Corollary 15.1

Character values are algebraic integers.
Proof: By the above, roots of unity are algebraic integers. Since the algebraic integers form a ring, so are sums of roots of unity. Hence the claim follows from Property 7.5(b).

16 Central Characters

We now extend representations/characters of finite groups to "representations/characters" of the centre of the group algebra $\mathbb{C} G$ in order to obtain further results on character values, which we will use in the next sections in order to prove Burnside's $p^{a} q^{b}$ theorem.

Definition 16.1 (Class sums)

The elements $\hat{C}_{j}:=\sum_{g \in C_{j}} g \in \mathbb{C} G(1 \leqslant j \leqslant r)$ are called the class sums of G.

Lemma 16.2

The class sums $\left\{\hat{C}_{j} \mid 1 \leqslant j \leqslant r\right\}$ form a \mathbb{C}-basis of $Z(\mathbb{C} G)$. In other words, $Z(\mathbb{C} G)=\oplus_{j=1}^{r} \mathbb{C} \hat{C}_{j}$.
Proof: Notice that the class sums are clearly \mathbb{C}-linearly independent because the group elements are.
$' \supseteq ': \forall 1 \leqslant j \leqslant r$ and $\forall g \in G$, we have

$$
g \cdot \hat{c}_{j}=g\left(g^{-1} \hat{C}_{j} g\right)=\hat{c}_{j} \cdot g
$$

Extending by \mathbb{C}-linearity, we get $a \cdot \widehat{C}_{j}=\hat{C}_{j} \cdot a \forall 1 \leqslant j \leqslant r$ and $\forall a \in \mathbb{C} G$. Thus $\oplus_{j=1}^{r} \mathbb{C} \hat{C}_{j} \subseteq Z(\mathbb{C} G)$. ' \subseteq ': Let $a \in Z(\mathbb{C} G)$ and write $a=\sum_{g \in G} \lambda_{g} g$ with $\left\{\lambda_{g}\right\}_{g \in G} \subseteq \mathbb{C}$. Since a is central, for every $h \in G$, we have

$$
\sum_{g \in G} \lambda_{g} g=a=h a h^{-1}=\sum_{g \in G} \lambda_{g}\left(h g h^{-1}\right) .
$$

Comparing coefficients yield $\lambda_{g}=\lambda_{h g h^{-1}} \forall g, h \in G$. Namely, the coefficients λ_{g} are constant on the conjugacy classes of G, and hence

$$
a=\sum_{j=1}^{r} \lambda_{g_{j}} \hat{c}_{j} \in \bigoplus_{j=1}^{r} \mathbb{C} \widehat{C} \hat{C}_{j} .
$$

Now, notice that by definition the class sums $\hat{C}_{j}(1 \leqslant j \leqslant r)$ are elements of the subring $\mathbb{Z} G$ of $\mathbb{C} G$, hence of the centre of $\mathbb{Z} G$.

Corollary 16.3

(a) $Z(\mathbb{Z} G)$ is finitely generated as a \mathbb{Z}-module.
(b) The centre $Z(\mathbb{Z} G)$ of the group ring $\mathbb{Z} G$ is integral over \mathbb{Z}; in particular the class sums \hat{C}_{j} $(1 \leqslant j \leqslant r)$ are integral over \mathbb{Z}.

Proof:

(a) It follows directly from the second part of the proof of Lemma 16.2 that the class sums $\widehat{C}_{j}(1 \leqslant j \leqslant r)$ span $Z(\mathbb{Z} G)$ as a \mathbb{Z}-module.
(b) The centre $Z(\mathbb{Z} G)$ is integral over \mathbb{Z} by Theorem D. 2 because it is finitely generated as a \mathbb{Z}-module by (a).

