Theorem 5.6 (Schur's Relations)

Assume char $(K) \nmid|G|$. Let $Q: G \longrightarrow \mathrm{GL}_{n}(K)$ and $P: G \longrightarrow \mathrm{GL}_{m}(K)$ be irreducible matrix representations.
(a) If $P \nsim Q$, then $\frac{1}{|G|} \sum_{g \in G} P(g)_{r i} Q\left(g^{-1}\right)_{j s}=0$ for all $1 \leqslant r, i \leqslant m$ and all $1 \leqslant j, s \leqslant n$.
(b) If $K=\bar{K}$ and $\operatorname{char}(K) \nmid n$, then $\frac{1}{|G|} \sum_{g \in G} Q(g)_{r i} Q\left(g^{-1}\right)_{j s}=\frac{1}{n} \delta_{i j} \delta_{r s}$ for all $1 \leqslant r, i, j, s \leqslant n$.

Proof: Set $V:=K^{n}, W:=K^{m}$ and let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ and $\rho_{W}: G \longrightarrow \mathrm{GL}(W)$ be the K-representations induced by Q and P, respectively, as defined in Remark 1.2. Furthermore, consider the K-linear map $\psi: V \longrightarrow W$ whose matrix with respect to the standard bases of $V=K^{n}$ and $W=K^{m}$ is the elementary matrix

$$
i\left[\begin{array}{c}
\vdots \\
\ldots \ldots \ldots \\
\vdots \\
j
\end{array}\right]=: E_{i j} \in M_{m \times n}(K)
$$

(i.e. the unique nonzero entry of $E_{i j}$ is its (i, j)-entry).
(a) By Proposition 5.5(a),

$$
\tilde{\psi}=\frac{1}{|G|} \sum_{g \in G} \rho_{W}(g) \circ \psi \circ \rho_{V}\left(g^{-1}\right)=0
$$

because $P \nsim Q$, and hence $\rho_{V} \nsim \rho_{W}$. In particular the (r, s)-entry of the matrix of $\tilde{\psi}$ with respect to the standard bases of $V=K^{n}$ and $W=K^{m}$ is zero. Thus,

$$
0=\frac{1}{|G|} \sum_{g \in G}\left[P(g) E_{i j} Q\left(g^{-1}\right)\right]_{r s}=\frac{1}{|G|} \sum_{g \in G} P(g)_{r i} \cdot 1 \cdot Q\left(g^{-1}\right)_{j s}
$$

because the unique nonzero entry of the matrix $E_{i j}$ is its (i, j)-entry.
(b) Now we assume that $P=Q$, and hence $n=m, V=W, \rho_{V}=\rho_{W}$. Then by Proposition 5.5(b),

$$
\tilde{\psi}:=\frac{1}{|G|} \sum_{g \in G} \rho_{V}(g) \circ \psi \circ \rho_{V}\left(g^{-1}\right)=\frac{\operatorname{Tr}(\psi)}{n} \cdot \operatorname{ld}_{V}= \begin{cases}\frac{1}{n} \cdot \operatorname{ld}_{V} & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}
$$

Therefore the (r, s)-entry of the matrix of $\tilde{\psi}$ with respect to the standard basis of $V=K^{n}$ is

$$
\frac{1}{|G|} \sum_{g \in G}\left[Q(g) E_{i j} Q\left(g^{-1}\right)\right]_{r s}= \begin{cases}\left(\left.\frac{1}{n} \cdot \right\rvert\, d d_{V}\right)_{r s} & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}
$$

Again, because the unique nonzero entry of the matrix $E_{i j}$ is its (i, j)-entry, it follows that

$$
\frac{1}{|G|} \sum_{g \in G} Q(g)_{r i} Q\left(g^{-1}\right)_{j s}=\frac{1}{n} \delta_{i j} \delta_{r s} .
$$

6 Representations of Finite Abelian Groups

In this section we give an immediate application of Schur's Lemma encoding the representation theory of finite abelian groups over an algebraically closed field K whose characteristic is coprime to the order of the group.

Proposition 6.1

Assume G is a finite abelian group, $K=\bar{K}$ and $\operatorname{char}(K) \nmid|G|$. Then the K-dimension of any simple $K G$-module is equal to 1 .
(Equivalently, any irreducible K-representation of G has degree 1.)
Proof: Let V be a simple $K G$-module, and let $\rho_{V}: G \longrightarrow G L(V)$ be the underlying K-representation (i.e. as given by Proposition 4.3).

