- (a) Prove that:
 - (i) the dual space $V^* := \operatorname{\mathsf{Hom}}_{\mathbb{C}}(V,\mathbb{C})$ is endowed with the structure of a $\mathbb{C}G$ -module via

$$\begin{array}{ccc} G \times V^* & \longrightarrow & V^* \\ (g, f) & \mapsto & g.f \end{array}$$

where $(g.f)(v) := f(q^{-1}v) \ \forall \ v \in V$;

- (ii) the character of the associated \mathbb{C} -representation ρ_{V^*} is then $\chi_{V^*}=\overline{\chi_V}$; and
- (iii) if ρ_V decomposes as a direct sum $\rho_{V_1}\oplus\rho_{V_2}$ of two subrepresentations, then ρ_{V^*} is equivalent to $\rho_{V_1^*}\oplus\rho_{V_2^*}$.
- (b) Determine the duals of the 3 irreducible representations of S_3 given in Example 2(d).

8 Orthogonality of Characters

We are now going to make use of results from the linear algebra (GDM) on the \mathbb{C} -vector space of \mathbb{C} -valued functions on G in order to develop further fundamental properties of characters.

Notation 8.1

We let $\mathcal{F}(G,\mathbb{C}):=\{f:G\longrightarrow\mathbb{C}\mid f \text{ function}\}$ denote the \mathbb{C} -vector space of \mathbb{C} -valued functions on G. Clearly $\dim_{\mathbb{C}}\mathcal{F}(G,\mathbb{C})=|G|$ because $\{\delta_g:G\longrightarrow\mathbb{C},h\mapsto\delta_{gh}\mid g\in G\}$ is a \mathbb{C} -basis (see GDM). Set $\mathcal{C}l(G):=\{f\in\mathcal{F}(G,\mathbb{C})\mid f \text{ is a class function}\}$. This is clearly a \mathbb{C} -subspace of $\mathcal{F}(G,\mathbb{C})$, called the space of class functions on G.

Exercise 8.2

Find a \mathbb{C} -basis of $\mathcal{C}l(G)$ and deduce that $\dim_{\mathbb{C}} \mathcal{C}l(G) = |C(G)|$.

Proposition 8.3

The binary operation

$$\begin{array}{cccc} \langle\,,\,\rangle_G \colon & \mathcal{F}(G,\mathbb{C}) \times \mathcal{F}(G,\mathbb{C}) & \longrightarrow & \mathbb{C} \\ & (f_1,f_2) & \mapsto & \langle\,f_1,f_2\rangle_G := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)} \end{array}$$

is a scalar product on $\mathcal{F}(G,\mathbb{C})$.

Proof: It is straightforward to check that \langle , \rangle_G is sesquilinear and Hermitian (Exercise on Sheet 3); it is positive definite because for every $f \in \mathcal{F}(G,\mathbb{C})$,

$$\langle f, f \rangle_G = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{f(g)} = \frac{1}{|G|} \sum_{g \in G} \underbrace{|f(g)|^2}_{\in \mathbb{R}_{>0}} \ge 0$$

and moreover $\langle f, f \rangle_G = 0$ if and only if f = 0.

Remark 8.4

Obviously, the scalar product \langle , \rangle_G restricts to a scalar product on $\mathcal{C}l(G)$. Moreover, if f_2 is a character of G, then by Property 7.5(d) we can write

$$\langle f_1, f_2 \rangle_G = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)} = \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1}).$$

The next theorem is the third key result of this lecture. It tells us that the irreducible characters of a finite group form an orthonormal system in $\mathcal{C}l(G)$ with respect to the scalar product $\langle \ , \ \rangle_G$.