Notation 16.4 (Central characters)

If $\chi \in \operatorname{lrr}(G)$, then we may consider a \mathbb{C}-representation affording χ, say $\rho^{x}: G \longrightarrow \operatorname{GL}\left(\mathbb{C}^{n}(\chi)\right)=$ Aut $\mathbb{C}\left(\mathbb{C}^{n(x)}\right)$ with $n(\chi):=\chi(1)$. This group homomorphism extends by \mathbb{C}-linearity to a \mathbb{C}-algebra homomorphism

$$
\begin{array}{lll}
\tilde{\rho}^{\chi}: & \mathbb{C} G & \longrightarrow \quad \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{n(x)}\right) \\
& a=\sum_{g \in G} \lambda_{g} g & \mapsto
\end{array} \tilde{\rho}^{\chi}(a)=\sum_{g \in G} \lambda_{g} \rho^{\chi}(g) .
$$

Now, if $z \in Z(\mathbb{C} G)$, then for each $g \in G$, we have

$$
\tilde{\rho}^{\chi}(z) \tilde{\rho}^{\chi}(g)=\tilde{\rho}^{\chi}(z g)=\tilde{\rho}^{\chi}(g z)=\tilde{\rho}^{\chi}(g) \widetilde{\rho}^{\chi}(z) .
$$

As we have already seen in Chapter 2 on Schur's Lemma this means that $\tilde{\rho}^{\chi}(z)$ is $\mathbb{C} G$-linear. This holds in particular if z is a class sum. Therefore, by Schur's Lemma, for each $1 \leqslant j \leqslant r$ there exists a scalar $\omega_{\chi}\left(\hat{C}_{j}\right) \in \mathbb{C}$ such that

$$
\tilde{\rho}^{\chi}\left(\hat{C}_{j}\right)=\omega_{\chi}\left(\hat{C}_{j}\right) \cdot I_{n(x)}
$$

The functions defined by

$$
\begin{array}{rlll}
\omega_{\chi}: \quad Z(\mathbb{C} G) & \longrightarrow & \mathbb{C} \\
\hat{C}_{j} & \mapsto & \omega_{\chi}\left(\hat{c}_{j}\right)
\end{array}
$$

and extended by \mathbb{C}-linearity to the whole of $Z(\mathbb{C} G)$, where χ runs through $\operatorname{lrr}(G)$, are called the central characters of $\mathbb{C} G$ (or simply of G).

Remark 16.5

If $z \in Z(G)$, then $[z]=\{z\}$ and therefore the corresponding class sum is z itself. Therefore, we may see the functions $\omega_{\chi} \mid Z(G): Z(G) \longrightarrow \mathbb{C}$ as representations of $Z(G)$ of degree 1 , or equivalently as linear characters of $Z(G)$.

Theorem 16.6 (Integrality Theorem)

The values $\omega_{\chi}\left(\hat{C}_{j}\right)(\chi \in \operatorname{Irr}(G), 1 \leqslant j \leqslant r)$ of the central characters of G are algebraic integers. Moreover,

$$
\omega_{\chi}\left(\hat{C}_{j}\right)=\frac{\left|C_{j}\right|}{\chi(1)} \chi\left(g_{j}\right) \quad \forall \chi \in \operatorname{lrr}(G), \forall 1 \leqslant j \leqslant r
$$

Proof: Let $\chi \in \operatorname{Irr}(G)$ and $1 \leqslant j \leqslant r$. By Corollary 16.3 the class sum \hat{C}_{j} is an algebraic integer. Thus there exist integers $n \in \mathbb{Z}_{>0}$ and $a_{0}, \ldots, a_{n-1} \in \mathbb{Z}$ such that $\widehat{C}_{j}^{n}+a_{n-1} \widehat{C}_{j}^{n-1}+\ldots+a_{0}=0$. Applying ω_{χ} yields $\omega_{\chi}\left(\hat{C}_{j}\right)^{n}+a_{n-1} \omega_{\chi}\left(\hat{C}_{j}\right)^{n-1}+\ldots+a_{0}=\omega_{\chi}(0)=0$, so that $\omega_{\chi}\left(\hat{C}_{j}\right)$ is also an algebraic integer. Now, according to Notation 16.4 we have

$$
\chi(1) \omega_{\chi}\left(\hat{C}_{j}\right)=\operatorname{Tr}\left(\tilde{\rho}^{\chi}\left(\hat{C}_{j}\right)\right)=\operatorname{Tr}\left(\sum_{g \in C_{i}} \rho^{\chi}(g)\right)=\sum_{g \in C_{i}} \operatorname{Tr}\left(\rho^{\chi}(g)\right)=\sum_{g \in C_{j}} \chi(g)=\left|C_{j}\right| \chi\left(g_{j}\right),
$$

where the last equality holds because characters are class functions. The claim follows.

Corollary 16.7

If $\chi \in \operatorname{lrr}(G)$, then $\chi(1)$ divides $|G|$.
Proof: By the 1st Orthogonality Relations we have

$$
\frac{|G|}{\chi(1)}=\frac{|G|}{\chi(1)}\langle\chi, \chi\rangle_{C}=\frac{1}{\chi(1)} \sum_{g \in G} x(g) \chi\left(g^{-1}\right)=\frac{1}{\chi(1)} \sum_{j=1}^{r}\left|C_{j}\right| \chi\left(g_{j}\right) x\left(g_{j}^{-1}\right)=\sum_{j=1}^{r} \underbrace{\frac{\left|C_{j}\right|}{\chi(1)} x\left(g_{j}\right)}_{\omega_{x}\left(\hat{C}_{i}\right)} x\left(g_{j}^{-1}\right) .
$$

Now, for each $1 \leqslant j \leqslant r, \omega_{\chi}\left(g_{j}\right)$ is an algebraic integer by the Integrality Theorem and $\chi\left(g_{j}^{-1}\right)$ is an algebraic integer by Corollary 15.1. Hence $|G| / \chi(1)$ is an algebraic integer because these form a subring of \mathbb{C}. Moroever, clearly $|G| / \chi(1) \in \mathbb{Q}$. As the algebraic integers in \mathbb{Q} are just the elements of \mathbb{Z}, we obtain that $|G| / \chi(1) \in \mathbb{Z}$, as claimed.

Example 8 (The degrees of the irreducible characters of $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$)

The group $G:=G L_{3}\left(\mathbb{F}_{2}\right)$ is a simple group of oder

$$
|G|=\# \mathbb{F}_{2} \text {-bases of } \mathbb{F}_{2}^{3}=\left(2^{3}-1\right)\left(2^{3}-2\right)\left(2^{3}-2^{2}\right)=168=2^{3} \cdot 3 \cdot 7 .
$$

For the purpose of this example we accept without proof that G is simple and that it has 6 conjugacy classes.
Question: can we compute the degrees of the irreducible characters of $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$?
(1) By the above $|\operatorname{lrr}(G)|=|C(G)|=6$ and the degree formula yields:

$$
1+\sum_{i=2}^{6} x_{i}(1)^{2}=|G|=168
$$

(2) Next, as G is simple non-abelian, $G=G^{\prime}$ and therfeore G has $\left|G: G^{\prime}\right|=1$ linear characters by Corollary 14.8, namely

$$
x_{i}(1) \geqslant 2 \text { for each } 2 \leqslant i \leqslant 6
$$

Thus, at this stage, we would have the following possibilities for the degrees of the 6 irreducible characters of G :

$\chi_{1}(1)$	$\chi_{2}(1)$	$\chi_{3}(1)$	$\chi_{4}(1)$	$\chi_{5}(1)$	$\chi_{6}(1)$
1	2	4	5	6	9
1	2	3	3	8	9
1	2	5	5	7	8
1	2	4	7	7	7
1	3	3	6	7	8

(3) By Corollary 16.7 we now know that $\chi_{i}(1)| | G \mid$ for each $2 \leqslant i \leqslant 6$. Therefore, as $5 \nmid|G|$ and $9 \nmid|G|$, the first three rows can already be discarded:

$\chi_{1}(1)$	$\chi_{2}(1)$	$\chi_{3}(1)$	$\chi_{4}(1)$	$\chi_{5}(1)$	$\chi_{6}(1)$
1	2	4	5	6	9
1	2	3	3	8	$\not 又$
1	2	5	5	7	8
1	2	4	7	7	7
1	3	3	6	7	8

(4) In order to eliminate the last-but-one possibility, we use Exercise 14.14 telling us that a simple group cannot have an irreducible character of degree 2. Hence

$$
\chi_{1}(1)=1, \chi_{2}(1)=3, \chi_{3}(1)=3, \chi_{4}(1)=6, \chi_{5}(1)=7, \chi_{6}(1)=8
$$

Exercise 16.8

Let G be a finite group of odd order and, as usual, let r denote the number of conjugacy classes of G. Use character theory to prove that

$$
r \equiv|G| \quad(\bmod 16)
$$

[Hint: Label the set $\operatorname{lrr}(G)$ of irreducible characters taking dual characters into account. Use the divisibility property of Corollary 16.7]

17 The Centre of a Character

Definition 17.1 (Centre of a character)

The centre of a character χ of G is $Z(\chi):=\{g \in G| | \chi(g) \mid=\chi(1)\}$.
Note: Recall that in contrast, $\chi(g)=\chi(1) \Leftrightarrow g \in \operatorname{ker}(\chi)$.

Example 9

Recall from Example 5 that the character table of $G=S_{3}$ is

	Id	(12)	(123)
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Hence $Z\left(\chi_{1}\right)=Z\left(\chi_{2}\right)=G$ and $Z\left(\chi_{3}\right)=\{\mathrm{ld}\}$.
Lemma 17.2
If $\rho: G \longrightarrow \mathrm{GL}(V)$ is a \mathbb{C}-representation affording the character χ and $g \in G$, then:

$$
|\chi(g)|=\chi(1) \quad \Longleftrightarrow \quad \rho(g) \in \mathbb{C}^{\times} \operatorname{Id}_{V} .
$$

In other words $Z(X)=\rho^{-1}\left(\mathbb{C}^{\times} \operatorname{Id}_{V}\right)$.

Proof: Let $n:=\chi(1)$. Recall that we can find a \mathbb{C}-basis B of V such that $(\rho(g))_{B}$ is a diagonal matrix with diagonal entries $\varepsilon_{1}, \ldots, \varepsilon_{n}$ which are $o(g)$-th roots of unity. Hence $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are the eigenvalues of $\rho(g)$. Applying the Cauchy-Schwarz inequality to the vectors $v:=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ and $w:=(1, \ldots, 1)$ in \mathbb{C}^{n} yields

$$
|\chi(g)|=\left|\varepsilon_{1}+\ldots+\varepsilon_{n}\right|=|\langle v, w\rangle| \leqslant\|v\| \cdot\|w\|=\sqrt{n} \sqrt{n}=n=\chi(1)
$$

and equality implies that v and w are \mathbb{C}-linearly dependent so that $\varepsilon_{1}=\ldots=\varepsilon_{n}=: \varepsilon$. Therefore $\rho(g) \in \mathbb{C}^{\times} \mathrm{Id}_{V}$. Conversely, if $\rho(g) \in \mathbb{C}^{\times} \mathrm{Id}_{V}$, then there exists $\lambda \in \mathbb{C}^{\times}$such that $\rho(g)=\lambda \mathrm{Id}_{V}$. Therefore the eigenvalues of $\rho(g)$ are all equal to λ, i.e. $\lambda=\varepsilon_{1}=\ldots=\varepsilon_{n}$ and therefore

$$
|\chi(g)|=|n \lambda|=n|\lambda|=n \cdot 1=n .
$$

Proposition 17.3

Let χ be a character of G. Then:
(a) $Z(X) \unlhd G ;$
(b) $\operatorname{ker}(X) \unlhd Z(X)$ and $Z(X) / \operatorname{ker}(X)$ is a cyclic group;
(c) if χ is irreducible, then $Z(\chi) / \operatorname{ker}(\chi)=Z(G / \operatorname{ker}(\chi))$.

Proof: Let $\rho: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation affording χ and set $n:=\chi(1)$.
(a) Clearly $\mathbb{C}^{\times} \operatorname{Id}_{V} \leqslant Z(\mathrm{GL}(V))$ and hence $\mathbb{C}^{\times} \operatorname{Id}_{V} \unlhd \mathrm{GL}(V)$. Therefore, by Lemma 17.2,

$$
Z(x)=\rho^{-1}\left(\mathbb{C}^{\times} \operatorname{Id} v\right) \unlhd G
$$

as the pre-image under a group homomorphism of a normal subgroup.
(b) By the definitions of the kernel and of the centre of a character, we have $\operatorname{ker}(\chi) \subseteq Z(\chi)$. Therefore $\operatorname{ker}(\chi) \unlhd Z(\chi)$ by (a). By Lemma 17.2 restriction to $Z(\chi)$ yields a group homomorphism

$$
\left.\rho\right|_{Z(x)}: Z(\chi) \longrightarrow \mathbb{C}^{\times} \operatorname{Id}_{V}
$$

with kernel $\operatorname{ker}(X)$. Therefore, by the 1st ismomorphism theorem, $Z(X) / \operatorname{ker}(X)$ is isomorphic to a finite subgroup of $\mathbb{C}^{\times} \mathrm{Id}_{V} \cong \mathbb{C}^{\times}$, hence is cyclic (c.f. e.g. EZT).
(c) By the arguments of (a) and (b) we have

$$
Z(\chi) / \operatorname{ker}(\chi) \cong \rho(Z(\chi)) \leqslant Z(\rho(G))
$$

Applying again the first isomorphism theorem we have $\rho(G) \cong G / \operatorname{ker}(\rho)$, hence

$$
Z(\rho(G)) \cong Z(G / \operatorname{ker}(\rho))=Z(G / \operatorname{ker}(\chi))
$$

Now let $g \operatorname{ker}(\chi) \in Z(G / \operatorname{ker}(\chi))$, where $g \in G$. As χ is irreducible, by Schur's Lemma, there exists $\lambda \in \mathbb{C}^{\times}$such that $\rho(g)=\lambda \mathrm{Id}_{V}$. Thus $g \in Z(X)$ and it follows that

$$
Z(G / \operatorname{ker}(\chi)) \leqslant Z(\chi) / \operatorname{ker}(\chi)
$$

Exercise 17.4

Prove that if $\chi \in \operatorname{lrr}(G)$, then $Z(G) \leqslant Z(\chi)$. Deduce that $\bigcap_{\chi \in \operatorname{lr}(G)} Z(\chi)=Z(G)$.

Remark 17.5

Prove that, if $\chi \in \operatorname{lrr}(G)$, then $\chi(1)||G: Z(\chi)|$. Deduce that $\chi(1)||G: Z(G)|$.
This allows us to prove an important criterion, due to Burnside, for character values to be zero.

Theorem 17.6 (Burnside)

Let $\chi \in \operatorname{Irr}(G)$ and let $C=[g]$ be a conjugacy class of G such that $\operatorname{gcd}(\chi(1),|C|)=1$. Then $\chi(g)=0$ or $g \in Z(\chi)$.

Proof: As $\operatorname{gcd}(\chi(1),|C|)=1$, there exist $u, v \in \mathbb{Z}$ such that $u \chi(1)+v|C|=1$ Set $\alpha:=\frac{\chi(g)}{\chi(1)}$. Then

$$
\alpha=\frac{\chi(g)}{\chi(1)} \cdot 1=\frac{\chi(g)}{\chi(1)}(u \chi(1)+v|C|)=u \chi(g)+v \frac{|C| \chi(g)}{\chi(1)}=u \chi(g)+v \omega_{\chi}(C)
$$

is an algebraic integer because both $\chi(g)$ and $\omega_{\chi}(C)$ are. Now, set $m:=|\langle g\rangle|$ and let $\zeta_{m}:=e^{\frac{2 \pi i}{m}}$. As $\chi(g)$ is a sum of m-th roots of unity, certainly $\chi(g) \in \mathbb{Q}\left(\zeta_{m}\right)$. Let \mathcal{G} be the Galois group of the Galois extension $\mathbb{Q} \subseteq \mathbb{Q}\left(\zeta_{m}\right)$. Then for each field automorphism $\sigma \in \mathcal{G}, \sigma(\alpha)$ is also an algebraic integer because α and $\sigma(\alpha)$ are roots of the same monic integral polynomial. Hence $\beta:=\prod_{\sigma \in \mathcal{G}} \sigma(\alpha)$ is also an algebaric integer and because $\sigma(\beta)=\beta$ for every $\sigma \in \mathcal{G}, \beta$ is an element of the fixed field of \mathcal{G}, namely $\beta \in \mathbb{Q}$ (Galois theory). Therefore $\beta \in \mathbb{Z}$.
If $g \in Z(\chi)$, then there is nothing to do. Thus we may assume that $g \notin Z(\chi)$. Then $|\chi(g)| \neq \chi(1)$, so that by Property 7.5 (c) we must have $|\chi(g)|<\chi(1)$ and hence $|\alpha|<1$. Now, again by Property 7.5(b), $\chi(g)=\varepsilon_{1}+\ldots+\varepsilon_{n}$ with $n=\chi(1)$ and $\varepsilon_{1}, \ldots, \varepsilon_{n} m$-th roots of unity. Therefore, for each $\sigma \in \mathcal{G} \backslash\{1 \mathrm{~d}\}$, we have $\sigma(\chi(g))=\sigma\left(\varepsilon_{1}\right)+\ldots+\sigma\left(\varepsilon_{n}\right)$ with $\sigma\left(\varepsilon_{1}\right), \ldots, \sigma\left(\varepsilon_{n}\right) m$-th roots of unity, because $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are. It follows that

$$
|\sigma(\chi(g))|=\left|\sigma\left(\varepsilon_{1}\right)+\ldots+\sigma\left(\varepsilon_{n}\right)\right| \leqslant\left|\sigma\left(\varepsilon_{1}\right)\right|+\ldots+\left|\sigma\left(\varepsilon_{n}\right)\right|=n=\chi(1)
$$

and hence

$$
|\sigma(\alpha)|=\frac{1}{\chi(1)}|\sigma(\chi(g))| \leqslant \frac{\chi(1)}{\chi(1)}=1 .
$$

Thus

$$
|\beta|=\left|\prod_{\sigma \in \mathcal{G}} \sigma(\alpha)\right|=\underbrace{|\alpha|}_{<1} \cdot \prod_{\sigma \in \mathcal{G}\{\{|1|\}\}} \underbrace{|\sigma(\alpha)|}_{\leqslant 1}<1 .
$$

The only way an integer satisfies this inequality is $\beta=0$. Thus $\alpha=0$ as well, which implies that $\chi(g)=0$.

Corollary 17.7

Assume now that G is a non-abelian simple group. In the situation of Theorem 17.6 if we assume moreover that $\chi(1)>1$ and $C \neq\{1\}$, then it is always the case that $\chi(g)=0$.

Proof: We see that then either $\chi(g)=0$ or $Z(\chi)$ is a non-trivial proper normal subgroup of G. Indeed, if $\chi(g) \neq 0$, then Theorem 17.6 implies that $g \in Z(\chi)$, so $Z(\chi) \neq 1$. Now, as G is non-abelian simple we have $Z(\chi)=G$. On the other hand, the fact that G is simple also tells us that $\operatorname{ker}(\chi)=1$ (if it were G, then χ would be reducible). Then it follows from Proposition 17.3 that

$$
G=Z(\chi) / \operatorname{ker}(\chi)=Z(G / \operatorname{ker}(\chi))=Z(G)=1 .
$$

A contradiction.

