Chapter 2. The Group Algebra and Its Modules

We now introduce the concept of a KG-module, and show that this more modern approach is equivalent to the concept of a K-representation of a given finite group G. Some of the material in the remainder of these notes will be presented in terms of KG-modules. As we will soon see with our second fundamental result – Schur's Lemma – there are several advantages to this approach to representation theory.

Notation: throughout this chapter, unless otherwise specified, we let:

- · G denote a finite group;
- K denote a field of arbitrary characteristic; and
- · V denote a K-vector space such that $\dim_{K}(V) < \infty$.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K-vector spaces / modules over the group algebra considered are assumed to be finite-dimensional.

4 Modules over the Group Algebra

Lemma-Definition 4.1 (Group algebra)

The **group ring** KG is the ring whose elements are the K-linear combinations $\sum_{g \in G} \lambda_g g$ with $\lambda_g \in K$, and addition and multiplication are given by

$$\sum_{g \in G} \lambda_g g + \sum_{g \in G} \mu_g g = \sum_{g \in G} (\lambda_g + \mu_g) g \quad \text{and} \quad \left(\sum_{g \in G} \lambda_g g\right) \cdot \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} (\lambda_g \mu_h) g h$$

respectively. In fact KG is a K-vector space with basis G, hence a K-algebra. Thus we usually call KG the **group algebra of** G **over** K rather than simply *group ring*.

Note: In Definition 4.1, the field K can be replaced with a commutative ring R. E.g. if $R = \mathbb{Z}$, then $\mathbb{Z}G$ is called the *integral group ring* of G.

Proof: By definition KG is a K-vector space with basis G, and the multiplication in G is extended by K-bilinearity to the given multiplication $\cdot : KG \times KG \longrightarrow KG$. It is then straightforward to check that KG bears both the structures of a ring and of a K-vector space. Finally, axiom (A3) of K-algebras (see Appendix B) follows directly from the definition of the multiplication and the commutativity of K.

• :

Remark 4.2

Clearly $1_{KG} = 1_G$, dim_K(KG) = |G|, and KG is commutative if and only if G is an abelian group.

Proposition 4.3

(a) Any K-representation $\rho: G \longrightarrow GL(V)$ of G gives rise to a KG-module structure on V, where the external composition law is defined by the map

$$\begin{array}{rccc} & \mathcal{K}G \times V & \longrightarrow & V \\ & (\sum_{g \in G} \lambda_g g, v) & \mapsto & (\sum_{g \in G} \lambda_g g) \cdot v := \sum_{g \in G} \lambda_g \rho(g)(v) \ . \end{array}$$

(b) Conversely, every KG-module $(V, +, \cdot)$ defines a K-representation

$$\begin{array}{cccc} \rho_V \colon & G & \longrightarrow & \operatorname{GL}(V) \\ & g & \mapsto & \rho_V(g) \colon V \longrightarrow V, v \mapsto \rho_V(g)(v) \coloneqq g \cdot v \end{array}$$

of the group G.

- **Proof:** (a) Since V is a K-vectore space it is equipped with an internal addition + such that (V, +) is an abelian group. It is then straightforward to check that the given external composition law defined above verifies the KG-module axioms.
 - (b) A KG-module is in particular a K-vector space for the scalar multiplication defined for all $\lambda \in K$ and all $v \in V$ by

$$\lambda v := (\underbrace{\lambda \, \mathbf{1}_G}_{\in KG}) \cdot v$$

Moreover, it follows from the *KG*-module axioms that $\rho_V(g) \in GL(V)$ and also that

$$\rho_V(g_1g_2) = \rho_V(g_1) \circ \rho_V(g_2)$$

for all $g_1, g_2 \in G$, hence ρ_V is a group homomorphism.

See [Exercise Sheet 2] for the details (Hint: use the remark below!).

Remark 4.4

In fact in Proposition 4.3(a) checking the *KG*-module axioms is equivalent to checking that for all $q, h \in G, \lambda \in K$ and $u, v \in V$:

- (1) $(gh) \cdot v = g \cdot (h \cdot v);$
- (2) $1_G \cdot v = v$;
- (3) $g \cdot (u + v) = g \cdot u + g \cdot v;$
- (4) $q \cdot (\lambda v) = \lambda (q \cdot v) = (\lambda q) \cdot v$,

or in other words, that the binary operation

is a *K*-linear action of the group *G* on *V*. Indeed, the external multiplication of KG on *V* is just the extension by *K*-linearity of the latter map. For this reason, sometimes, *KG*-modules are also called *G*-vector spaces. See [Exercise Sheet 2] for the details.

