$$
\frac{\text { Example }}{\text { The Character Table }} \text { of } S_{4}
$$

USING INFLATION FROM $S_{3} \cong S_{4} / V_{4}$

Example: the character table of S_{4}

Example: the character table of S_{4}

$$
G:=S_{4} \quad \Rightarrow \quad|G|=4!=24
$$

Example: the character table of S_{4}

$$
G:=S_{4} \quad \Rightarrow \quad|G|=4!=24
$$

Step 1. The conjugacy classes:

Example: the character table of S_{4}

$$
G:=S_{4} \quad \Rightarrow \quad|G|=4!=24
$$

Step 1. The conjugacy classes : are given by the cycle types!

$$
\Rightarrow C_{1}=\left\{{\underset{\partial 刂}{1}}_{I}^{d}\right\}, \quad C_{2}=[\underbrace{(12)}_{\partial_{2}}], \quad C_{3}=[\underbrace{(123)}_{\partial_{3}}], \quad C_{4}=[\underbrace{(12)(34)}_{\partial_{4}}], \quad C_{5}=[\underbrace{(1234}_{\partial_{5}})]
$$

Example: the character table of S_{4}

$$
G:=S_{4} \quad \Rightarrow \quad|G|=4!=24
$$

Step 1. The conjugacy classes: are given by the cycle types!

$$
\begin{aligned}
& \Rightarrow \quad r=|C(G)|=|\operatorname{Ir}(G)|=5
\end{aligned}
$$

And $\left|C_{1}\right|=1,\left|C_{2}\right|=6,\left|C_{3}\right|=8,\left|C_{4}\right|=3,\left|C_{5}\right|=6$,

Example: the character table of S_{4}

$$
G:=S_{4} \quad \Rightarrow \quad|G|=4!=24
$$

Step 1. The conjugacy classes: are given by the cycle types!

$$
\begin{aligned}
& \Rightarrow \quad r=|C(G)|=|\operatorname{Ir}(G)|=5
\end{aligned}
$$

And $\left|C_{1}\right|=1,\left|C_{2}\right|=6,\left|C_{3}\right|=8,\left|C_{4}\right|=3,\left|C_{5}\right|=6$,
so by the orbit-stabiliser theorem the centraliser orders are

$$
\left|C_{6}\left(g_{1}\right)\right|=24,\left|C_{6}\left(g_{2}\right)\right|=4,\left|C_{6}\left(g_{3}\right)\right|=3,\left|C_{6}\left(g_{4}\right)\right|=8,\left|C_{6}\left(g_{5}\right)\right|=4
$$

Next, we calculate the characters of G and their values.

Next, we calculate the characters of G and their values.

- Of course, $x_{1}=1_{G}$ and $x_{1}\left(g_{i}\right)=1 \quad \forall 1 \leqslant i \leqslant 5$.

Next, we calculate the characters of G and their values.

- Of course, $x_{1}=1_{G}$ and $x_{1}\left(g_{i}\right)=1 \quad \forall 1 \leqslant i \leqslant 5$.

Step 2. Inflation from $S_{4} / V_{4} \simeq S_{3}$

Next, we calculate the characters of G and their values.

- Of course, $x_{1}=1_{G}$ and $x_{1}\left(g_{i}\right)=1 \quad \forall 1 \leqslant i \leqslant 5$.

Step 2. Inflation from $S_{4} / V_{4} \simeq S_{3}$
Last week, we calculated $X\left(S_{3}\right)$:

	Id	(12)	(123)
x_{1}^{5}	1	1	1
$x_{2}^{s_{2}}$	1	-1	1
x_{3}^{5}	2	0	-1

(trivial character)
(sign character)

Next, we calculate the characters of G and their values.

- Of course, $x_{1}=1_{G}$ and $x_{1}\left(g_{i}\right)=1 \quad \forall 1 \leqslant i \leqslant 5$.

