Corollary 15.1

Character values are algebraic integers.

Proof: By the above, roots of unity are algebraic integers. Since the algebraic integers form a ring, so are sums of roots of unity. Hence the claim follows from Property 7.5(b).

16 Central Characters

We now extend representations/characters of finite groups to "representations/characters" of the centre of the group algebra $\mathbb{C}G$ in order to obtain further results on character values, which we will use in the next sections in order to prove Burnside's $p^a q^b$ theorem.

Definition 16.1 (Class sums)

The elements $\hat{C}_j := \sum_{g \in C_j} g \in \mathbb{C}G$ ($1 \leq j \leq r$) are called the **class sums** of *G*.

Lemma 16.2

The class sums $\{\hat{C}_j \mid 1 \leq j \leq r\}$ form a \mathbb{C} -basis of $Z(\mathbb{C}G)$. In other words, $Z(\mathbb{C}G) = \bigoplus_{j=1}^r \mathbb{C}\hat{C}_j$.

Proof: Notice that the class sums are clearly C-linearly independent because the group elements are.

 \supseteq' : $\forall 1 \leq j \leq r$ and $\forall g \in G$, we have

$$g \cdot \widehat{C}_j = g(g^{-1}\widehat{C}_jg) = \widehat{C}_j \cdot g$$
.

Extending by \mathbb{C} -linearity, we get $a \cdot \hat{C}_j = \hat{C}_j \cdot a \quad \forall \ 1 \leq j \leq r \text{ and } \forall \ a \in \mathbb{C}G$. Thus $\bigoplus_{j=1}^r \mathbb{C}\hat{C}_j \subseteq Z(\mathbb{C}G)$. ' \subseteq ': Let $a \in Z(\mathbb{C}G)$ and write $a = \sum_{g \in G} \lambda_g g$ with $\{\lambda_g\}_{g \in G} \subseteq \mathbb{C}$. Since a is central, for every $h \in G$, we have

$$\sum_{g\in G}\lambda_g g = a = hah^{-1} = \sum_{g\in G}\lambda_g(hgh^{-1}).$$

Comparing coefficients yield $\lambda_g = \lambda_{hgh^{-1}} \forall g, h \in G$. Namely, the coefficients λ_g are constant on the conjugacy classes of G, and hence

$$a = \sum_{j=1}^r \lambda_{g_j} \widehat{C}_j \in \bigoplus_{j=1}^r \mathbb{C} \widehat{C}_j.$$

Now, notice that by definition the class sums \hat{C}_j ($1 \le j \le r$) are elements of the subring $\mathbb{Z}G$ of $\mathbb{C}G$, hence of the centre of $\mathbb{Z}G$.

Corollary 16.3

- (a) $Z(\mathbb{Z}G)$ is finitely generated as a \mathbb{Z} -module.
- (b) The centre $Z(\mathbb{Z}G)$ of the group ring $\mathbb{Z}G$ is integral over \mathbb{Z} ; in particular the class sums \hat{C}_j $(1 \leq j \leq r)$ are integral over \mathbb{Z} .

Proof:

- (a) It follows directly from the second part of the proof of Lemma 16.2 that the class sums \hat{C}_j $(1 \le j \le r)$ span $Z(\mathbb{Z}G)$ as a \mathbb{Z} -module.
- (b) The centre Z(ℤG) is integral over ℤ by Theorem D.2 because it is finitely generated as a ℤ-module by (a).

Notation 16.4 (Central characters)

If $\chi \in Irr(G)$, then we may consider a \mathbb{C} -representation affording χ , say $\rho^{\chi} : G \longrightarrow GL(\mathbb{C}^{n(\chi)}) = Aut_{\mathbb{C}}(\mathbb{C}^{n(\chi)})$ with $n(\chi) := \chi(1)$. This group homomorphism extends by \mathbb{C} -linearity to a \mathbb{C} -algebra homomorphism

$$\begin{array}{cccc} \widetilde{\rho}^{\chi} : & \mathbb{C}G & \longrightarrow & \mathsf{End}_{\mathbb{C}}(\mathbb{C}^{n(\chi)}) \\ & a = \sum_{g \in G} \lambda_g g & \mapsto & \widetilde{\rho}^{\chi}(a) = \sum_{g \in G} \lambda_g \rho^{\chi}(g) \,. \end{array}$$

