Example: the character table of C_{n}

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

Example: the character table of C_{n} $G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Gabelian

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Gabelian \Rightarrow (1) $\operatorname{Irr}(G)=\operatorname{Lin}(G) \quad$ (Prop. 6.1)

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Gabelian \Rightarrow (1) $\operatorname{Irr}(G)=\operatorname{Lin}(6) \quad$ (Prop. 6.1)
(2) $|\operatorname{Irr}(G)|=|G| \quad$ (Cor. 9.7)
as each conjugacy class is a singleton

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Gabelian \Rightarrow (1) $\operatorname{Irr}(G)=\operatorname{Lin}(G) \quad$ (Prop. 6.1)
(2) $|\operatorname{Irr}(G)|=|G| \quad$ (Cor.9.7) as each conjugacy class is a singleton
- Conjugacy classes :
- Characters:

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle-$ cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Gabelian \Rightarrow (1) $\operatorname{Irr}(G)=\operatorname{Lin}(G) \quad$ (Prop. 6.1)
(2) $|\operatorname{Irr}(G)|=|G| \quad$ (Cor.9.7) as each conjugacy class is a singleton
- Conjugacy classes: $\forall 1 \leqslant j \leqslant r=n$ set $C_{j}=\left\{g_{j}\right\}$ where $g_{j}:=g^{j-1}$,
- Characters:

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Gabelian \Rightarrow (1) $\operatorname{Irr}(G)=\operatorname{Lin}(G) \quad$ (Prop. 6.1)
(2) $|\operatorname{Irr}(G)|=|G| \quad$ (Cor. 9.7) as each conjugacy class is a singleton
- Conjugacy cases: $\forall 1 \leqslant j \leqslant r=n$ set $C_{j}=\left\{g_{j}\right\}$ where $g_{j}:=g^{j-1}$.
- Characters: Let \mathcal{Y} be a primitive n-th root of $1_{\mathcal{C}}$.

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Gabelian \Rightarrow (1) $\operatorname{Irr}(G)=\operatorname{Lin}(G) \quad$ (Prop. 6.1)
(2) $|\operatorname{Irr}(G)|=|G| \quad$ (Cor. 9.7) as each conjugacy class is a singleton
- Conjugacy cases: $\forall 1 \leqslant j \leqslant r=n$ set $C_{j}=\left\{g_{j}\right\}$ where $g_{j}:=g^{j-1}$.
- Characters: Let \mathcal{Y} be a primitive n-th root of $1_{\mathcal{c}}$.

Write $\operatorname{Ir}(G)=\left\{x_{1}, \ldots, x_{n}\right\}$.

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Gabelian \Rightarrow (1) $\operatorname{Irr}(G)=\operatorname{Lin}(G) \quad$ (Prop. 6.1)
(2) $|\operatorname{Irr}(G)|=|G| \quad$ (Cor. 9.7) as each conjugacy class is a singleton
- Conjugacy cases: $\forall 1 \leqslant j \leqslant r=n$ set $C_{j}=\left\{g_{j}\right\}$ where $g_{j}:=g^{j-1}$.
- Characters: Let $\boldsymbol{\Psi}$ be a primitive n-th root of $1_{\mathbb{c}}$.

Write $\operatorname{Ir}(G)=\left\{x_{1}, \ldots, x_{n}\right\}$.
Each $x_{i}: G \rightarrow \mathbb{C}^{x}$ is a group homomorphism, hence determined by $x_{i}(g)$, which is an n-th root of 1 c .

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Characters: Let \mathcal{Y} be a primitive n-th root of $1_{\mathbb{C}}$.

Write $\operatorname{Irr}(G)=\left\{x_{1}, \ldots, x_{n}\right\}$.
Each $x_{i}: G \longrightarrow \mathbb{C}^{*}$ is a group homomorphism, hence determined by $x_{i}(g)$, which is an n-th root of 1_{c}.

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Characters: Let \mathcal{Y} be a primitive n-th root of $1_{\mathbb{C}}$.

Write $\operatorname{Irr}(G)=\left\{x_{1}, \ldots, x_{n}\right\}$.
Each $x_{i}: G \longrightarrow \mathbb{C}^{*}$ is a group homomorphism, hence determined by $x_{i}(g)$, which is an n-th root of 1 c .
$\Rightarrow n$ possibilities for $x_{i}(g)$

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle$ - cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Characters: Let \mathcal{Y} be a primitive n-th root of $1_{\mathcal{C}}$.

Write $\operatorname{Ir}(G)=\left\{x_{1}, \ldots, x_{n}\right\}$.
Each $x_{i}: G \rightarrow \mathbb{C}^{*}$ is a group homomorphism, hence determined by $x_{i}(g)$, which is an n-th root of 1_{c}.
$\Rightarrow n$ possibilities for $x_{i}(g)$
We set: $\quad x_{i}(g):=\xi^{i-1} \quad \forall 1 \leqslant i \leqslant n$

Example: the character table of C_{n}
$G:=\left\langle g \mid g^{n}=1\right\rangle-$ cyclic group of order $n \in \mathbb{Z}_{>0}$.

- Characters: Let \mathcal{Y} be a primitive n-th root of $1_{\mathbb{C}}$.

Write $\operatorname{Irr}(G)=\left\{x_{1}, \ldots, x_{n}\right\}$.
Each $x_{i}: G \rightarrow \mathbb{C}^{*}$ is a group homomorphism, hence determined by $x_{i}(g)$, which is an n-th root of 1 c .
$\Rightarrow n$ possibilities for $x_{i}(g)$
We set: $\quad x_{i}(g):=y^{i-1} \quad \forall 1 \leqslant i \leqslant n$

$$
\Rightarrow \quad x_{i}\left(g_{j}\right)=\zeta^{(i-1)} j \quad \forall 1 \leqslant i \leqslant n, \forall 0 \leqslant j \leqslant n-1
$$

Example: the character table of C_{n}
We obtain

$$
X\left(C_{n}\right)=\left(x_{i}\left(g_{j}\right)\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq i n}}
$$

Example: the character table of C_{n}
We obtain

$$
X\left(C_{n}\right)=\left(x_{i}\left(g_{j}\right)\right)_{\substack{1: \leq i \leq n \\ 1 \leq j \leq n}}=\left(x_{i}\left(g^{j-1}\right)\right)_{\substack{1 \leq i \leq j \leq n}}
$$

Example: the character table of C_{n}

We obtain

Example: the character table of C_{n}

We obtain

$$
X\left(C_{n}\right)=\left(x_{i}\left(g_{j}\right)\right)_{\substack{1: \leq i \leq n}}=\left(x_{i}\left(g^{j-1}\right)\right)_{\substack{1: \leq i \leq n \\ 1-j \leq n}}=\left(y^{(i-1)\left(j^{(-1)}\right)}\right)_{\substack{1: \leq i \leq n}}
$$

As 'table':

	1	g	g^{2}	\cdots	g^{n-1}
$x_{1}=1_{6}$	1	1	1	\cdots	1
x_{2}	1	y	y^{2}	\cdots	y^{n-1}
x_{3}	1	y^{2}	y^{4}	\cdots	$y^{2(n-1)}$
\vdots	\vdots	\vdots	\vdots	\cdots	\vdots
x_{n}	1	y^{n-1}	$y^{2(n-1)}$	\cdots	$y^{(n-1)^{2}}$

Example: the character table of S_{3}

$$
G:=S_{3}
$$

Example: the character table of S_{3}

$$
G:=S_{3} \Rightarrow|G|=3!=6
$$

Example: the character table of S_{3}

$$
G:=S_{3} \Rightarrow|G|=3!=6
$$

Step 1. The conjugacy classes:

Example: the character table of S_{3}

$$
G:=S_{3} \Rightarrow|G|=3!=6
$$

Step 1. The conjugacy classes: are given by the cycle types!