Step 2. Inflation from $S_{4} / V_{4} \simeq S_{3}$
Last week, we calculated $X\left(S_{3}\right)$:

	Id	(12)	(123)	
x_{1}^{5}	1	1	1	
$x_{2}^{s_{2}}$	1	-1	1	(trivial character)
x_{3}^{3}	2	0	-1	

By Theorem 14.6 we can "inflate" the irreducible characters of δ_{3} to S_{4}. We obtain

$$
x_{1}=\operatorname{In} f_{s_{1} / N_{4}}^{s_{4}}\left(x_{1}^{s_{1}^{3}}\right)=1_{s_{4}}, x_{2}:=\operatorname{In} f_{s_{1} / v_{4}}^{s_{4}}\left(x_{2}^{s_{2}}\right), x_{3}:=\operatorname{In} f_{s_{1} / v_{4}}^{s_{4}}\left(x_{3}^{s_{3}}\right) \in \operatorname{Irr}\left(s_{4}\right)
$$

More precisely, we have a part of $X\left(S_{4}\right)$ as follows:

	$I d$	(12)	(123)	$(12)(31)$	(1244)
$x_{1}=1_{4}$	1	1	1	1	1
x_{2}	1	-1	1	1	-1
x_{3}	2	0	-1	2	0
x_{4}	\cdot	\cdot	\cdot	\cdot	\vdots
x_{5}					

More precisely, we have a part of $X\left(S_{4}\right)$ as follows:

	$I d$	(12)	(123)	$(122)(31)$	(1244)
$x_{1}=1_{4}$	1	1	1	1	1
x_{2}	1	-1	1	1	-1
x_{3}	2	0	-1	2	0
x_{4}	\cdot	\cdot	\cdot	\vdots	\vdots
x_{5}	\cdot				

This is because the isomorphism between S_{4} / V_{4} and S_{3} maps:

Step 3. x_{4} and x_{5} via the orthogonality relations

Step 3. x_{4} and x_{5} via the orthogonality relations.
(1) degree formula $\Rightarrow 24=\sum_{i=1}^{5} x_{i}\left(I_{d}\right)^{2}=\underbrace{1^{2}+1^{2}+2^{2}}_{=6}+x_{4}(I-)^{2}+x_{5}(I-d)^{2}$

Step 3. x_{4} and x_{5} via the orthogonality relations
(1)

$$
\begin{aligned}
& \text { degree formula } \Rightarrow 24=\sum_{i=1}^{5} x_{i}(I d)^{2}=\underbrace{1^{2}+1^{2}+2^{2}}_{=6}+x_{4}(I d)^{2}+x_{5}(I-1)^{2} \\
& \Rightarrow x_{4}(I-1)^{2}+x_{5}(I-1)^{2}=18 \\
& \Rightarrow x_{4}\left(I_{d}\right)=x_{5}\left(I_{d}\right)=3 \quad \text { (Only possibility!) }
\end{aligned}
$$

Step 3. x_{4} and x_{5} via the orthogonality relations
(1)

$$
\begin{aligned}
\text { degree formula } \Rightarrow & 24=\sum_{i=1}^{5} x_{i}(I d)^{2}=\underbrace{1^{2}+1^{2}+2^{2}}_{=6}+x_{4}(I I)^{2}+x_{5}(I-1)^{2} \\
& \Rightarrow x_{4}(I I)^{2}+x_{5}(I I)^{2}=18 \\
& \left.\Rightarrow x_{4}\left(I_{d}\right)=x_{5}(I d)=3 \quad \text { (only possibility }!\right)
\end{aligned}
$$

(2) $2^{\text {nd }}$ Orthogonality Relations with $3^{\text {nd }}$ column and $3^{\text {rd }}$ column yield:

Step 3. x_{4} and x_{5} via the orthogonality relations
(1)

$$
\begin{aligned}
\text { degree formula } \Rightarrow 24 & =\sum_{i=1}^{5} x_{i}(I d)^{2}=\underbrace{1^{2}+1^{2}+2^{2}}_{=6}+x_{4}(I I)^{2}+x_{5}(I X))^{2} \\
& \Rightarrow x_{4}(I)^{2}+x_{5}(I I)^{2}=18 \\
& \left.\Rightarrow x_{4}(I d)=x_{5}(I d)=3 \quad \text { (only possibility }!\right)
\end{aligned}
$$