Now, if $z \in Z(\mathbb{C}G)$, then for each $g \in G$, we have

$$\widetilde{\rho}^{\chi}(z)\widetilde{\rho}^{\chi}(g) = \widetilde{\rho}^{\chi}(zg) = \widetilde{\rho}^{\chi}(gz) = \widetilde{\rho}^{\chi}(g)\widetilde{\rho}^{\chi}(z)$$

As we have already seen in Chapter 2 on Schur's Lemma this means that $\tilde{\rho}^{\chi}(z)$ is $\mathbb{C}G$ -linear. This holds in particular if z is a class sum. Therefore, by Schur's Lemma, for each $1 \leq j \leq r$ there exists a scalar $\omega_{\chi}(\hat{C}_j) \in \mathbb{C}$ such that

$$\widetilde{\rho}^{\chi}(C_j) = \omega_{\chi}(C_j) \cdot I_{n(\chi)}$$

The functions defined by

$$\begin{array}{cccc} \omega_{\chi} \colon & Z(\mathbb{C}G) & \longrightarrow & \mathbb{C} \\ & & \widehat{C}_{j} & \mapsto & \omega_{\chi}(\widehat{C}_{j}) \end{array}$$

and extended by \mathbb{C} -linearity to the whole of $Z(\mathbb{C}G)$, where χ runs through Irr(G), are called the **central characters** of $\mathbb{C}G$ (or simply of G).

Remark 16.5

If $z \in Z(G)$, then $[z] = \{z\}$ and therefore the corresponding class sum is z itself. Therefore, we may see the functions $\omega_{\chi}|_{Z(G)} : Z(G) \longrightarrow \mathbb{C}$ as representations of Z(G) of degree 1, or equivalently as linear characters of Z(G).

Theorem 16.6 (Integrality Theorem)

The values $\omega_{\chi}(\widehat{C}_j)$ ($\chi \in Irr(G)$, $1 \leq j \leq r$) of the central characters of G are algebraic integers. Moreover,

$$\omega_{\chi}(\widehat{C}_j) = \frac{|C_j|}{\chi(1)} \chi(g_j) \qquad \forall \ \chi \in \operatorname{Irr}(G), \ \forall \ 1 \leq j \leq r \,.$$

Proof: Let $\chi \in Irr(G)$ and $1 \leq j \leq r$. By Corollary 16.3 the class sum \hat{C}_j is an algebraic integer. Thus there exist integers $n \in \mathbb{Z}_{>0}$ and $a_0, \ldots, a_{n-1} \in \mathbb{Z}$ such that $\hat{C}_j^n + a_{n-1}\hat{C}_j^{n-1} + \ldots + a_0 = 0$. Applying ω_{χ} yields $\omega_{\chi}(\hat{C}_j)^n + a_{n-1}\omega_{\chi}(\hat{C}_j)^{n-1} + \ldots + a_0 = \omega_{\chi}(0) = 0$, so that $\omega_{\chi}(\hat{C}_j)$ is also an algebraic integer. Now, according to Notation 16.4 we have

$$\chi(1)\omega_{\chi}(\widehat{C}_{j}) = \operatorname{Tr}\left(\widetilde{\rho}^{\chi}(\widehat{C}_{j})\right) = \operatorname{Tr}\left(\sum_{g \in C_{j}} \rho^{\chi}(g)\right) = \sum_{g \in C_{j}} \operatorname{Tr}\left(\rho^{\chi}(g)\right) = \sum_{g \in C_{j}} \chi(g) = |C_{j}|\chi(g_{j}),$$

where the last equality holds because characters are class functions. The claim follows.

Corollary 16.7

If $\chi \in Irr(G)$, then $\chi(1)$ divides |G|.

Proof: By the 1st Orthogonality Relations we have

$$\frac{|G|}{\chi(1)} = \frac{|G|}{\chi(1)} \langle \chi, \chi \rangle_G = \frac{1}{\chi(1)} \sum_{g \in G} \chi(g) \chi(g^{-1}) = \frac{1}{\chi(1)} \sum_{j=1}^r |C_j| \chi(g_j) \chi(g_j^{-1}) = \sum_{j=1}^r \frac{|C_j|}{\chi(1)} \chi(g_j) \chi(g_j) \chi(g_j) = \sum_{j=1}^r \frac{|C_j|}{\chi(1)} \chi(g_j) \chi(g_j) \chi(g_j) \chi(g_j) = \sum_{j=1}^r \frac{|C_j|}{\chi(1)} \chi(g_j) \chi$$

Now, for each $1 \leq j \leq r$, $\omega_{\chi}(g_j)$ is an algebraic integer by the Integrality Theorem and $\chi(g_j^{-1})$ is an algebraic integer by Corollary 15.1. Hence $|G|/\chi(1)$ is an algebraic integer because these form a subring of \mathbb{C} . Moreover, clearly $|G|/\chi(1) \in \mathbb{Q}$. As the algebraic integers in \mathbb{Q} are just the elements of \mathbb{Z} , we obtain that $|G|/\chi(1) \in \mathbb{Z}$, as claimed.