Claim: any K-subspace of V is in fact a $K G$-submodule.
Proof: Fix $g \in G$ and consider $\rho_{V}(g)$. By definition $\rho_{V}(g) \in G L(V)$, hence it is a K-linear endomorphism of V. We claim that it is in fact $K G$-linear. Indeed, as G is abelian, $\forall h \in G, \forall v \in V$ we have

$$
\begin{aligned}
\rho_{V}(g)(h \cdot v)=\rho_{V}(g)\left(\rho_{V}(h)(v)\right) & =\left[\rho_{V}(g) \rho_{V}(h)\right](v) \\
& =\left[\rho_{V}(g h)\right](v) \\
& =\left[\rho_{V}(h g)\right](v) \\
& =\left[\rho_{V}(h) \rho_{V}(g)\right](v) \\
& =\rho_{V}(h)\left(\rho_{V}(g)(v)\right) \\
& =h \cdot\left(\rho_{V}(g)(v)\right)
\end{aligned}
$$

and it follows that $\rho_{V}(g)$ is $K G$-linear, i.e. $\rho_{V}(g) \in \operatorname{End}_{K G}(V)$. Now, because K is algebraically closed, by part (b) of Schur's Lemma, there exists $\lambda_{g} \in K$ (depending on g) such that

$$
\rho_{V}(g)=\lambda_{g} \cdot \operatorname{ld}{ }_{V} .
$$

As this holds for every $g \in G$, it follows that any K-subspace of V is G-invariant, which in terms of $K G$-modules means that any K-subspace of V is a $K G$-submodule of V.

To conclude, as V is simple, we deduce from the Claim that the K-dimension of V must be equal to 1 .

Theorem 6.2 (Diagonalisation Theorem)

Assume $K=\bar{K}$ and $\operatorname{char}(K) \nmid|G|$. Let $\rho: G \longrightarrow G L(V)$ be a K-representation of an arbitrary finite group G. Fix $g \in G$. Then, there exists an ordered K-basis B of V with respect to which

$$
(\rho(g))_{B}=\left[\begin{array}{ccccc}
\varepsilon_{1} & 0 & \cdots & \cdots & \cdots \\
0 & \varepsilon_{2} & \ddots & 0 & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & 0 \\
\varepsilon_{n}
\end{array}\right]
$$

where $n:=\operatorname{dim}_{K}(V)$ and each $\varepsilon_{i}(1 \leqslant i \leqslant n)$ is an $o(g)$-th root of unity in K.
Proof: Consider the restriction of ρ to the cyclic subgroup generated by g, that is the representation

$$
\left.\rho\right|_{\langle g\rangle}:\langle g\rangle \longrightarrow \mathrm{GL}(V) .
$$

By Corollary 3.6 to Maschke's Theorem, we can decompose the representation $\left.\rho\right|_{\langle g\rangle}$ into a direct sum of irreducible K-representations, say

$$
\left.\rho\right|_{\langle g\rangle}=\rho_{V_{1}} \oplus \cdots \oplus \rho_{V_{n}},
$$

where $V_{1}, \ldots, V_{n} \subseteq V$ are $\langle g\rangle$-invariant. Since $\langle g\rangle$ is abelian $\operatorname{dim}_{K}\left(V_{i}\right)=1$ for each $1 \leqslant i \leqslant n$ by Proposition 6.1. Now, if for each $1 \leqslant i \leqslant n$ we choose a K-basis $\left\{x_{i}\right\}$ of V_{i}, then there exist $\varepsilon_{i} \in K$
$(1 \leqslant i \leqslant n)$ such that $\rho_{V_{i}}(g)=\varepsilon_{i}$ and $B:=\left(x_{1}, \ldots, x_{n}\right)$ is an ordered K-basis of V such that

$$
(\rho(g))_{B}=\left[\begin{array}{ccccc}
\varepsilon_{1} & 0 & \cdots & \cdots & \cdots \\
0 & \varepsilon_{2} & \ddots & 0 & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \ddots & \ddots & 0 \\
\varepsilon_{n}
\end{array}\right] .
$$

Finally, as $g^{o(g)}=1_{G}$, it follows that for each $1 \leqslant i \leqslant n$,

$$
\varepsilon_{i}^{o(g)}=\rho_{V_{i}}(g)^{o(g)}=\rho_{V_{i}}\left(g^{o(g)}\right)=\rho_{V_{i}}\left(1_{G}\right)=1_{K}
$$

and hence ε_{i} is an $o(g)$-th root of unity.