Theorem 8.5 (1st Orthogonality Relations)

If $\rho_V: G \longrightarrow \operatorname{GL}(V)$ and $\rho_W: G \longrightarrow \operatorname{GL}(W)$ are two irreducible $\mathbb C$ -representations affording the characters χ_V and χ_W respectively, then

$$\langle \chi_V, \chi_W \rangle_G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \chi_W(g^{-1}) = \begin{cases} 1 & \text{if } \rho_V \sim \rho_W, \\ 0 & \text{if } \rho_V \not\sim \rho_W. \end{cases}$$

Proof: Choose ordered \mathbb{C} -bases $E:=(e_1,\ldots,e_n)$ and $F:=(f_1,\ldots,f_m)$ of V and W respectively. Then for each $g\in G$ write $Q(g):=\left(\rho_V(g)\right)_F$ and $P(g):=\left(\rho_W(g)\right)_F$. If $\rho_V\not\sim\rho_W$ compute

$$\begin{split} \langle \chi_V, \chi_W \rangle_G &= \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \chi_W(g^{-1}) = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr} \left(Q(g) \right) \operatorname{Tr} \left(P(g^{-1}) \right) \\ &= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{i=1}^n Q(g)_{ii} \right) \left(\sum_{j=1}^m P(g^{-1})_{jj} \right) \\ &= \sum_{i=1}^n \sum_{j=1}^m \underbrace{\frac{1}{|G|} \sum_{g \in G} Q(g)_{ii} P(g^{-1})_{jj}}_{=0 \text{ by (a) of Schur's Relations}} = 0 \end{split}$$

and similarly if $\rho_V \sim \rho_W$, then by Lemma 7.3, we may assume w.l.o.g. that W=V, so P=Q and we obtain

$$\langle \chi_V, \chi_V \rangle_G = \sum_{i=1}^n \sum_{j=1}^m \underbrace{\frac{1}{|G|} \sum_{g \in G} Q(g)_{ii} Q(g^{-1})_{jj}}_{=\frac{1}{n} \delta_{ij} \delta_{ij} \text{ by (b) of Schur's Relations}} = \sum_{i=1}^n \frac{1}{n} = 1.$$

9 Consequences of the 1st Orthogonality Relations

In this section we use the 1st Orthogonality Relations in order to deduce a series of fundamental properties of the (irreducible) characters of finite groups.

Corollary 9.1 (Linear independence)

The irreducible characters of G are \mathbb{C} -linearly independent.

Proof: Assume $\sum_{i=1}^{s} \lambda_i \chi_i = 0$, where χ_1, \ldots, χ_s are pairwise distinct irreducible characters of $G, \lambda_1, \ldots, \lambda_s \in \mathbb{C}$ and $s \in \mathbb{Z}_{>0}$. Then the 1st Orthogonality Relations yield

$$0 = \langle \sum_{i=1}^{s} \lambda_i \chi_i, \chi_j \rangle_G = \sum_{i=1}^{s} \lambda_i \underbrace{\langle \chi_i, \chi_j \rangle_G}_{=\delta_{i:}} = \lambda_j$$

for each $1 \le j \le s$. The claim follows.

Corollary 9.2 (Finiteness)

There are at most |C(G)| irreducible characters of G. In particular, there are only a finite number of them.

Proof: By Corollary 9.1 the irreducible characters of G are \mathbb{C} -linearly independent. By Lemma 7.8 irrreducible characters are elements of the \mathbb{C} -vector space $\mathcal{C}l(G)$. Therefore there exists at most $\dim_{\mathbb{C}} \mathcal{C}l(G) = |C(G)| < \infty$ of them.

Corollary 9.3 (Multiplicities)

Let $\rho_V: G \longrightarrow \operatorname{GL}(V)$ be a $\mathbb C$ -representation and let $\rho_V = \rho_{V_1} \oplus \cdots \oplus \rho_{V_s}$ be a decomposition of ρ_V into irreducible subrepresentations. Then the following assertions hold.

(a) If $\rho_W: G \longrightarrow \operatorname{GL}(W)$ is an irreducible $\mathbb C$ -representation of G, then the multiplicity of ρ_W in $\rho_{V_1} \oplus \cdots \oplus \rho_{V_s}$ is equal to $\langle \chi_V, \chi_W \rangle_G$.

(b) This multiplicity is independent of the choice of the chosen decomposition of ρ_V into irreducible subrepresentations.

Proof: (a) W.l.o.g., we may assume that we have chosen the labelling such that

$$\rho_V = \rho_{V_1} \oplus \cdots \oplus \rho_{V_l} \oplus \rho_{V_{l+1}} \oplus \cdots \oplus \rho_{V_s}$$

where $\rho_{V_i} \sim \rho_W \ \forall \ 1 \leqslant i \leqslant l$ and $\rho_{V_j} \not\sim \rho_W \ \forall \ l+1 \leqslant j \leqslant s$. Thus $\chi_{V_i} = \chi_W \ \forall \ 1 \leqslant i \leqslant l$ by Lemma 7.3. Therefore the 1st Orthogonality Relations yield

$$\langle \chi_{V}, \chi_{W} \rangle_{G} = \sum_{i=1}^{l} \langle \chi_{V_{i}}, \chi_{W} \rangle_{G} + \sum_{j=l+1}^{s} \langle \chi_{V_{j}}, \chi_{W} \rangle_{G} = \sum_{i=1}^{l} \underbrace{\langle \chi_{W}, \chi_{W} \rangle_{G}}_{=1} + \sum_{j=l+1}^{s} \underbrace{\langle \chi_{V_{j}}, \chi_{W} \rangle_{G}}_{=0} = l.$$

(b) Obvious, since $\langle \chi_V, \chi_W \rangle_G$ depends only on V and W, but not on the chosen decomposition.

We can now prove that the converse of Lemma 7.3 holds.

Corollary 9.4 (Equality of characters)

Let $\rho_V: G \longrightarrow \operatorname{GL}(V)$ and $\rho_W: G \longrightarrow \operatorname{GL}(W)$ be $\mathbb C$ -representations with characters χ_V and χ_W respectively. Then,

$$\chi_V = \chi_W \quad \Leftrightarrow \quad \rho_V \sim \rho_W$$

Proof: "\(\infty\)": The sufficient condition is the statement of Lemma 7.3.

" \Rightarrow ": To prove the necessary condition decompose ρ_V and ρ_W into direct sums of irreducible subrepresentations

$$\rho_{V} = \underbrace{\rho_{V_{1,1}} \oplus \cdots \oplus \rho_{V_{1,m_{1}}}}_{\text{all } \sim \rho_{V_{1}}} \oplus \cdots \oplus \underbrace{\rho_{V_{s,1}} \oplus \cdots \oplus \rho_{V_{s,m_{s}}}}_{\text{all } \sim \rho_{V_{s}}},$$

$$\rho_{W} = \underbrace{\rho_{W_{1,1}} \oplus \cdots \oplus \rho_{W_{1,p_{1}}}}_{\text{all } \sim \rho_{V_{1}}} \oplus \cdots \oplus \underbrace{\rho_{W_{s,1}} \oplus \cdots \oplus \rho_{W_{s,p_{s}}}}_{\text{all } \sim \rho_{V_{s}}},$$

where $m_i, p_i \geqslant 0$ for all $1 \leqslant i \leqslant s$ and the ρ_{V_i} 's are pairwise non-equivalent irreducible \mathbb{C} -representations of G. (Some of the m_i, p_i 's may be zero!) Now, as we assume that $\chi_V = \chi_W$, for each $1 \leqslant i \leqslant s$ Corollary 9.3 yields

$$m_i = \langle \chi_V, \chi_{V_i} \rangle_G = \langle \chi_W, \chi_{V_i} \rangle_G = p_i$$

hence $\rho_V \sim \rho_W$.

Corollary 9.5 (Irreducibility criterion)

A \mathbb{C} -representation $\rho_V: G \longrightarrow \mathrm{GL}(V)$ is irreducible if and only if $\langle \chi_V, \chi_V \rangle_G = 1$.

Proof: "⇒": holds by the 1st Orthogonality Relations.

" \Leftarrow ": As in the previous proof, write

$$\rho_V = \underbrace{\rho_{V_{1,1}} \oplus \cdots \oplus \rho_{V_{1,m_1}}}_{\text{all } \sim \rho_{V_1}} \oplus \cdots \oplus \underbrace{\rho_{V_{s,1}} \oplus \cdots \oplus \rho_{V_{s,m_s}}}_{\text{all } \sim \rho_{V_s}},$$

where $m_i \geqslant 1$ for all $1 \leqslant i \leqslant s$ and the ρ_{V_i} 's are pairwise non-equivalent irreducible \mathbb{C} -representations of G. Then, using the assumption, the sesquilinearity of the scalar product and the 1st Orthogonality Relations, we obtain that

$$1 = \langle \chi_V, \chi_V \rangle_G = \sum_{i=1}^s m_i^2 \underbrace{\langle \chi_{V_i}, \chi_{V_i} \rangle_G}_{-1} = \sum_{i=1}^s m_i^2.$$

Hence, w.l.o.g. we may assume that $m_1=1$ and $m_i=0 \ \forall \ 2\leqslant i\leqslant s$, so that $\rho_V=\rho_{V_i}$ is irreducible.