(2) $2^{\text {nd }}$ Orthogonality Relations with $3^{\text {nd }}$ column and $3^{\text {nd }}$ column yield:

$$
\sum_{i=1}^{5} x_{i}((123)) \overline{\underbrace{\overline{\left.x_{i}(123)\right)}}_{\substack{\left.=x_{i}(1123)\right) \\ \text { (since in } R}}=\left|C_{G}((123))\right|=3}
$$

Step 3. x_{4} and x_{5} via the orthogonality relations
(1)

$$
\begin{aligned}
\text { degree formula } \Rightarrow & 24=\sum_{i=1}^{5} x_{i}(I d)^{2}=\underbrace{1^{2}+1^{2}+2^{2}}_{=6}+x_{4}(I I)^{2}+x_{5}(I T)^{2} \\
& \Rightarrow x_{4}(I I)^{2}+x_{5}(I I)^{2}=18 \\
& \left.\Rightarrow x_{4}\left(I_{d}\right)=x_{5}(I d)=3 \quad \text { (Only possibility }!\right)
\end{aligned}
$$

(2) $2^{\text {nd }}$ Orthogonality Relations with $3^{\text {nd }}$ column and $3^{\text {nd }}$ column yield:

$$
\begin{aligned}
& \sum_{i=1}^{5} x_{i}((123)) \underbrace{\overline{\left.x_{i}(123)\right)}}_{\substack{=x_{i}(\text { since in } R)}}=\left|C_{G}((123))\right|=3 \\
& \left.1+1+x^{11}+x_{4}((123))^{2}+x_{5}((123))^{2} \quad \Rightarrow x_{4}((123))=x_{5}(123)\right)=0
\end{aligned}
$$

(3) 2 nd Orthogonality Relations with $\left\lvert\, \begin{aligned} & 4^{\text {th }} \text { column and } \\ & 5^{\text {th }} \text { column }\end{aligned} 4^{4^{\text {th}}}\right.$ column yield:
(4) $2^{\text {nd }}$ Orthogonality Relations with 1st column and $2^{\text {rd }}$ column yield:

$$
x_{4}((12))=1 \text { and } x_{5}((12))=-1
$$

(3) $2^{\text {nd }}$ Orthogonality Relations with $\left\lvert\, \begin{aligned} & 4^{m} \text { column and } \\ & 5^{\text {ch}} \text { column } \\ & \begin{array}{l}4^{t h} \\ 5^{h} \text { column n }\end{array} \text { yield: }\end{aligned}\right.$

$$
\left.\begin{array}{ll}
\cdots \quad & x_{4}((12)(344))^{2}=x_{5}((12)(344))^{2}=1 \\
& x_{4}\left((1234)^{2}=x_{5}(11234)^{2}=1\right.
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { all these entries } \\
& \text { are } \pm 1
\end{aligned}
$$

(4) $2^{\text {nd }}$ Orthogonality Relations with it column and $z^{2 d}$ column yield:

$$
x_{4}((12))=1 \text { and } x_{5}((12))=-1
$$

(5) 1st Orthogonality Relations with $3^{\text {red }}$ row and $4^{\text {th }}$ row yield:

$$
\begin{aligned}
& 0=\sum_{k=1}^{5} \frac{1}{\mid c_{k}\left(g_{k}| |\right.} x_{3}\left(q_{k}\right) \overline{x_{4}\left(g_{k}\right)}=\frac{6}{24}+\frac{1}{4} x_{4}((12)(34)) \\
& 3^{\text {rd }} \text { row and } 5^{\text {th }} \text { row yield: } \Rightarrow x_{5}((k)((2344)))=-1
\end{aligned}
$$

(6) 1st Orthogonality Relations with $\left|\begin{array}{l}\text { st row and } \\ \text { 1st row }\end{array}\right| \begin{aligned} & 4^{\text {in }} \text { row yield: } \\ & 5^{\text {th }} \text { row }\end{aligned}$

$$
x_{5}((12)(344))=-1, x_{4}((1234))=1
$$

(6) 1st Orthogonality Relations with $\left|\begin{array}{l}\text { st row and } \\ \text { 1st row }\end{array}\right| \begin{aligned} & 4^{\text {m }} \text { row yield: } \\ & 5^{\text {th }} \text { row }\end{aligned}$

$$
x_{5}((12)(344))=-1, x_{4}((1234))=1
$$

(7) Conclusion:

