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Corollary 15.1

Character values are algebraic integers.

Proof: By the above, roots of unity are algebraic integers. Since the algebraic integers form a ring, so are
sums of roots of unity. Hence the claim follows from Property 7.5(b). ]

16 Central Characters

We now extend representations/characters of finite groups to "representations/characters" of the centre
of the group algebra CG in order to obtain further results on character values, which we will use in the
next sections in order to prove Burnside's p?q® theorem.

Definition 16.1 (Class sums)
The elements Ej =

geC, 9 € CG (1 < j < r) are called the class sums of G.

Lemma 16.2
The class sums {6, | 1< j < r}form a C-basis of Z(CG). In other words, Z(CG) = Dj_4 c&,.

Proof: Notice that the class sums are clearly C-linearly independent because the group elements are.

"D V1<j<randVge(, we have

~ ~

g-C=9(g7'Cg)=Cg.

Extending by C-linearity, we get 0-6/ = 6/-0 V1< j<randVaceCG. Thus @;:1 CE“/ c Z(CG).

" Let a € Z(CG) and write a = ]
have

N

geG Agg With {Ag}gec = C. Since a is central, for every h € G, we

Z Agg =a=hah™" = Z Ag(hgh™).
geG geG
Comparing coefficients yield Ay = Apgp—1 ¥V g, h € G. Namely, the coefficients A; are constant on

the conjugacy classes of G, and hence

r r

a=Y 4,Ce@cCE.
j=1

j=1 |

)

Now, notice that by definition the class sums C; (1 < j < r) are elements of the subring ZG of CG,
hence of the centre of ZG.

Corollary 16.3

(a) Z(ZG) is finitely generated as a Z-module.

~

(b) The centre Z(ZG) of the group ring ZG is integral over Z; in particular the class sums C;
(1 <j <) are integral over Z.
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Proof:

(a) It follows directly from the second part of the proof of Lemma 16.2 that the class sums 6] 1<j<r)
span Z(ZG) as a Z-module.

(b) The centre Z(ZG) is integral over Z by Theorem D.2 because it is finitely generated as a Z-module
by (a). m

Notation 16.4 (Central characters)

If x € Irr(G), then we may consider a C-representation affording , say pX : G — GL(C"X)) =
Autc(C"00) with n(x) := x(1). This group homomorphism extends by C-linearity to a C-algebra
homomorphism
P cG —  Endc(C"X))
a=24echg — Pa)=2,ecrp (9).

Now, if ze Z(CG), then for each g € G, we have
pX(2)pX(g) = pX(z9) = p*(g2) = p*(9)p*(2) .

As we have already seen in Chapter 2 on Schur’s Lemma this means that pX(z) is CG-linear. This
holds in particular if z is a class sum. Therefore, by Schur’s Lemma, for each 1 < j < r there exists

~

a scalar w, (C;) € C such that
PA(G) = 0 (G) gy
The functions defined by
W, : Z(EZG) — C ~
G = w,(G)
and extended by C-linearity to the whole of Z(CG), where x runs through Irr(G), are called the
central characters of CG (or simply of G).

Remark 16.5

If ze Z(G), then [z] = {z} and therefore the corresponding class sum is z itself. Therefore, we may
see the functions wy|7(g) : Z(G) — C as representations of Z(G) of degree 1, or equivalently as
linear characters of Z(G).

Theorem 16.6 (Integrality Theorem)

~

The values wy(C;) (x € Irr(G), 1 < j < r) of the central characters of G are algebraic integers.
Moreover,

~ C: '
wX(Cj):J(({II)X(gj) Vxelr(G),V1<j<r.

Proof: Let x € Irr(G) and 1 < j < r. By Corollary 16.3 the class sum 6, is an algebraic integer. Thus there
exist integers n € Z-y and ay, ..., a,_1 € Z such that C]-" + Un_1q-[771 + ...+ a9 = 0. Applying w,

~

ylelds w, (Gj)" + ap—1w (6,-)”’1 + ...+ a9 = w,(0) =0, so that wx(a‘/) is also an algebraic integer.

X
Now, according to Notation 16.4 we have

x(Mw, (G) =Tr (PUG)) =Tr (X pX(9)) = > Tr (p(9)) = D x(9) = |Glx(g)).

geC; geC; geC;
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where the last equality holds because characters are class functions. The claim follows. ]

Corollary 16.7
If x € Irr(G), then x(1) divides |G].