Scholium 6.3

Assume $K=\bar{K}$, $\operatorname{char}(K) \nmid|G|$ and G is abelian. If $\rho: G \longrightarrow \mathrm{GL}(V)$ is a K-representation of G, then the K-endomorphisms $\rho(g): V \longrightarrow V$ with g running through G are simultaneously diagonalisable.

Proof: Same argument as in the previous proof, where we may replace " $\langle g\rangle$ " with the whole of G.

Chapter 3. Characters of Finite Groups

We now introduce the concept of a character of a finite group. These are functions $\chi: G \longrightarrow \mathbb{C}$, obtained from the representations of the group G by taking traces. Characters have many remarkable properties, and they are the fundamental tools for performing computations in representation theory. They encode a lot of information about the group itself and about its representations in a more compact and efficient manner.

Notation: throughout this chapter, unless otherwise specified, we let:

- G denote a finite group;
- $K:=\mathbb{C}$ be the field of complex numbers; and
- V denote a \mathbb{C}-vector space such that $\operatorname{dim}_{\mathbb{C}}(V)<\infty$.

In general, unless otherwise stated, all groups considered are assumed to be finite and all \mathbb{C}-vector spaces / modules over the group algebra considered are assumed to be finite-dimensional.

7 Characters

Definition 7.1 (Character, linear character)

Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation. The character of ρ_{V} is the \mathbb{C}-valued function

$$
\begin{array}{llll}
\chi_{V}: & G & \longrightarrow \mathbb{C} \\
g & \mapsto & \chi_{V}(g):=\operatorname{Tr}\left(\rho_{V}(g)\right) .
\end{array}
$$

We also say that ρ_{V} (or the associated $\mathbb{C} G$-module V) affords the character χ_{V}. The degree of χ_{V} is the degree of ρ_{V}. If the degree of χ_{V} is one, then χ_{V} is called a linear character.

Remark 7.2
(a) Recall that in linear algebra (see GDM) the trace of a linear endomorphism φ may be concretely computed by taking the trace of the matrix of φ in a chosen basis of the vector space, and this is independent of the choice of the basis.
Thus to compute characters: choose an ordered basis B of V and obtain $\forall g \in G$:

$$
\chi_{V}(g)=\operatorname{Tr}\left(\rho_{V}(g)\right)=\operatorname{Tr}\left(\left(\rho_{V}(g)\right)_{B}\right)
$$

(b) For a matrix representation $R: G \longrightarrow \mathrm{GL}_{n}(\mathbb{C})$, the character of R is then

$$
\begin{array}{rlll}
\chi_{R}: & G & \longrightarrow & \mathbb{C} \\
& g & \mapsto & \chi_{R}(g):=\operatorname{Tr}(R(g)) .
\end{array}
$$

Example 3

The character of the trivial representation of G is the function $1_{G}: G \longrightarrow \mathbb{C}, g \mapsto 1$ and is called the trivial character of G.

Lemma 7.3

Equivalent \mathbb{C}-representations afford the same character.
Proof: If $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ and $\rho_{W}: G \longrightarrow \mathrm{GL}(W)$ are two \mathbb{C}-representations, and $\alpha: V \longrightarrow W$ is an isomorphism of representations, then

$$
\rho_{W}(g)=\alpha \circ \rho_{V}(g) \circ \alpha^{-1} \quad \forall g \in G .
$$

Now, by the properties of the trace (GDM) for any two \mathbb{C}-endomorphisms β, γ of V we have $\operatorname{Tr}(\beta \circ \gamma)=$ $\operatorname{Tr}(\gamma \circ \beta)$, hence for every $g \in G$ we have

$$
\chi_{W}(g)=\operatorname{Tr}\left(\rho_{W}(g)\right)=\operatorname{Tr}\left(\alpha \circ \rho_{V}(g) \circ \alpha^{-1}\right)=\operatorname{Tr}(\rho_{V}(g) \circ \underbrace{\alpha^{-1} \circ \alpha}_{=l d_{V}})=\operatorname{Tr}\left(\rho_{V}(g)\right)=\chi_{V}(g) .
$$

Terminology / Notation 7.4

- Again, we allow ourselves to transport terminology from representations to characters. For example, if ρ_{V} is irreducible (faithful, ...), then the character χ_{V} is also called irreducible (faithful, ...).
- We define $\operatorname{lrr}(G)$ to be the set of all irreducible characters of G, and $\operatorname{Lin}(G)$ to be the set of all linear characters of G. (We will see below that $\operatorname{lr}(G)$ is a finite set.)