Example 8 (The degrees of the irreducible characters of $GL_3(\mathbb{F}_2)$)

The group $G := GL_3(\mathbb{F}_2)$ is a simple group of oder

$$|G| = \# \mathbb{F}_2$$
-bases of $\mathbb{F}_2^3 = (2^3 - 1)(2^3 - 2)(2^3 - 2^2) = 168 = 2^3 \cdot 3 \cdot 7$.

For the purpose of this example we accept without proof that G is simple and that it has 6 conjugacy classes.

Question: can we compute the degrees of the irreducible characters of $GL_3(\mathbb{F}_2)$?

(1) By the above |Irr(G)| = |C(G)| = 6 and the degree formula yields:

$$1 + \sum_{i=2}^{6} \chi_i(1)^2 = |G| = 168.$$

(2) Next, as *G* is simple non-abelian, G = G' and therfeore *G* has |G : G'| = 1 linear characters by Corollary 14.8, namely

$$\chi_i(1) \ge 2$$
 for each $2 \le i \le 6$

Thus, at this stage, we would have the following possibilities for the degrees of the 6 irreducible characters of G:

$\chi_1(1)$	$\chi_2(1)$	$\chi_{3}(1)$	$\chi_4(1)$	$\chi_{5}(1)$	$\chi_{6}(1)$
1	2	4	5	6	9
1	2	3	3	8	9
1	2	5	5	7	8
1	2	4	7	7	7
1	3	3	6	7	8

(3) By Corollary 16.7 we now know that $\chi_i(1) \mid |G|$ for each $2 \le i \le 6$. Therefore, as $5 \nmid |G|$ and $9 \nmid |G|$, the first three rows can already be discarded:

47

$\chi_1(1)$	$\chi_2(1)$	χ ₃ (1)	$\chi_4(1)$	$\chi_{5}(1)$	$\chi_6(1)$
1	2	4	5	6	Ø
1	2	3	3	8	Ø
1	2	X	X	7	8
1	2	4	7	7	7
1	3	3	6	7	8

(4) In order to eliminate the last-but-one possibility, we use Exercise 14.14 telling us that a simple group cannot have an irreducible character of degree 2. Hence

$$\chi_1(1) = 1$$
, $\chi_2(1) = 3$, $\chi_3(1) = 3$, $\chi_4(1) = 6$, $\chi_5(1) = 7$, $\chi_6(1) = 8$.

Exercise 16.8

Let G be a finite group of odd order and, as usual, let r denote the number of conjugacy classes of G. Use character theory to prove that

$$r \equiv |G| \pmod{16}$$

[Hint: Label the set Irr(G) of irreducible characters taking dual characters into account. Use the divisibility property of Corollary 16.7]

17 The Centre of a Character

Definition 17.1 (Centre of a character)

The centre of a character χ of *G* is $Z(\chi) := \{g \in G \mid |\chi(g)| = \chi(1)\}$.

Note: Recall that in contrast, $\chi(g) = \chi(1) \iff g \in \ker(\chi)$.

Example 9

Recall from Example 5 that the character table of $G = S_3$ is

Hence $Z(\chi_1) = Z(\chi_2) = G$ and $Z(\chi_3) = {\mathsf{Id}}.$

Lemma 17.2

If $\rho: G \longrightarrow GL(V)$ is a \mathbb{C} -representation affording the character χ and $g \in G$, then:

$$|\chi(g)| = \chi(1) \quad \Longleftrightarrow \quad \rho(g) \in \mathbb{C}^{\times} \operatorname{Id}_{V}.$$

In other words $Z(\chi) = \rho^{-1} (\mathbb{C}^{\times} \operatorname{Id}_V).$

Proof: Let $n := \chi(1)$. Recall that we can find a \mathbb{C} -basis B of V such that $(\rho(g))_B$ is a diagonal matrix with diagonal entries $\varepsilon_1, \ldots, \varepsilon_n$ which are o(g)-th roots of unity. Hence $\varepsilon_1, \ldots, \varepsilon_n$ are the eigenvalues of $\rho(g)$. Applying the Cauchy-Schwarz inequality to the vectors $v := (\varepsilon_1, \ldots, \varepsilon_n)$ and $w := (1, \ldots, 1)$ in \mathbb{C}^n yields

 $|\chi(q)| = |\varepsilon_1 + \ldots + \varepsilon_n| = |\langle v, w \rangle| \leq ||v|| \cdot ||w|| = \sqrt{n}\sqrt{n} = n = \chi(1)$

and equality implies that v and w are \mathbb{C} -linearly dependent so that $\varepsilon_1 = \ldots = \varepsilon_n =: \varepsilon$. Therefore $\rho(g) \in \mathbb{C}^{\times} \operatorname{Id}_{V}$. Conversely, if $\rho(g) \in \mathbb{C}^{\times} \operatorname{Id}_{V}$, then there exists $\lambda \in \mathbb{C}^{\times}$ such that $\rho(g) = \lambda \operatorname{Id}_{V}$. Therefore the eigenvalues of $\rho(g)$ are all equal to λ , i.e. $\lambda = \varepsilon_1 = \ldots = \varepsilon_n$ and therefore

$$|\chi(g)| = |n\lambda| = n|\lambda| = n \cdot 1 = n.$$

Proposition 17.3

Let χ be a character of G. Then:

- (a) $Z(\chi) \leq G$; (b) $\ker(\chi) \leq Z(\chi)$ and $Z(\chi)/\ker(\chi)$ is a cyclic group; (c) if χ is irreducible, then $Z(\chi)/\ker(\chi) = Z(G/\ker(\chi))$.

Proof: Let ρ : $G \longrightarrow GL(V)$ be a \mathbb{C} -representation affording χ and set $n := \chi(1)$.

(a) Clearly $\mathbb{C}^{\times} \operatorname{Id}_{V} \leq Z(\operatorname{GL}(V))$ and hence $\mathbb{C}^{\times} \operatorname{Id}_{V} \trianglelefteq \operatorname{GL}(V)$. Therefore, by Lemma 17.2,

$$Z(\boldsymbol{\chi}) = \rho^{-1} \big(\mathbb{C}^{\times} \operatorname{Id}_{V} \big) \trianglelefteq G$$

as the pre-image under a group homomorphism of a normal subgroup.

(b) By the definitions of the kernel and of the centre of a character, we have ker(χ) $\subseteq Z(\chi)$. Therefore $\ker(\chi) \leq Z(\chi)$ by (a). By Lemma 17.2 restriction to $Z(\chi)$ yields a group homomorphism

$$\rho|_{Z(\chi)}: Z(\chi) \longrightarrow \mathbb{C}^{\times} \operatorname{Id}_{V}$$

with kernel ker(χ). Therefore, by the 1st isomorphism theorem, $Z(\chi)/\ker(\chi)$ is isomorphic to a finite subgroup of $\mathbb{C}^{\times} \operatorname{Id}_{V} \cong \mathbb{C}^{\times}$, hence is cyclic (c.f. e.g. EZT).

(c) By the arguments of (a) and (b) we have

$$Z(\chi)/\ker(\chi) \cong \rho(Z(\chi)) \leq Z(\rho(G))$$

Applying again the first isomorphism theorem we have $\rho(G) \cong G/\ker(\rho)$, hence

$$Z(\rho(G)) \cong Z(G/\ker(\rho)) = Z(G/\ker(\chi))$$

Now let $q \ker(\chi) \in Z(G/\ker(\chi))$, where $q \in G$. As χ is irreducible, by Schur's Lemma, there exists $\lambda \in \mathbb{C}^{\times}$ such that $\rho(g) = \lambda \operatorname{Id}_{V}$. Thus $g \in Z(\chi)$ and it follows that

$$Z(G/\ker(\chi)) \leqslant Z(\chi)/\ker(\chi)$$
.

Exercise 17.4

Prove that if $\chi \in Irr(G)$, then $Z(G) \leq Z(\chi)$. Deduce that $\bigcap_{\chi \in Irr(G)} Z(\chi) = Z(G)$.

Remark 17.5

Prove that, if $\chi \in Irr(G)$, then $\chi(1) \mid |G : Z(\chi)|$. Deduce that $\chi(1) \mid |G : Z(G)|$.

This allows us to prove an important criterion, due to Burnside, for character values to be zero.

Theorem 17.6 (Burnside)

Let $\chi \in Irr(G)$ and let C = [g] be a conjugacy class of G such that $gcd(\chi(1), |C|) = 1$. Then $\chi(g) = 0$ or $g \in Z(\chi)$.