Lemma 4.5

Two representations $\rho_1 : G \longrightarrow GL(V_1)$ and $\rho_2 : G \longrightarrow GL(V_2)$ are equivalent if and only if $V_1 \cong V_2$ as *KG*-modules.

Proof: If $\rho_1 \sim \rho_2$ and $\alpha : V_1 \longrightarrow V_2$ is a *K*-isomorphism such that $\rho_2(g) = \alpha \circ \rho_1(g) \circ \alpha^{-1}$ for each $g \in G$, then by Proposition 4.3(a) for every $v \in V_1$ and every $g \in G$ we have

$$g \cdot \alpha(v) = \rho_2(g)(\alpha(v)) = \alpha(\rho_1(g)(v)) = \alpha(g \cdot v).$$

Hence α is a *KG*-isomorphism.

Conversely, if $\alpha : V_1 \longrightarrow V_2$ is a *KG*-isomorphism, then certainly it is a *K*-homomorphism and for each $g \in G$ and by Proposition 4.3(b) for each $v \in V_2$ and each $g \in G$ we have

$$\alpha \circ \rho_1(g) \circ \alpha^{-1}(v) = \alpha(\rho_1(g)(\alpha^{-1}(v))) = \alpha(g \cdot \alpha^{-1}(v)) = g \cdot \alpha(\alpha^{-1}(v)) = g \cdot v = \rho_2(g)(v),$$

hence $\rho_2(g) = \alpha \circ \rho_1(g) \circ \alpha^{-1}$ for each $g \in G$.

Remark 4.6 (Dictionary)

More generally, through Proposition 4.3, we may transport terminology and properties from KG-modules to K-representations of G and conversely.

This lets us build the following **dictionary**:

Representations		Modules
K-representation of G	\longleftrightarrow	<i>KG</i> -module
degree	\longleftrightarrow	K-dimension
homomorphism of representations	\longleftrightarrow	homomorphism of KG-modules
subrepresentation / G-invariant subspace	\longleftrightarrow	KG-submodule
direct sum of representations $ ho_{V_1}\oplus ho_{V_2}$	\longleftrightarrow	direct sum of KG-modules $V_1 \oplus V_2$
irreducible representation	\longleftrightarrow	simple (= irreducible) <i>KG</i> -module
the trivial representation	\longleftrightarrow	the trivial KG-module K
the regular representation of G	\longleftrightarrow	the regular KG-module KG
Corollary 3.6 to Maschke's Theorem:	\longleftrightarrow	Corollary 3.6 to Maschke's Theorem:
If $char(K) \nmid G $, then every K-representation of G is completely reducible.		If $char(K) \nmid G $, then every KG-module is semisimple.

Virtually, any result, we have seen in Chapter 1, can be reinterpreted using this translation table. E.g. Property 2.4(c) tells us that the image and the kernel of homomorphisms of KG-modules are KG-submodules, ...

In this lecture, we introduce the equivalence between representations and modules for the sake of completeness. In the sequel we keep on stating results in terms of representations as much as possible. However, we will use modules when we find them more fruitful. In contrast, the M.Sc. Lecture *Representation Theory* will consistently use the module approach to representation theory.

5 Schur's Lemma and Schur's Relations

Schur's Lemma is a basic result concerning simple modules, or in other words irreducible representations. Though elementary to state and prove, it is fundamental to representation theory of finite groups.

Theorem 5.1 (SCHUR'S LEMMA)

- (a) Let V, W be simple KG-modules. Then the following assertions hold.
 - (i) Any homomorphism of KG-modules $\varphi : V \longrightarrow V$ is either zero or invertible. In other words $End_{KG}(V)$ is a skew-field.
 - (ii) If $V \not\cong W$, then $\operatorname{Hom}_{KG}(V, W) = 0$.
- (b) If K is an algebraically closed field and V is a simple KG-module, then

$$\operatorname{End}_{KG}(V) = \{\lambda \operatorname{Id}_V \mid \lambda \in K\} \cong K$$

Notice that here we state Schur's Lemma in terms of modules, rather than in terms of representations, because part (a) holds in greater generality for arbitrary unital associative rings and part (b) holds for finite-dimensional algebras over an algebraically closed field.

Proof:

- (a) First, we claim that every $\varphi \in \text{Hom}_{KG}(V, W) \setminus \{0\}$ admits an inverse in $\text{Hom}_{KG}(W, V)$. Indeed, $\varphi \neq 0 \implies \ker \varphi \subsetneq V$ is a proper *KG*-submodule of *V* and $\{0\} \neq \text{Im } \varphi$ is a non-zero *KG*-submodule of *W*. But then, on the one hand, $\ker \varphi = \{0\}$, because *V* is simple, hence φ is injective, and on the other hand, $\text{Im } \varphi = W$ because *W* is simple. It follows that φ is also surjective, hence bijective. Therefore, by Properties A.7, φ is invertible with inverse $\varphi^{-1} \in \text{Hom}_{KG}(W, V)$. Now, (ii) is straightforward from the above. For (i), first recall that $\text{End}_{KG}(V)$ is a ring (see Notation A.8), which is obviously non-zero as $\text{End}_{KG}(V) \ni \text{Id}_V$ and $\text{Id}_V \neq 0$ because $V \neq 0$ since it is simple. Thus, as any $\varphi \in \text{End}_{KG}(V) \setminus \{0\}$ is invertible, $\text{End}_{KG}(V)$ is a skew-field.
- (b) Let $\varphi \in \text{End}_{KG}(V)$. Since $K = \overline{K}$, φ has an eigenvalue $\lambda \in K$. Let $v \in V \setminus \{0\}$ be an eigenvector of φ for λ . Then $(\varphi \lambda \operatorname{Id}_V)(v) = 0$. Therefore, $\varphi \lambda \operatorname{Id}_V$ is not invertible and

$$\varphi - \lambda \operatorname{Id}_V \in \operatorname{End}_{KG}(V) \xrightarrow{(a)} \varphi - \lambda \operatorname{Id}_V = 0 \implies \varphi = \lambda \operatorname{Id}_V$$

Hence $\operatorname{End}_{KG}(V) \subseteq \{\lambda \operatorname{Id}_{V} \mid \lambda \in K\}$, but the reverse inclusion also obviously holds, proving the claim.

Exercise 5.2 (*Exercise on Sheet 2*)

Prove that in terms of matrix representations the following statement holds:

Lemma 5.3 (Schur's Lemma for matrix representations)

Let $R : G \longrightarrow GL_n(K)$ and $R' : G \longrightarrow GL_{n'}(K)$ be two irreducible matrix representations. If there exists $A \in M_{n \times n'}(K) \setminus \{0\}$ such that AR'(g) = R(g)A for every $g \in G$, then n = n' and Ais invertible (in particular $R \sim R'$). The next lemma is a general principle, which we have already used in the proof of Maschke's Theorem, and which allows us to transform *K*-linear maps into *KG*-linear maps.

Lemma 5.4

Assume char(K) $\nmid |G|$. Let V, W be two KG-modules and let $\rho_V : G \longrightarrow GL(V)$, $\rho_W : G \longrightarrow GL(W)$ be the associated K-representations. If $\psi : V \longrightarrow W$ is K-linear, then the map

$$\widetilde{\psi}:=rac{1}{|G|}\sum_{g\in G}
ho_W(g)\circ\psi\circ
ho_V(g^{-1})$$

from V to W is KG-linear.

Proof: Same argument as in (3) of the proof of Maschke's Theorem: replace π by ψ and apply the fact that a *G*-homomorphism between representations corresponds to a *KG*-homomorphism between the corresponding *KG*-modules.

Proposition 5.5

Assume char(K) $\nmid |G|$. Let $\rho_V : G \longrightarrow GL(V)$ and $\rho_W : G \longrightarrow GL(W)$ be two irreducible K-representations.

(a) If $\rho_V \not\sim \rho_W$ and $\psi: V \longrightarrow W$ is a K-linear map, then

$$\widetilde{\psi}:=rac{1}{|G|}\sum_{g\in G}
ho_W(g)\circ\psi\circ
ho_V(g^{-1})=0\,.$$

(b) Assume moreover that $K = \overline{K}$ and $char(K) \nmid n := \dim_K V$. If $\psi : V \longrightarrow V$ is a K-linear map, then

$$\widetilde{\psi} := rac{1}{|G|} \sum_{g \in G}
ho_V(g) \circ \psi \circ
ho_V(g^{-1}) = rac{\operatorname{Tr}(\psi)}{n} \cdot \operatorname{Id}_V.$$

Proof: Since ρ_V and ρ_W are irreducible, the associated KG-modules are simple. Moreover, by Lemma 5.4, both in (a) and (b) the map $\tilde{\psi}$ is KG-linear. Therefore Schur's Lemma yields:

- (a) $\tilde{\psi} = 0$ since $V \ncong W$.
- (b) $\tilde{\psi} = \lambda \cdot Id_V$ for some scalar $\lambda \in K$. Therefore, on the one hand

$$\operatorname{Tr}(\widetilde{\psi}) = \frac{1}{|G|} \sum_{g \in G} \underbrace{\operatorname{Tr}\left(\rho_V(g) \circ \psi \circ \rho_V(g^{-1})\right)}_{=\operatorname{Tr}(\psi)} = \frac{1}{|G|} |G| \operatorname{Tr}(\psi) = \operatorname{Tr}(\psi)$$

and on the other hand

$$\operatorname{Tr}(\widetilde{\psi}) = \operatorname{Tr}(\lambda \cdot \operatorname{Id}_V) = \lambda \operatorname{Tr}(\operatorname{Id}_V) = n \cdot \lambda$$
 ,

hence $\lambda = \frac{\operatorname{Tr}(\psi)}{n}$.

Next, we see that Schur's Lemma implies certain "orthogonality relations" for the entries of matrix representations.

Theorem 5.6 (SCHUR'S RELATIONS)

Assume char(K) $\nmid |G|$. Let $Q : G \longrightarrow GL_n(K)$ and $P : G \longrightarrow GL_m(K)$ be irreducible matrix representations.

- (a) If $P \not\sim Q$, then $\frac{1}{|G|} \sum_{g \in G} P(g)_{ri} Q(g^{-1})_{js} = 0$ for all $1 \leq r, i \leq m$ and all $1 \leq j, s \leq n$.
- (b) If $K = \overline{K}$ and char $(K) \nmid n$, then $\frac{1}{|G|} \sum_{g \in G} Q(g)_{ri} Q(g^{-1})_{js} = \frac{1}{n} \delta_{ij} \delta_{rs}$ for all $1 \leq r, i, j, s \leq n$.
- **Proof:** Set $V := K^n$, $W := K^m$ and let $\rho_V : G \longrightarrow GL(V)$ and $\rho_W : G \longrightarrow GL(W)$ be the K-representations induced by Q and P, respectively, as defined in Remark 1.2. Furthermore, consider the K-linear map $\psi : V \longrightarrow W$ whose matrix with respect to the standard bases of $V = K^n$ and $W = K^m$ is the elementary matrix

$$i\left[\ldots,1,\ldots,1,\ldots\right] =: E_{ij} \in M_{m \times n}(K)$$

- (i.e. the unique nonzero entry of E_{ij} is its (i, j)-entry).
 - (a) By Proposition 5.5(a),

$$\widetilde{\psi} = rac{1}{|G|} \sum_{g \in G}
ho_W(g) \circ \psi \circ
ho_V(g^{-1}) = 0$$

because $P \not\sim Q$, and hence $\rho_V \not\sim \rho_W$. In particular the (r, s)-entry of the matrix of $\tilde{\psi}$ with respect to the standard bases of $V = K^n$ and $W = K^m$ is zero. Thus,

$$0 = \frac{1}{|G|} \sum_{g \in G} \left[P(g) E_{ij} Q(g^{-1}) \right]_{rs} = \frac{1}{|G|} \sum_{g \in G} P(g)_{ri} \cdot 1 \cdot Q(g^{-1})_{js}$$

because the unique nonzero entry of the matrix E_{ij} is its (i, j)-entry.

(b) Now we assume that P = Q, and hence n = m, V = W, $\rho_V = \rho_W$. Then by Proposition 5.5(b),

$$\widetilde{\psi} := \frac{1}{|G|} \sum_{g \in G} \rho_V(g) \circ \psi \circ \rho_V(g^{-1}) = \frac{\operatorname{Tr}(\psi)}{n} \cdot \operatorname{Id}_V = \begin{cases} \frac{1}{n} \cdot \operatorname{Id}_V & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Therefore the (r, s)-entry of the matrix of $\tilde{\psi}$ with respect to the standard basis of $V = K^n$ is

$$\frac{1}{|G|} \sum_{g \in G} \left[Q(g) E_{ij} Q(g^{-1}) \right]_{rs} = \begin{cases} \left(\frac{1}{n} \cdot \operatorname{Id}_V \right)_{rs} & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Again, because the unique nonzero entry of the matrix E_{ij} is its (i, j)-entry, it follows that

$$\frac{1}{|G|}\sum_{g\in G}Q(g)_{ri}Q(g^{-1})_{js}=\frac{1}{n}\delta_{ij}\delta_{rs}.$$

6 Representations of Finite Abelian Groups

In this section we give an immediate application of Schur's Lemma encoding the representation theory of finite abelian groups over an algebraically closed field K whose characteristic is coprime to the order of the group.