Proof: By the 1st Orthogonality Relations we have

Lo L8 v = S
w, (G)

Now, for each 1 < j < r, w,(g;) is an algebraic integer by the Integrality Theorem and x(gj_1) is an
algebraic integer by Corollary 15.1. Hence |G|/x(1) is an algebraic integer because these form a subring
of C. Moroever, clearly |G|/x(1) € Q. As the algebraic integers in Q are just the elements of Z, we
obtain that |G|/x(1) € Z, as claimed. |

Example 8 (The degrees of the irreducible characters of GL3(F3))

The group G := GL3(F,) is a simple group of oder
|G| = # Fy-bases of F3 = (23 —1)(2> —2)(2° —2?) =168 = 23.3.7.

For the purpose of this example we accept without proof that G is simple and that it has 6 conjugacy
classes.

Question: can we compute the degrees of the irreducible characters of GL3(F2)?

(1) By the above |Irr(G)| = |C(G)| = 6 and the degree formula yields:
6
T4+ > x(1)* = |G| = 168.

(2) Next, as G is simple non-abelian, G = G’ and therfeore G has |G : G’| = 1 linear characters
by Corollary 14.8, namely
Xxi(1) =2 foreach2<i<6.

Thus, at this stage, we would have the following possibilities for the degrees of the 6 irre-
ducible characters of G:

(3) By Corollary 16.7 we now know that x;(1) | |G| for each 2 < i < 6. Therefore, as 51 |G| and
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x1(1D) () x3() x () xs(1) x(1)
1 2 4 5 6 g
1 2 3 3 8 g
1 2 5 5 7 8
1 2 4 7 7 7
1 3 3 6 7 8

(4) In order to eliminate the last-but-one possibility, we use Exercise 14.14 telling us that a
simple group cannot have an irreducible character of degree 2. Hence

x1(1) =1, x2(1) =3, x35(1) =3, x4(1) =6, x5(1) =7, x(1) = 8.

Exercise 16.8

Let G be a finite group of odd order and, as usual, let r denote the number of conjugacy classes
of Gi. Use character theory to prove that

r=|G| (mod 16).

[Hint: Label the set Irr(G) of irreducible characters taking dual characters into account. Use the divisibility property of
Corollary 16.7]

17 The Centre of a Character

Definition 17.1 (Centre of a character)

Note: Recall that in contrast, x(g) = x(1) < g € ker(x).

Example 9

The centre of a character y of G is Z(x) :={ge G | |[x(g)| = x(1)}.

Recall from Example 5 that the character table of G = S3 is

[1d (12) (123)

xi |1 1 1
v | 1 - 1
|2 0 1

Hence Z(x,) = Z(x,) = G and Z(x;) = {Id}.

mma 17.2
If p: G —> GL(V) is a C-representation affording the character ¥ and g € G, then:

Ix(@)l=x(1) <= p(g)eC idy .
In other words Z(x) = p~' (C*1dy).
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Proof: Let n := x(1). Recall that we can find a C-basis B of V such that (p(g))g is a diagonal matrix
with diagonal entries €1, ..., €, which are o(g)-th roots of unity. Hence €1, ..., €, are the eigenvalues
of p(g). Applying the Cauchy-Schwarz inequality to the vectors v := (&1,...,&,) and w:= (1,...,1) in
C" yields

()] = ler + ... + &nl = Kv. W < VI - lIwl| = V/nv/n = n = x(1)

and equality implies that v and w are C-linearly dependent so that &1 = ... = €, =: €. Therefore
p(g) € C*Idy. Conversely, if p(g) € C* Idy, then there exists A € C* such that p(g) = Aldy. Therefore
the eigenvalues of p(g) are all equal to A, ie. A =¢1 =... =g, and therefore

Ix(9)| = |nA| =nlAl =n-1=n.

Proposition 17.3

Let x be a character of G. Then:
(a) Z(x) 2 G;

(b) ker(x) <Z(x) and Z(x)/ker(x) is a cyclic group;
(c) if x is irreducible, then Z(x)/ker(x) = Z(G/ker(x)).