Theorem 9.6

The set Irr(G) is an orthonormal \mathbb{C} -basis (w.r.t. $\langle \, , \, \rangle_G$) of the \mathbb{C} -vector space $\mathcal{C}l(G)$ of class functions on G.

Proof: We already know that $\operatorname{Irr}(G)$ is a $\mathbb C$ -linearly independent set and also that it forms an orthonormal system of $\operatorname{\mathcal{C}l}(G)$ w.r.t. $\langle\ ,\ \rangle_G$. Hence it remains to prove that $\operatorname{Irr}(G)$ generates $\operatorname{\mathcal{C}l}(G)$ as a $\mathbb C$ -vector space. So let $X:=\langle\operatorname{Irr}(G)\rangle_{\mathbb C}$ be the $\mathbb C$ -subspace of $\operatorname{\mathcal{C}l}(G)$ generated by $\operatorname{Irr}(G)$. It follows that

$$Cl(G) = X \oplus X^{\perp}$$

where X^{\perp} denotes the orthogonal of X with respect to the scalar product \langle , \rangle_G (see GDM). Thus it is enough to prove that $X^{\perp}=0$. So let $f\in X^{\perp}$, set $\check{f}:=\sum_{g\in G}\overline{f(g)}g\in \mathbb{C} G$ and we prove the following assertions:

(1) $\check{f} \in Z(\mathbb{C}G)$ (the centre of $\mathbb{C}G$): let $h \in G$ and compute

$$h\check{f}h^{-1} = \sum_{g \in G} \overline{f(g)}hg \cdot h^{-1} \stackrel{s := hgh^{-1}}{=} \sum_{s \in G} \overline{\underbrace{f(h^{-1}sh)}}s = \sum_{s \in G} \overline{f(s)}s = \check{f}.$$

Hence $h\check{f}=\check{f}h$ and this equality extends by \mathbb{C} -linearity to the whole of $\mathbb{C}G$, so that $\check{f}\in Z(\mathbb{C}G)$.

(2) If V is a simple $\mathbb{C}G$ -module with character χ_V , then the external multiplication by \check{f} on V is scalar multiplication by $\frac{|G|}{\dim_{\mathbb{C}}V}\langle\chi_V,f\rangle_G\in\mathbb{C}$: first notice that the external multiplication by \check{f} on V, i.e. the map

$$\check{f} \cdot -: V \longrightarrow V, v \mapsto \check{f} \cdot v$$

is $\mathbb{C}G$ -linear (i.e. an element of $\operatorname{End}_{\mathbb{C}G}(V)$). Indeed, for each $x\in\mathbb{C}G$ and each $v\in V$ we have

$$\check{f} \cdot (x \cdot v) = (\check{f}x) \cdot v = (x\check{f}) \cdot v = x \cdot (\check{f} \cdot v)$$

because $\check{f} \in Z(\mathbb{C}G)$. Therefore, by Schur's Lemma, there exists a scalar $\lambda \in \mathbb{C}$ such that $\check{f} \cdot - = \lambda \operatorname{Id}_V$. Now, setting $n := \dim_{\mathbb{C}}(V)$, we have

$$\lambda = \frac{1}{n} \operatorname{Tr}(\lambda \operatorname{Id}_V) = \frac{1}{n} \operatorname{Tr}(\check{f} \cdot -) = \frac{1}{n} \sum_{g \in G} \overline{f(g)} \underbrace{\operatorname{Tr}\left(\operatorname{mult. by } g \text{ on } V\right)}_{=\chi_V(g)} = \frac{1}{n} \sum_{g \in G} \overline{f(g)} \chi_V(g) = \frac{|G|}{n} \langle \chi_V, f \rangle_G.$$