Properties 7.5 (Elementary properties)

Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation and let $g \in G$. Then the following assertions hold:
(a) $X_{V}\left(1_{G}\right)=\operatorname{dim}_{\mathbb{C}} V$;
(b) $\chi_{V}(g)=\varepsilon_{1}+\ldots+\varepsilon_{n}$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are $o(g)$-th roots of unity in \mathbb{C} and $n=\operatorname{dim}_{\mathbb{C}} V$;
(c) $\left|\chi_{V}(g)\right| \leqslant \chi_{V}\left(1_{G}\right)$;
(d) $\chi_{V}\left(g^{-1}\right)=\overline{\chi_{V}(g)}$;
(e) if $\rho_{V}=\rho_{V_{1}} \oplus \rho_{V_{2}}$ is the direct sum of two subrepresentations, then $\chi_{V}=\chi_{V_{1}}+\chi_{V_{2}}$.

Proof:

(a) We have $\rho_{V}\left(1_{G}\right)=\operatorname{Id}_{V}$ since representations are group homomorphisms, hence $\chi_{V}\left(1_{G}\right)=\operatorname{dim}_{\mathbb{C}} V$.
(b) This follows directly from the diagonalisation theorem (Theorem 6.2).
(c) By (b) we have $\chi_{V}(g)=\varepsilon_{1}+\ldots+\varepsilon_{n}$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are roots of unity in \mathbb{C}. Hence, applying the triangle inequality repeatedly, we obtain that

$$
\left|\chi_{V}(g)\right|=\left|\varepsilon_{1}+\ldots+\varepsilon_{n}\right| \leqslant \underbrace{\left|\varepsilon_{1}\right|}_{=1}+\ldots+\underbrace{\left|\varepsilon_{n}\right|}_{=1}=\operatorname{dim}_{\mathbb{C}} V \stackrel{(a)}{=} \chi_{V}\left(1_{G}\right)
$$

(d) Again by the diagonalisation theorem, there exists an ordered \mathbb{C}-basis B of V and $o(g)$-th roots of unity $\varepsilon_{1}, \ldots, \varepsilon_{n} \in \mathbb{C}$ such that

$$
\left(\rho_{V}(g)\right)_{B}=\left[\begin{array}{ccccc}
\varepsilon_{1} & 0 & \cdots & \cdots & \cdots
\end{array}\right)
$$

Therefore

$$
\left(\rho_{V}\left(g^{-1}\right)\right)_{B}=\left[\begin{array}{cccccc}
\varepsilon_{1}^{-1} & 0 & \cdots & \cdots & \ldots & 0 \\
0 & \varepsilon_{2}^{-1} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & \ddots & \ddots & 0
\end{array} \varepsilon_{n}^{-1} .\left[\begin{array}{ccccc}
\overline{\varepsilon_{1}} & 0 & \cdots & \cdots & 0 \\
0 & \frac{\varepsilon_{2}}{\varepsilon_{2}} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & 0 \\
\varepsilon_{n}
\end{array}\right]\right.
$$

and it follows that $\chi_{V}\left(g^{-1}\right)=\overline{\varepsilon_{1}}+\ldots+\overline{\varepsilon_{n}}=\overline{\varepsilon_{1}+\ldots+\varepsilon_{n}}=\overline{\chi_{V}(g)}$.
(e) For $i \in\{1,2\}$ let B_{i} be an ordered \mathbb{C}-basis of V_{i} and consider the \mathbb{C}-basis $B:=B_{1} \sqcup B_{2}$ of V. Then, by Remark 3.2 for every $g \in G$ we have

$$
\left(\rho_{V}(g)\right)_{B}=\left[\begin{array}{c|c}
\left(\rho_{V_{1}}(g)\right)_{B_{1}} & 0 \\
\hline 0 & \left(\rho_{V_{2}}(g)\right)_{B_{2}}
\end{array}\right]
$$

hence $\chi_{V}(g)=\operatorname{Tr}\left(\rho_{V}(g)\right)=\operatorname{Tr}\left(\rho_{V_{1}}(g)\right)+\operatorname{Tr}\left(\rho_{V_{2}}(g)\right)=\chi_{V_{1}}(g)+\chi_{V_{2}}(g)$.