Proof: Let p: G —> GL(V) be a C-representation affording x and set n := x(1).
(a) Clearly C*Idy < Z(GL(V)) and hence C* Idy <GL(V). Therefore, by Lemma 17.2,
Z(x)=p '(C*ldy) <G

as the pre-image under a group homomorphism of a normal subgroup.

(b) By the definitions of the kernel and of the centre of a character, we have ker(x) < Z(x). Therefore
ker(x) <Z(x) by (a). By Lemma 17.2 restriction to Z(x) yields a group homomorphism

p|Z(X) : Z(x) —— C*ldy

with kernel ker(x). Therefore, by the 1st ismomorphism theorem, Z(x)/ker(x) is isomorphic to a
finite subgroup of C* Idy = C*, hence is cyclic (c.f. e.g. EZT).

(c) By the arguments of (a) and (b) we have
Z(x)/ker(x) = p(Z(x)) < Z(p(G)) -
Applying again the first isomorphism theorem we have p(G) =~ G/ ker(p), hence
Z(p(G)) = Z(G/ker(p)) = Z(G/ker(x)) -

Now let g ker(x) € Z(G/ker(x)), where g € G. As x is irreducible, by Schur’s Lemma, there exists
A€ C* such that p(g) = Aldy. Thus g € Z(x) and it follows that

Z(G/ker(x)) < Z(x)/ker(x) .

Exercise 17.4

Prove that if x € Irr(G), then Z(G) < Z(x). Deduce that ﬂxem(c) Z(x) =Z(G).

49
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Remark 17.5
Prove that, if x € Irr(G), then x(1) | |G : Z(x)|. Deduce that x(1) | |G : Z(G)].

This allows us to prove an important criterion, due to Burnside, for character values to be zero.

Theorem 17.6 (Burnside)

Let x € Irr(G) and let C = [g] be a conjugacy class of G such that ged(x(1),
x(g) =0orgeZ(x)

Proof: As ged(x(1),

C|) = 1. Then

C|) =1, there exist u, v € Z such that ux(1) + v|C| =1 Set a := %. Then

|Clx(g)
x(1)

is an algebraic integer because both x(g) and w, (C) are. Now, set m := [{(g)| and let (,, := e, As
x(g) is a sum of m-th roots of unity, certainly x(g) € Q({x,). Let G be the Galois group of the Galois
extension Q < Q({,;,). Then for each field automorphism ¢ € G, o(«a) is also an algebraic integer because
a and o(a) are roots of the same monic integral polynomial. Hence 8 :=[],; 0(a) is also an algebaric
integer and because d(B) = B for every g € G, B is an element of the fixed field of G, namely B € Q
(Galois theory). Therefore B € Z.

If g € Z(x), then there is nothing to do. Thus we may assume that g ¢ Z(x). Then |x(g)| # x(1), so
that by Property 7.5(c) we must have |x(g)| < x(1) and hence |a| < 1. Now, again by Property 7.5(b),
x(g) =&+ ...+ &, withn = x(1) and &1, ..., &, m-th roots of unity. Therefore, for each o € G\{ld},
we have g(x(g)) = o(&1) + ... + o(&,) with o(&1),...,0(g,) m-th roots of unity, because ¢1,..., &,
are. It follows that

(ux(1) +vI[C|) = ux(g) +v = ux(g) +vw,(C)

[o(x(9))] = lo(er) + ... + alen)| < [o(en)| + ... + [o(en)] = n = x(1)

and hence

Thus
Bl =[]]o@l= lal - J] |ol@)]<1.

oeg 21 geG\{Id} <1

The only way an integer satisfies this inequality is B = 0. Thus a = 0 as well, which implies that
x(g) = 0. u

Corollary 17.7

Assume now that G is a non-abelian simple group. In the situation of Theorem 17.6 if we assume
moreover that x(1) > 1 and C # {1}, then it is always the case that x(g) = 0.

Proof: We see that then either x(g) = 0 or Z(x) is a non-trivial proper normal subgroup of G. Indeed, if
x(g) # 0, then Theorem 17.6 implies that g € Z(x), so Z(x) # 1. Now, as G is non-abelian simple we
have Z(x) = G. On the other hand, the fact that G is simple also tells us that ker(x) = 1 (if it were G,
then x would be reducible). Then it follows from Proposition 17.3 that

G = Z(x)/ ker(x) = Z(G/ker(x)) = Z(G) = 1.

A contradiction. [}



