

$$G := S_4 \implies |G| = 4! = 24$$

$$G := S_{\mu} => |G| = 4! = 24$$

Step 1. The conjugacy classes:

$$G := S_{4} \implies |G| = 4! = 24$$

Step 1. The conjugacy classes: are given by the cycle types ! $\Rightarrow C_{4} = \{Id_{3}^{2}, C_{2} = [(42)], C_{3} = [(123)], C_{4} = [(12)(34)], C_{5} = [(1234)]$

$$G := S_{\mu} => |G| = 4! = 24$$

And $|C_1| = 1$, $|C_2| = 6$, $|C_3| = 8$, $|C_4| = 3$, $|C_5| = 6$,

$$G := S_{\mu} => |G| = 4! = 24$$

Step 1. The conjugacy classes: are given by the cycle types ! $\Rightarrow C_{4} = \{Id_{3}^{2}, C_{2} = [(42)], C_{3} = [(423)], C_{4} = [(42)(34)], C_{5} = [(1234)]$ $\Rightarrow r = |C(G)| = |Irr(G)| = 5$

And $|C_4|=1$, $|C_2|=6$, $|C_3|=8$, $|C_4|=3$, $|C_5|=6$, so by the orbit-stabiliser theorem the centraliser orders are

 $|C_{G}(g_{1})| = 24, |C_{G}(g_{2})| = 4, |C_{G}(g_{3})| = 3, |C_{G}(g_{4})| = 8, |C_{G}(g_{5})| = 4$

Next, we calculate the characters of G and their values.

Step 2. Inflation from
$$S_4/V_4 \approx S_3$$

Step 2. Inflation from
$$S_4/V_4 \simeq S_3$$

Last week, we calculated $X(S_3)$:

	Id	(12)	(123)	
X453	1	1	1	(trivial character)
$\chi_2^{S_3}$	1	-1	1	(sign character)
X3	2	0	-1	

Step 2. Inflation from
$$S_4/V_4 \simeq S_3$$

Last week, we calculated $X(S_3)$:

By Theorem 14.6 we can "inflate" the irreducible characters of S_3 to S_4 . We obtain

 $\chi_{1} = \operatorname{Inf}_{S_{4}/V_{4}}^{S_{4}}(\chi_{1}^{S_{3}}) = 1_{S_{4}}, \chi_{2} := \operatorname{Inf}_{S_{4}/V_{4}}^{S_{4}}(\chi_{2}^{S_{3}}), \chi_{3} := \operatorname{Inf}_{S_{4}/V_{4}}^{S_{4}}(\chi_{3}^{S_{3}}) \in \operatorname{Irr}(S_{4})$

More precisely, we have a part of X(S4) as follows:

	Id	(12)	(123)	(12)(34)	(1254)
X ₁ =1 ₅₁	1	1	1	1	1
χ_2	1	~1	1	1	-1
χ_3	2	0	-1	2	0
24	r	•	•	•	۲
25		•		\	١

More precisely, we have a part of X(S4) as follows:

	Id	(12)	(123)	(12)(34)	(1254)	
X4= 154	1	1	1	1	1	
χ_2	1	~1	1	1	-1	
X ₃	2	0	-1	2	0	
X4	r	•	•	•	•	
X5		•		١	•	

This is because the isomorphism between S4/V4 and S3 maps:

$$S_{4}/V_{4} \xleftarrow{\cong} S_{3}$$

$$IdV_{4} \xrightarrow{\cong} S_{3}$$

$$IdV_{4} \xrightarrow{\longrightarrow} Id$$

$$(12)V_{4} \xrightarrow{\longrightarrow} 2-cycle$$

$$(123)V_{4} \xrightarrow{\longrightarrow} 3-cycle$$

$$IdV_{4} = (12)(34)V_{4} \xrightarrow{\longrightarrow} Id$$

$$(123)V_{4} \xrightarrow{\longrightarrow} 2-cycle$$

(group isomorphisms preserve the orders of elements !)

Step 3. 24 and 25 via the orthogonality relations.

Step 3.
$$\chi_4$$
 and χ_5 via the orthogonality relations.
(1) degree formula $\implies 24 = \sum_{i=1}^{5} \chi_i (Id)^2 = \underbrace{1^2 + 1^2 + 2^2}_{=6} + \chi_4 (Id)^2 + \chi_5 (Id)^2$

Step 3.
$$\chi_4$$
 and χ_5 via the orthogonality relations.
(1) degree formula $\implies 24 = \sum_{i=1}^{5} \chi_i (Id)^2 = \underbrace{1^2 + 1^2 + 2^2}_{=6} + \chi_4 (Id)^2 + \chi_5 (Id)^2$
 $\implies \chi_4 (Id)^2 + \chi_5 (Id)^2 = 18$
 $\implies \chi_4 (Id) = \chi_5 (Id) = 3$ (Only possibility!)