Corollary 7.6

Any character of G is a sum of irreducible characters of G.
Proof: By Corollary 3.6 to Maschke's theorem, any \mathbb{C}-representation can be written as the direct sum of irreducible subrepresentations. Thus the claim follows from Properties 7.5(e).

Notation 7.7

Recall from group theory (Einführung in die Algebra) that a group G acts on itself by conjugation via

$$
\begin{aligned}
G \times G & \longrightarrow \\
(g, x) & \mapsto
\end{aligned} g_{x g^{-1}=: g_{X}} .
$$

The orbits of this action are the conjugacy classes of G, we denote them by $[x]:=\left\{{ }^{g} X \mid g \in G\right\}$, and we write $C(G):=\{[x] \mid x \in G\}$ for the set of all conjugacy classes of G.
The stabiliser of $x \in G$ is its centraliser $C_{G}(x)=\left\{g \in G \mid{ }^{g} X=x\right\}$ and the orbit-stabiliser theorem
yields

$$
\left|C_{G}(x)\right|=\frac{|G|}{|[x]|}
$$

Moreover, a function $f: G \longrightarrow \mathbb{C}$ which is constant on each conjugacy class of G, i.e. such that $f\left(g x g^{-1}\right)=f(x) \forall g, x \in G$, is called a class function (on G).

Lemma 7.8

Characters are class functions.
Proof: Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation and let χ_{V} be its character. Again, because by the properties of the trace we have $\operatorname{Tr}(\beta \circ \gamma)=\operatorname{Tr}(\gamma \circ \beta)$ for all \mathbb{C}-endomorphisms β, γ of V (GDM !), it follows that for all $g, x \in G$,

$$
\begin{aligned}
\chi_{V}\left(g \times g^{-1}\right)=\operatorname{Tr}\left(\rho_{V}\left(g x g^{-1}\right)\right) & =\operatorname{Tr}\left(\rho_{V}(g) \rho_{V}(x) \rho_{V}(g)^{-1}\right) \\
& =\operatorname{Tr}(\rho_{V}(x) \underbrace{\rho_{V}(g)^{-1} \rho_{V}(g)}_{=\operatorname{ld}})=\operatorname{Tr}\left(\rho_{V}(x)\right)=\chi_{V}(x) .
\end{aligned}
$$

Exercise 7.9

Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation and let χ_{V} be its character. Prove the following statements.
(a) If $g \in G$ is conjugate to g^{-1}, then $\chi_{V}(g) \in \mathbb{R}$.
(b) If $g \in G$ is an element of order 2 , then $\chi_{V}(g) \in \mathbb{Z}$ and $\chi_{V}(g) \equiv \chi_{V}(1)(\bmod 2)$.

Exercise 7.10 (The dual representation / the dual character)

Let $\rho_{V}: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation.
(a) Prove that:
(i) the dual space $V^{*}:=\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ is endowed with the structure of a $\mathbb{C} G$-module via

$$
\begin{array}{ccc}
G \times V^{*} & \longrightarrow & V^{*} \\
(g, f) & \mapsto & g . f
\end{array}
$$

where $(g . f)(v):=f\left(g^{-1} v\right) \forall v \in V$;
(ii) the character of the associated \mathbb{C}-representation $\rho_{V *}$ is then $\chi_{V^{*}}=\overline{X_{V}}$; and
(iii) if ρ_{V} decomposes as a direct sum $\rho_{V_{1}} \oplus \rho_{V_{2}}$ of two subrepresentations, then $\rho_{V^{*}}$ is equivalent to $\rho_{V_{1}^{*}} \oplus \rho_{V_{2}^{*}}$.
(b) Determine the duals of the 3 irreducible representations of S_{3} given in Example 2(d).

8 Orthogonality of Characters

We are now going to make use of results from the linear algebra (GDM) on the \mathbb{C}-vector space of \mathbb{C}-valued functions on G in order to develop further fundamental properties of characters.