Proof: As $gcd(\chi(1), |C|) = 1$, there exist $u, v \in \mathbb{Z}$ such that $u\chi(1) + v|C| = 1$ Set $\alpha := \frac{\chi(g)}{\chi(1)}$. Then

$$\alpha = \frac{\chi(g)}{\chi(1)} \cdot 1 = \frac{\chi(g)}{\chi(1)} \left(u\chi(1) + v|C| \right) = u\chi(g) + v \frac{|C|\chi(g)|}{\chi(1)} = u\chi(g) + v\omega_{\chi}(C)$$

is an algebraic integer because both $\chi(g)$ and $\omega_{\chi}(C)$ are. Now, set $m := |\langle g \rangle|$ and let $\zeta_m := e^{\frac{2\pi i}{m}}$. As $\chi(g)$ is a sum of *m*-th roots of unity, certainly $\chi(g) \in \mathbb{Q}(\zeta_m)$. Let \mathcal{G} be the Galois group of the Galois extension $\mathbb{Q} \subseteq \mathbb{Q}(\zeta_m)$. Then for each field automorphism $\sigma \in \mathcal{G}$, $\sigma(\alpha)$ is also an algebraic integer because α and $\sigma(\alpha)$ are roots of the same monic integral polynomial. Hence $\beta := \prod_{\sigma \in \mathcal{G}} \sigma(\alpha)$ is also an algebraic integer and because $\sigma(\beta) = \beta$ for every $\sigma \in \mathcal{G}$, β is an element of the fixed field of \mathcal{G} , namely $\beta \in \mathbb{Q}$ (Galois theory). Therefore $\beta \in \mathbb{Z}$.

If $g \in Z(\chi)$, then there is nothing to do. Thus we may assume that $g \notin Z(\chi)$. Then $|\chi(g)| \neq \chi(1)$, so that by Property 7.5(c) we must have $|\chi(g)| < \chi(1)$ and hence $|\alpha| < 1$. Now, again by Property 7.5(b), $\chi(g) = \varepsilon_1 + \ldots + \varepsilon_n$ with $n = \chi(1)$ and $\varepsilon_1, \ldots, \varepsilon_n$ *m*-th roots of unity. Therefore, for each $\sigma \in \mathcal{G} \setminus \{ \text{Id} \}$, we have $\sigma(\chi(g)) = \sigma(\varepsilon_1) + \ldots + \sigma(\varepsilon_n)$ with $\sigma(\varepsilon_1), \ldots, \sigma(\varepsilon_n)$ *m*-th roots of unity, because $\varepsilon_1, \ldots, \varepsilon_n$ are. It follows that

$$|\sigma(\chi(g))| = |\sigma(\varepsilon_1) + \ldots + \sigma(\varepsilon_n)| \le |\sigma(\varepsilon_1)| + \ldots + |\sigma(\varepsilon_n)| = n = \chi(1)$$

and hence

$$|\sigma(\alpha)| = rac{1}{\chi(1)} |\sigma(\chi(g))| \leqslant rac{\chi(1)}{\chi(1)} = 1$$

Thus

$$|\beta| = |\prod_{\sigma \in \mathcal{G}} \sigma(\alpha)| = \underbrace{|\alpha|}_{<1} \cdot \prod_{\sigma \in \mathcal{G} \setminus \{\mathsf{Id}\}} \underbrace{|\sigma(\alpha)|}_{\leqslant 1} < 1.$$

The only way an integer satisfies this inequality is $\beta = 0$. Thus $\alpha = 0$ as well, which implies that $\chi(g) = 0$.

Corollary 17.7

Assume now that *G* is a non-abelian simple group. In the situation of Theorem 17.6 if we assume moreover that $\chi(1) > 1$ and $C \neq \{1\}$, then it is always the case that $\chi(g) = 0$.

Proof: We see that then either $\chi(g) = 0$ or $Z(\chi)$ is a non-trivial proper normal subgroup of G. Indeed, if $\chi(g) \neq 0$, then Theorem 17.6 implies that $g \in Z(\chi)$, so $Z(\chi) \neq 1$. Now, as G is non-abelian simple we have $Z(\chi) = G$. On the other hand, the fact that G is simple also tells us that $\ker(\chi) = 1$ (if it were G, then χ would be reducible). Then it follows from Proposition 17.3 that

$$G = Z(\chi) / \ker(\chi) = Z(G / \ker(\chi)) = Z(G) = 1.$$

A contradiction.