- (3) If V is a simple $\mathbb{C}G$ -module with character χ_V , then the external multiplication by \check{f} on V is zero: indeed, $\langle \chi_V, f \rangle_G = 0$ because $f \in X^\perp$ and the claim follows from (2).
- (4) f=0: indeed, as the external multiplication by \check{f} is zero on every simple $\mathbb{C}G$ -module, it is zero on every $\mathbb{C}G$ -module, because any $\mathbb{C}G$ -module can be decomposed as the direct sum of simple submodules

by the Corollary to Maschke's Theorem. In particular, the external multiplication by \check{t} is zero on $\mathbb{C}G$. Hence

$$0 = \check{f} \cdot 1_{\mathbb{C}G} = \check{f} = \sum_{g \in G} \overline{f(g)}g$$

and we obtain that $\overline{f(g)}=0$ for each $g\in G$ because G is a $\mathbb C$ -basis of $\mathbb C G$. But then f(g)=0 for each $q \in G$ and it follows that f = 0.

Corollary 9.7

The number of pairwise distinct irreducible characters of G is equal to the number of conjugacy classes of G. In other words,

$$|\operatorname{Irr}(G)| = |C(G)|$$
.

Proof: By Theorem 9.6 the set Irr(G) is a \mathbb{C} -basis of the \mathbb{C} -vector space $\mathcal{C}l(G)$ of class functions on G. Hence,

$$|\operatorname{Irr}(G)| = \dim_{\mathbb{C}} \mathcal{C}l(G) = |C(G)|$$

where the second equality holds by Exercise 8.2.

Corollary 9.8

Let $f \in Cl(G)$. Then the following assertions hold:

(a)
$$f = \sum_{\chi \in Irr(G)} \langle f, \chi \rangle_G \chi$$

(b)
$$\langle f, f \rangle_G = \sum_{\chi \in Irr(G)} \langle f, \chi \rangle_G^2$$
;

(a)
$$f = \sum_{\chi \in \operatorname{Irr}(G)} \langle f, \chi \rangle_G \chi$$
;
(b) $\langle f, f \rangle_G = \sum_{\chi \in \operatorname{Irr}(G)} \langle f, \chi \rangle_G^2$;
(c) f is a character $\iff \langle f, \chi \rangle_G \in \mathbb{Z}_{\geqslant 0} \ \ \forall \ \chi \in \operatorname{Irr}(G)$; and
(d) $f \in \operatorname{Irr}(G) \iff f$ is a character and $\langle f, f \rangle_G = 1$.

(d)
$$f \in Irr(G) \iff f$$
 is a character and $\langle f, f \rangle_G = 1$.

Proof: (a)+(b) hold for any orthonormal basis with respect to a given scalar product. (GDM!)

(c) $'\Rightarrow'$: If f is a character, then by Corollary 9.3 the complex number $\langle f,\chi\rangle_G$ is the multiplicity of χ as a constituent of f for each $\chi \in Irr(G)$, hence a non-negative integer.

' \Leftarrow ': If for each $\chi \in Irr(G)$, $\langle f, \chi \rangle_G =: m_{\chi} \in \mathbb{Z}_{\geq 0}$, then f is the character of the representation

$$\rho := \bigoplus_{\chi \in Irr(G)} \bigoplus_{j=1}^{m_{\chi}} \rho(\chi)$$

where $\rho(\chi)$ is a \mathbb{C} -representation affording the character χ .

(d) The necessary condition is given by the 1st Orthogonality Relations. The sufficient condition follows from (b) and (c).

Exercise 9.9

Let V be a $\mathbb{C} G$ -module affording the character χ_V . Consider the \mathbb{C} -subspace of fixed points under the action of G, that is, $V^G := \{v \in V \mid g \cdot v = v \ \forall \ g \in G\}$. Prove that

$$\dim_{\mathbb{C}} V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)$$

in two different ways:

- 1. considering the scalar product of χ_V with the trivial character $\mathbf{1}_G$;
- 2. seeing V^G as the image of the projector $\pi:V\longrightarrow V$, $v\mapsto \frac{1}{|G|}\sum_{g\in G}g\cdot v$.