Step 3.
$$\chi_{4}$$
 and χ_{5} via the orthogonality relations.
(1) degree formula $\Rightarrow 24 = \sum_{i=1}^{5} \chi_{i} (Id)^{2} = \underbrace{1^{2} + 1^{2} + 2^{2}}_{=6} + \chi_{4} (Id)^{2} + \chi_{5} (Id)^{2}$
 $\Rightarrow \chi_{4} (Id)^{2} + \chi_{5} (Id)^{2} = 18$
 $\Rightarrow \chi_{4} (Id) = \chi_{5} (Id) = 3$ (Only possibility!)
(2) 2nd Orthogonality Relations with 3nd column and 3nd column yield:

Step 3.
$$\chi_{4}$$
 and χ_{5} via the orthogonality relations.
(1) degree formula $\Rightarrow 24 = \sum_{i=1}^{5} \chi_{i} (Id)^{2} = \underbrace{1^{2} + 1^{2} + 2^{2}}_{=6} + \chi_{4} (Id)^{2} + \chi_{5} (Id)^{2} = \frac{1^{2} + 1^{2} + 2^{2}}_{=6} + \chi_{4} (Id)^{2} + \chi_{5} (Id)^{2} = \frac{1^{2} + 1^{2} + 2^{2}}_{=6} + \chi_{4} (Id)^{2} + \chi_{5} (Id)^{2} = \frac{1^{2}}{=6} + \chi_{5} + \chi_{5} (Id)^{2} = \frac{1^{2$

Step 3.
$$\chi_{4}$$
 and χ_{5} via the orthogonality relations.
(1) degree formula $\Rightarrow 24 = \sum_{i=1}^{5} \chi_{i} (Id)^{2} = \frac{1^{2}+1^{2}+2^{2}}{=6} + \chi_{4} (Id)^{2} + \chi_{5} (Id)^{2}$
 $\Rightarrow \chi_{4} (Id)^{2} + \chi_{5} (Id)^{2} = 48$
 $\Rightarrow \chi_{4} (Id) = \chi_{5} (Id) = 3$ (Only possibility!)
(2) 2^{nd} Orthogonality Relations with 3^{nd} column and 3^{nd} column yield:
 $\sum_{i=1}^{5} \chi_{i} ((123)) \overline{\chi_{i} (123)} = |C_{G}((123))| = 3$
 $= \chi_{4} (Id)^{2} + \chi_{5} (Id)^{2} = 2$

3 2nd Orthogonality Relations with 4th column and 4th column yield: 5th column 5th column $\begin{array}{ccc} & & & & & \\$ (4) 2nd Orthogonality Relations with 1st column and 2nd column yield: $\chi_4(12) = 1$ and $\chi_5(12) = -1$

3 2nd Orthogonality Relations with 4th column and 4th column yield: 5th column 5th column $\chi_{4}(42)(34)^{2} = \chi_{5}(42)(34)^{2} = 1$ all these entries $\chi_{4}((1234)^{2} = \chi_{5}((1234)^{2} = 1)^{2} = 1$ one ± 1 4 2nd Orthogonality Relations with 1st column and 2nd column yield: $\chi_4(12) = 1$ and $\chi_5(12) = -1$ (5) 1st Orthogonality Relations with 3rd row and 4th row yield: $O = \sum_{k=1}^{5} \frac{1}{1 C_{6}(3\mu)} \chi_{3}(9_{k}) \chi_{4}(9_{k}) = \frac{6}{24} + \frac{1}{4} \chi_{4}(82)(34))$ $=> \chi_4((2)(34)) = -1$ 3^{rd} row and 5^{th} row yield : $\chi_5((1234)) = -1$

6 1st Orthogonality Relations with 1st row and 4th row yield: 1st row 5^{th} row $\chi_5(n^2)(34) = -1$, $\chi_4(n^234) = 1$ 6 1st Orthogonality Relations with 1st row and 14th row yield: 1st row 5^{th} row $\chi_5(n^2)(34) = -1$, $\chi_4(n^234) = 1$

(7) Conclusion:

		Id	(12)	(123)	(12)(34)	(1254)
	X4= 154	1	1	1	1	1
$\lambda (c)$	x2	1	~1	1	1	-1
$X(S_{4}) =$	X ₃	2	0	-1	2	0
	K4	3	1	0	-1	-1
	×5	3	-1	0	-1	1