- Applying the Orthogonality Relations yields: 1st, 3rd column $\Rightarrow \chi_5(g_3) = -1$ and the scalar product $\langle \chi_1, \chi_5 \rangle_G = 0 \Rightarrow \chi_5(g_2) = 1$.
- · Finally, to fill out the remaining gaps, we can induce from the cyclic subgroup $Z_5 := \langle (1 \ 2 \ 3 \ 4 \ 5) \rangle \leq A_5$. Indeed, choosing the non-trivial irreducible character ψ of Z_5 which was denoted " χ_3 " in Example 4 gives

$$\psi \uparrow^G_{Z_5} = (12, 0, 0, \zeta^2 + \zeta^3, \zeta + \zeta^4)$$

where $\zeta = \exp(2\pi i/5)$ is a primitive 5-th root of unity. Then we compute that

$$\langle \psi \uparrow_{Z_5}^G, \chi_4 \rangle_G = 1 = \langle \psi \uparrow_{Z_5}^G, \chi_5 \rangle_G \quad \Longrightarrow \quad \psi \uparrow_{Z_5}^G - \chi_4 - \chi_5 = (3, -1, 0, -\zeta - \zeta^4, -\zeta^2 - \zeta^3)$$

and this character must be irreducible, because it is not the sum of 3 copies of the trivial character. Hence we set $\chi_2 := \psi \uparrow_{Z_5}^G - \chi_4 - \chi_5$ and the values of χ_3 then easily follow from the 2nd Othogonality Relations:

	C_1	C_2	C_3	C_4	C_5
$ C_k $	1	15	20	12	12
$ C_G(g_k) $	60	4	3	5	5
χ ₁	1	1	1	1	1
χ_2	3	-1	0	$-\zeta-\zeta^4$	$-\zeta^2-\zeta^3$
χ_3	3	-1	0	$-\zeta^2-\zeta^3$	$-\zeta-\zeta^4$
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

Remark 19.9 (Induction of CH-modules)

If you have attended the lecture *Commutative Algebra* you have studied the *tensor product of modules*. In the M.Sc. lecture *Representation Theory* you will see that induction of modules is defined through a tensor product, extending the scalars from $\mathbb{C}H$ to $\mathbb{C}G$. More precisely, if M is a $\mathbb{C}H$ -module, then the induction of M from H to G is defined to be $\mathbb{C}G \otimes_{\mathbb{C}H} M$. Moreover, if M affords the character χ , then $\mathbb{C}G \otimes_{\mathbb{C}H} M$ affords the character $\chi \uparrow_{H}^{G}$.

20 Clifford Theory

Clifford theory is a generic term for a series of results relating the representation / character theory of a given group G to that of a normal subgroup $N \trianglelefteq G$ through induction and restriction.

Notation 20.1

If $H \leq G$ and $x \in G$, then we let

$$\begin{array}{cccc} c_x \colon & H & \longrightarrow & xHx^{-1} \\ & h & \mapsto & xhx^{-1} \end{array}$$

denote the conjugation homomorphism by *x*.

Definition 20.2 (Conjugate class function / inertia group)

Let $H \leq G$, let $\varphi \in Cl(H)$, let $g \in G$ and let $c_{g^{-1}} : gHg^{-1} \longrightarrow H$ denote the conjugation homomorphism by g^{-1} . We define:

(a) the conjugate class function to φ by g to be ${}^{g}\varphi := \varphi \circ c_{q^{-1}} \in Cl(gHg^{-1})$, i.e. the class function on qHq^{-1} given by

$${}^{g} \varphi : gHg^{-1} \longrightarrow \mathbb{C}$$
, $x \mapsto \varphi(g^{-1}xg)$; and

(b) the inertia group of φ in G to be $\mathcal{I}_G(\varphi) := \{q \in G \mid {}^g \varphi = \varphi\}.$

Exercise 20.3

Let $g, h \in G$. With the notation of Definition 20.2, prove that:

- (a) ${}^{g}\varphi$ is indeed a class function on gHg^{-1} ;
- (b) $\mathcal{I}_G(\varphi) \leq G$ and $H \leq \mathcal{I}_G(\varphi) \leq N_G(H)$; (c) ${}^g \varphi = {}^h \varphi \Leftrightarrow h^{-1}g \in \mathcal{I}_G(\varphi) \Leftrightarrow g\mathcal{I}_G(\varphi) = h\mathcal{I}_G(\varphi)$;
- (d) if $\rho: H \longrightarrow GL(V)$ is a C-representation of H with character χ , then

$${}^{g}\rho := \circ c_{a^{-1}} : gHg^{-1} \longrightarrow \operatorname{GL}(V), x \mapsto \rho(g^{-1}xg)$$

is C-representation of gHg^{-1} with character ${}^g\chi = \chi \circ c_{g^{-1}}$ and ${}^g\chi(1) = \chi(1)$;

(e) if $J \leq H$ then ${}^{g}(\varphi \downarrow_{J}^{H}) = ({}^{g}\varphi) \downarrow_{gJg^{-1}}^{gHg^{-1}}$.

Exercise 20.4 (Mackey Formula)

Let $H, L \leq G$ and let $\varphi \in Cl(H)$. Prove that

$$(\varphi \uparrow^G_H) \downarrow^G_L = \sum_{LgH \in L \setminus G/H} ({}^g \varphi) \downarrow^{gHg^{-1}}_{gHg^{-1} \cap L} \uparrow^L_{gHg^{-1} \cap L} .$$

Exercise 20.5

Deduce from the Mackey formula that if $N \leq G$, and $\psi \in Irr(N)$, then

$$\langle \psi \uparrow^G_N, \psi \uparrow^G_N \rangle_G = \sum_{xN \in G/N} \langle \psi, x \psi \rangle_N.$$

Lemma 20.6

- (a) If $H \leq G$, $\varphi, \psi \in Cl(H)$ and $g \in G$, then $\langle {}^{g}\varphi, {}^{g}\psi \rangle_{gHg^{-1}} = \langle \varphi, \psi \rangle_{H}$.
- (b) If $N \trianglelefteq G$ and $g \in G$, then we have $\psi \in Irr(N) \iff {}^{g}\psi \in Irr(N)$.

(c) If $N \leq G$ and ψ is a character of N, then $(\psi \uparrow_N^G) \downarrow_N^G = |\mathcal{I}_G(\psi) : N| \sum_{g \mathcal{I}_G(\psi) \in G/\mathcal{I}_G(\psi)} {}^g \psi$.

Proof: (a) Clearly

$$\langle {}^{g}\varphi, {}^{g}\psi \rangle_{gHg^{-1}} = \frac{1}{|gHg^{-1}|} \sum_{x \in gHg^{-1}} {}^{g}\varphi(x)\overline{{}^{g}\psi(x)}$$

$$= \frac{1}{|H|} \sum_{x \in gHg^{-1}} \varphi(g^{-1}xg)\overline{\psi(g^{-1}xg)}$$

$${}^{g:=\underline{g}^{-1}xg} = \frac{1}{|H|} \sum_{g \in H} \varphi(g)\overline{\psi(g)} = \langle \varphi, \psi \rangle_{H} .$$

- (b) As $N \leq G$, $gNg^{-1} = N$. Thus, if $\psi \in Irr(N)$, then on the one hand ${}^{g}\psi$ is also a character of N by Exercise 20.3(d), and on the other hand it follows from (a) that $\langle {}^{g}\psi, {}^{g}\psi \rangle_{N} = \langle \psi, \psi \rangle_{N} = 1$. Hence ${}^{g}\psi$ is an irreducible character of N. Therefore, if ${}^{g}\psi \in Irr(N)$, then $\psi = {}^{g^{-1}}({}^{g}\psi) \in Irr(N)$, as required.
- (c) If $n \in N$ then so does $g^{-1}ng \forall g \in G$, hence

$$\psi\uparrow_{N\downarrow N}^{G} {}_{N} {}_{N} {}_{N} (n) = \psi\uparrow_{N}^{G} (n) = \frac{1}{|N|} \sum_{g \in G} \psi(g^{-1}ng) = \frac{1}{|N|} \sum_{g \in G} {}^{g} \psi(n) = \frac{|\mathcal{I}_{G}(\psi)|}{|N|} \sum_{g \in [G/\mathcal{I}_{G}(\psi)]} {}^{g} \psi(n).$$

Notation 20.7

Given $N \trianglelefteq G$ and $\psi \in Irr(N)$, we set $Irr(G \mid \psi) := \{\chi \in Irr(G) \mid \langle \chi \downarrow_N^G, \psi \rangle_N \neq 0\}.$

Theorem 20.8 (CLIFFORD THEORY)

Let $N \trianglelefteq G$. Let $\chi \in Irr(G)$, $\psi \in Irr(N)$ and set $\mathcal{I} := \mathcal{I}_G(\psi)$. Then the following assertions hold.

(a) If ψ is a constituent of $\chi \downarrow_N^G$, then

$$\chi \downarrow_N^G = e\left(\sum_{g \mathcal{I}_G(\psi) \in G/\mathcal{I}_G(\psi)} {}^g \psi\right)$$
,

where $e = \langle \chi \downarrow_N^G, \psi \rangle_N = \langle \chi, \psi \uparrow_N^G \rangle_G \in \mathbb{Z}_{>0}$ is called the **ramification index** of χ in N (or of ψ in G). In particular, all the constituents of $\chi \downarrow_N^G$ have the same degree.

(b) Induction from $\mathcal{I} = \mathcal{I}_G(\psi)$ to G induces a bijection

$$\begin{array}{cccc} \operatorname{Ind}_{\mathcal{I}}^{G} \colon & \operatorname{Irr}(\mathcal{I} \mid \psi) & \longrightarrow & \operatorname{Irr}(G \mid \psi) \\ & \eta & \mapsto & \eta \uparrow_{\mathcal{I}}^{G} \end{array}$$

preserving ramification indices, i.e. $\langle \eta \downarrow_N^{\mathcal{I}}, \psi \rangle_N = \langle \eta \uparrow_{\mathcal{I}}^{\mathcal{G}} \downarrow_N^{\mathcal{I}}, \psi \rangle_N = e.$

Proof: (a) By Frobenius reciprocity, $\langle \chi, \psi \uparrow_N^G \rangle_G = \langle \chi \downarrow_N^G, \psi \rangle_N \neq 0$. Thus χ is a constituent of $\psi \uparrow_N^G$ and therefore $\chi \downarrow_N^G$ is a constituent of $\psi \uparrow_N^G \downarrow_N^G$. Now, if $\eta \in Irr(N)$ is an arbitrary constituent of $\chi \downarrow_N^G$ (i.e. $\langle \chi \downarrow_N^G, \eta \rangle_N \neq 0$) then by the above, we have

$$\langle \psi \uparrow^G_N \downarrow^G_N, \eta \rangle_N \geqslant \langle \chi \downarrow^G_N, \eta \rangle_N > 0$$

Moroever, by Lemma 20.6(c) the constituents of $\psi \uparrow_N^G \downarrow_N^G$ are preciely $\{ {}^g \psi \mid g \in [G/\mathcal{I}_G(\psi)] \}$. Hence η is *G*-conjugate to ψ . Furthermore, for every $g \in G$ we have

$$\langle \chi \downarrow_N^G, {}^g \psi \rangle_N = \frac{1}{|N|} \sum_{h \in N} \chi(h)^g \psi(h^{-1}) = \frac{1}{|N|} \sum_{h \in N} \chi(h) \psi(g^{-1}h^{-1}g)$$

$$\stackrel{\chi \in \mathcal{Cl}(G)}{=} \frac{1}{|N|} \sum_{h \in N} \chi(g^{-1}hg) \psi(g^{-1}h^{-1}g)$$

$$\stackrel{s:=g^{-1}hg \in N}{=} \frac{1}{|N|} \sum_{s \in N} \chi(s) \psi(s^{-1}) = \langle \chi \downarrow_N^G, \psi \rangle_N = e$$

Therefore, every G-conjugate ${}^g\psi$ $(g \in [G/\mathcal{I}_G(\psi)])$ of ψ occurs as a constituent of $\chi \downarrow_N^G$ with the same multiplicity e. The claim about the degrees is then clear as ${}^{g}\psi(1) = \psi(1) \ \forall g \in G$.

(b) Claim 1: $\eta \in \operatorname{Irr}(\mathcal{I} \mid \psi) \Rightarrow \eta \uparrow_{\mathcal{I}}^{G} \in \operatorname{Irr}(G \mid \psi).$

Since $\mathcal{I} = \mathcal{I}_{\mathcal{I}}(\psi)$, (a) implies that $\eta \downarrow_{N}^{\mathcal{I}} = e'\psi$ with $e' = \langle \eta \downarrow_{N}^{\mathcal{I}}, \psi \rangle_{N} = \frac{\eta(1)}{\psi(1)} > 0$. Now, let $\chi \in Irr(G)$ be a constituent of $\eta \uparrow^G_{\mathcal{I}}$. By Frobenius Reciprocity we have

$$0 \neq \langle \chi, \eta \uparrow_{\mathcal{I}}^{G} \rangle_{G} = \langle \chi \downarrow_{\mathcal{I}}^{G}, \eta \rangle_{\mathcal{I}}.$$

It follows that $\eta \downarrow_N^{\mathcal{I}}$ is a constituent of $\chi \downarrow_{\mathcal{I}}^{G} \downarrow_N^{\mathcal{I}}$ and

$$e := \langle \chi \downarrow_N^G, \psi \rangle_N = \langle \chi \downarrow_\mathcal{I}^G \downarrow_N^\mathcal{I}, \psi \rangle_N \geqslant \langle \eta \downarrow_N^\mathcal{I}, \psi \rangle_N = e' > 0$$
,

hence $\chi \in Irr(G|\psi)$. Moreover, by (a) we have $e = \langle \chi \downarrow_{N'}^G {}^g \psi \rangle_N \ge e'$ for each $g \in G$. Therefore,

$$\chi(1) = e \sum_{g \in [G/\mathcal{I}]} {}^g \psi(1) \stackrel{(a)}{=} e | G : \mathcal{I} | \psi(1) \ge e' | G : \mathcal{I} | \psi(1) = | G : \mathcal{I} | \eta(1) = \eta \uparrow_{\mathcal{I}}^G (1) \ge \chi(1) \,.$$

Thus e = e', $\eta \uparrow_{\mathcal{T}}^{G} = \chi \in \operatorname{Irr}(G)$, and therefore $\eta \uparrow_{\mathcal{T}}^{G} \in \operatorname{Irr}(G|\psi)$.

 $\underline{\text{Claim 2: } \chi \in \text{Irr}(G \mid \psi) \ \Rightarrow \ \exists ! \eta \in \text{Irr}(\mathcal{I} \mid \psi) \text{ such that } \langle \chi \downarrow_{\mathcal{I}}^{G}, \eta \rangle_{\mathcal{I}} \neq 0.}$ Again by (a), as $\chi \in \operatorname{Irr}(G \mid \psi)$, we have $\chi \downarrow_N^G = e \sum_{g \in [G/I]} {}^g \psi$, where $e = \langle \chi \downarrow_N^G, \psi \rangle_N \in \mathbb{Z}_{>0}$. Therefore, there exists $\eta \in Irr(\mathcal{I})$ such that

$$\langle \chi \downarrow_{\mathcal{I}}^{G}, \eta \rangle_{\mathcal{I}} \neq 0 \neq \langle \eta \downarrow_{N}^{\mathcal{I}}, \psi \rangle_{N}$$

because $\chi \downarrow_N^G = \chi \downarrow_{\mathcal{I}}^G \downarrow_N^{\mathcal{I}}$, so in particular $\eta \in \operatorname{Irr}(\mathcal{I} \mid \psi)$. Hence existence holds and it remains to see that uniqueness holds. Again by Frobenius reciprocity we have $0 \neq \langle \chi, \eta \uparrow_{\mathcal{I}}^G \rangle_G$. By Claim 1 this forces $\chi = \eta \uparrow_{\mathcal{I}}^G$ and $\eta \downarrow_N^{\mathcal{I}} = e\psi$, so e is also the ramification index of ψ in \mathcal{I} . Now, write $\chi \downarrow_{\mathcal{I}}^G = \sum_{\lambda \in \operatorname{Irr}(\mathcal{I})} a_\lambda \lambda = \sum_{\lambda \neq \eta} a_\lambda \lambda + a_\eta \eta$ with $a_\lambda \ge 0$ for each $\lambda \in \operatorname{Irr}(\mathcal{I})$ and $a_\eta > 0$. It follows that

follows that

$$(a_{\eta}-1)\eta\downarrow_{N}^{\mathcal{I}}+\sum_{\lambda\neq\eta}a_{\lambda}\lambda\downarrow_{N}^{\mathcal{I}}=\underbrace{\chi\downarrow_{N}^{G}}_{=e\sum_{g\in[G/\mathcal{I}]}g\psi}-\underbrace{\eta\downarrow_{N}^{\mathcal{I}}}_{=e\psi}=e\sum_{g\in[G/\mathcal{I}]\setminus[1]}g\psi.$$

Since ψ does not occur in this sum, but occurs in $\eta \downarrow_N^{\mathcal{I}}$, the only possibility is $a_\eta = 1$ and $\lambda \notin Irr(\mathcal{I}|\psi)$ for $\lambda \neq \eta$. Thus η is uniquely determined as the only constituent of $\chi \downarrow_{\mathcal{I}}^{G}$ in Irr $(\mathcal{I} \mid \psi)$.

Finally, Claims 1 and 2 prove that $\operatorname{Ind}_{\mathcal{I}}^{G} : \operatorname{Irr}(\mathcal{I} \mid \psi) \longrightarrow \operatorname{Irr}(G \mid \psi), \eta \mapsto \eta \uparrow_{\mathcal{I}}^{G}$ is well-defined and bijective, and the proof of Claim 2 shows that the ramification indices are preserved.

Example 13 (Normal subgroups of index 2)

Let N < G be a subgroup of index $|G: N| = 2 \implies N \triangleleft G$ and let $\chi \in Irr(G)$, then either

- (1) $\chi \downarrow_N^G \in \operatorname{Irr}(N)$, or
- (2) $\chi \downarrow_N^G = \psi + {}^g \psi$ for a $\psi \in \operatorname{Irr}(N)$ and a $g \in G \setminus N$.

Indeed, let $\psi \in Irr(N)$ be a constituent of $\chi \downarrow_N^G$. Since |G : N| = 2, we have $\mathcal{I}_G(\psi) \in \{N, G\}$. Theorem 20.8 yields the following:

- If $\mathcal{I}_G(\psi) = N$ then Irr $(\mathcal{I}_G(\psi) \mid \psi) = \{\psi\}$ and $\psi \uparrow_N^G = \chi$, so that e = 1 and we get $\chi \downarrow_N^G = \psi + {}^g \psi$ for any $q \in G \setminus N$.
- · If $\mathcal{I}_G(\psi) = G$ then $G/\mathcal{I}_G(\psi) = \{1\}$, so that

$$\chi \downarrow_N^G = e\psi$$
 with $e = \langle \chi \downarrow_N^G, \psi \rangle_N = \langle \chi, \psi \uparrow_N^G \rangle_G$.

Moroever, by Lemma 20.6(c),

$$\psi \uparrow^G_{N\downarrow N} = |\mathcal{I}_G(\psi) : N| \sum_{g \in G/\mathcal{I}_G(\psi)} {}^g \psi = 2\psi.$$

Hence

$$2\psi(1) = \psi \uparrow_{N \downarrow N}^{G} \stackrel{G}{(1)} \ge \chi \downarrow_{N}^{G} (1) = \chi(1) = e\psi(1) \quad \Rightarrow \quad e \leq 2.$$

Were e = 2 then we would have $2\psi(1) = \psi \uparrow_N^G(1)$, hence $\chi = \psi \uparrow_N^G$ and thus

$$1 = \langle \chi, \psi \uparrow_N^G \rangle_G = \langle \chi \downarrow_N^G, \psi \rangle_N = e = 2$$

a contradiction. Whence e = 1, which implies that $\chi \downarrow_N^G \in \operatorname{Irr}(N)$. Moreover, $\psi \uparrow_N^G = \chi + \chi'$ for some $\chi' \in Irr(G)$ such that $\chi' \neq \chi$.

Remember that we have proved that the degree of an irreducible character of a finite group G divides the index of the centre |G : Z(G)|. The following consequence of Clifford's theorem due to N. Itô provides us with yet a stronger divisibility criterion.

Theorem 20.9 (Itô)

Let $A \leq G$ be an abelian subgroup of G and let $\chi \in Irr(G)$. Then the following assertions hold:

- (a) $\chi(1) \le |G:A|$; and (b) if $A \le G$, then $\chi(1) ||G:A|$.

Proof: (a) Exercise!

(b) Let $\psi \in Irr(A)$ be a constituent of $\chi \downarrow_A^G$, so that in other words $\chi \in Irr(G \mid \psi)$. By Theorem 20.8(b) there exists $\eta \in \operatorname{Irr}(\mathcal{I}_G(\psi) \mid \psi)$ such that $\chi = \eta \uparrow_{\mathcal{I}_G(\psi)}^G$ and $\eta \downarrow_A^{\mathcal{I}_G(\psi)} = e\psi$ (proof of Claim 2). Now, as A is abelian, all the irreducible characters of A have degree 1 and for each $x \in A$, $\psi(x)$ is an o(x)-th root of unity. Hence $\forall x \in A$ we have

$$|\eta(x)| = |\eta\downarrow_A^{\mathcal{I}_G(\psi)}(x)| = |e\psi(x)| = e|\psi(x)| = e \cdot 1 = e = \eta(1) \quad \Rightarrow \quad A \subseteq Z(\eta) \,.$$

Therefore, by Remark 17.5, we have

$$\eta(1) \left| \left| \mathcal{I}_G(\psi) : Z(\eta) \right| \right| \left| \mathcal{I}_G(\psi) : A \right|$$

and since $\chi = \eta \uparrow^G_{\mathcal{I}_G(\psi)}$ it follows that

$$\chi(1) = |G: \mathcal{I}_G(\psi)|\eta(1)| |G: \mathcal{I}_G(\psi)| \cdot |\mathcal{I}_G(\psi): A| = |G:A|.$$

21 The Theorem of Gallagher

In the context of Clifford theory (Theorem 20.8) we understand that irreducibility of characters is preserved by induction from $\mathcal{I}_G(\psi)$ to G. Thus we need to understand induction of characters from N to $\mathcal{I}_G(\psi)$, in particular what if $G = \mathcal{I}_G(\psi)$. What can be said about $Irr(G \mid \psi)$?

Lemma 21.1

Let $N \trianglelefteq G$ and let $\psi \in Irr(N)$ such that $\mathcal{I}_G(\psi) = G$. Then

$$\psi \uparrow^G_N = \sum_{\chi \in \operatorname{Irr}(G)} e_\chi \chi$$

where $e_{\chi} := \langle \chi \downarrow_N^G, \psi \rangle_N$ is the ramification index of χ in N; in particular

$$\sum_{\chi \in \operatorname{Irr}(G)} e_{\chi}^2 = |G:N|.$$

Proof: Write $\psi \uparrow_N^G = \sum_{\chi \in Irr(G)} a_\chi \chi$ with suitable $a_\chi = \langle \chi, \psi \uparrow_N^G \rangle_G$. By Frobenius reciprocity, $a_\chi \neq 0$ if and only if $\chi \in Irr(G \mid \psi)$. But by Theorem 20.8: if $\chi \in Irr(G \mid \psi)$, then $\chi \downarrow_N^G = e_\chi \psi$, so that

$$\mathsf{e}_\chi=\langle\chi\!\downarrow^G_N,\psi
angle_N=\langle\chi,\psi\!\uparrow^G_N
angle_G=a_\chi$$
 .

Therefore,

$$|G:N|\psi(1) = \psi \uparrow_N^G(1) = \sum_{\chi \in \operatorname{Irr}(G)} a_{\chi}\chi(1) = \sum_{\chi \in \operatorname{Irr}(G)} e_{\chi}\chi(1) = \sum_{\chi \in \operatorname{Irr}(G)} e_{\chi}^2\psi(1) = \psi(1)\sum_{\chi \in \operatorname{Irr}(G)} e_{\chi}^2$$

and it follows that $|G:N| = \sum_{\chi \in Irr(G)} e_{\chi}^2$.

Therefore the multiplicities $\{e_{\chi}\}_{\chi \in Irr(G)}$ behave like the irreducible character degrees of the factor group G/N. This is not a coincidence in many cases.

Definition 21.2 (Extension of a character)

Let $N \leq G$ and $\chi \in Irr(G)$ such that $\psi := \chi \downarrow_N^G$ is irreducible. Then we say that ψ extends to G, and χ is an extension of ψ .

Exercise 21.3

Let $N \trianglelefteq G$ and $\chi \in Irr(G)$. Prove that

$$\chi \downarrow_N^G \uparrow_N^G = \mathrm{Inf}_{G/N}^G(\chi_{\mathrm{reg}}) \cdot \chi$$

where χ_{reg} is the regular character of G/N.

Theorem 21.4 (GALLAGHER)

Let $N \trianglelefteq G$ and let $\chi \in Irr(G)$ such that $\psi := \chi \downarrow_N^G \in Irr(N)$. Then

$$\psi \uparrow_N^G = \sum_{\lambda \in \operatorname{Irr}(G/N)} \lambda(1) \, \operatorname{Inf}_{G/N}^G(\lambda) \cdot \chi,$$

where the characters $\{ Inf_{G/N}^G(\lambda) \cdot \chi \mid \lambda \in Irr(G/N) \}$ of G are pairwise distinct and irreducible.

Proof: By Exercise 21.3 we have $\psi \uparrow_N^G = \inf_{G/N}^G (\chi_{reg}) \cdot \chi$, where χ_{reg} denotes the regular character of G/N. Recall that by Theorem 10.3, $\chi_{reg} = \sum_{\lambda \in Irr(G/N)} \lambda(1) \lambda$, so that we have

$$\psi \uparrow_N^G = \sum_{\lambda \in \operatorname{Irr}(G/N)} \lambda(1) \operatorname{Inf}_{G/N}^G(\lambda) \cdot \chi$$

Now, by Lemma 21.1, we have

$$\begin{aligned} |G:N| &= \sum_{\chi \in \operatorname{Irr}(G)} e_{\chi}^{2} = \langle \psi \uparrow_{N}^{G}, \psi \uparrow_{N}^{G} \rangle_{G} = \sum_{\lambda, \mu \in \operatorname{Irr}(G/N)} \lambda(1) \mu(1) \langle \operatorname{Inf}_{G/N}^{G}(\lambda) \cdot \chi, \operatorname{Inf}_{G/N}^{G}(\mu) \cdot \chi \rangle_{G} \\ &\geqslant \sum_{\lambda \in \operatorname{Irr}(G/N)} \lambda(1)^{2} = |G:N| \,. \end{aligned}$$

Hence equality holds throughout. This proves that

$$\langle \operatorname{Inf}_{G/N}^G(\lambda) \cdot \chi, \operatorname{Inf}_{G/N}^G(\mu) \cdot \chi \rangle = \delta_{\lambda\mu}.$$

By Erercise 13.4, $\inf_{G/N}^{G}(\lambda) \cdot \chi$ are characters of G and hence the characters $\{\inf_{G/N}^{G}(\lambda) \cdot \chi \mid \lambda \in Irr(G/N)\}$ are irreducible and pairwise distinct, as claimed.

Therefore, given $\psi \in \operatorname{Irr}(N)$ which extends to $\chi \in \operatorname{Irr}(G)$, we get $\operatorname{Inf}_{G/N}^{G}(\lambda) \cdot \chi$ ($\lambda \in \operatorname{Irr}(G/N)$) as further irreducible characters.

Example 14

Let N < G with $|G: N| = 2 \implies N \leq G$ and let $\psi \in Irr(N)$. We saw:

- if $\mathcal{I}_G(\psi) = N$ then $\psi \uparrow_N^G \in \operatorname{Irr}(G)$;
- if $\mathcal{I}_G(\psi) = G$ then ψ extends to some $\chi \in Irr(G)$ and $\psi^G = \chi + \chi'$ with $\chi' \in Irr(G) \setminus \{\chi\}$. It follows that $\chi' = \chi \cdot sign$, where sign is the inflation of the sign character of $G/N \cong S_2$ to G.