$$
\Rightarrow \quad C_{1}=\left\{{\underset{\tilde{g}}{1}}_{I I_{1}}^{[d}\right\}, C_{2}=[\underbrace{(12)}_{g_{2}}], \quad C_{3}=[\underbrace{(123)}_{g_{3}}]
$$

Example: the character table of S_{3}

$$
G:=S_{3} \Rightarrow|G|=3!=6
$$

Step 1. The conjugacy classes: are given by the cycle types!

$$
\begin{array}{ll}
\Rightarrow & C_{1}=\{\underset{\tilde{q}_{1}}{\{I d\}}, C_{2}=\left[\underset{\tilde{q}_{2}}{(12)}\right], C_{3}=\underbrace{(123)}_{\tilde{q}_{3}}] \\
\Rightarrow & \quad r=|C(G)|=|\operatorname{Irr}(G)|=3
\end{array}
$$

Example: the character table of S_{3}

$$
G:=S_{3} \Rightarrow|G|=3!=6
$$

Step 1. The conjugacy classes: are given by the cycle types!

$$
\begin{aligned}
& \Rightarrow \quad C_{1}=\{\underset{\tilde{g}_{1}}{\left.I I_{1}\right\}}, \quad C_{2}=[\underbrace{(12)}_{g_{2}}], \quad C_{3}=[\underbrace{(123)}_{g_{3}}] \\
& \Rightarrow \quad r=|C(G)|=|\operatorname{Irr}(G)|=3
\end{aligned}
$$

and $\left|C_{1}\right|=1,\left|C_{2}\right|=3,\left|C_{3}\right|=2$

Step 2. Character values :
Next, we calculate the characters of G and their values.

Step 2. Character values:
Next, we calculate the characters of G and their values. In Example 2(d) we exhibited 3 pairwise non-equivalent irreducible representations of S_{3}, namely

$$
\begin{aligned}
\rho_{1}: S_{3} & \longrightarrow \mathbb{C}^{x} \\
\sigma & \mapsto 1 \\
\rho_{2}: S_{3} & \mapsto \mathbb{C}^{x} \\
\sigma & \mapsto \operatorname{sgn}(\sigma) \\
\rho_{3}: S_{3} & \rightarrow G L_{2}(\mathbb{C}) \\
(12) & \mapsto\left(\begin{array}{l}
0 \\
10 \\
10
\end{array}\right) \\
(123) & \mapsto\left(\begin{array}{l}
0 \\
1 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

Step 2. Character values:
Next, we calculate the characters of G and their values. In Example 2(d) we exhibited 3 pairwise non-equivalent irreducible representations of S_{3}, namely

$$
\begin{aligned}
\rho_{1}: S_{3} & \rightarrow \mathbb{C}^{x} \quad m>\quad x_{1}(\sigma)=1 \quad \forall \sigma \in S_{3} \\
\sigma & \mapsto 1 \\
\rho_{2}: S_{3} & \mapsto \mathbb{C}^{x} \\
\sigma & \mapsto \operatorname{sgn}(\sigma) \\
\rho_{3}: S_{3} & \mapsto L_{L_{2}}(\mathbb{C}) \\
(12) & \mapsto\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
(123) & \mapsto\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

Step 2. Character values :
Next, we calculate the characters of G and their values. In Example 2(d) we exhibited 3 pairwise non-equivalent irreducible representations of S_{3}, namely

$$
\begin{array}{rlrl}
\rho_{1}: S_{3} & \mapsto \mathbb{C}^{x} \\
\sigma & \mapsto 1 & m> & x_{1}(\sigma)=1 \quad \forall \sigma \in S_{3} \\
\rho_{2}: S_{3} & \mapsto \mathbb{C}^{x} & & \\
\sigma & \mapsto \operatorname{sgn}(\sigma) & m> & x_{2}(i d)=1 \\
x_{2}((12)=-1 \\
\left.x_{2}(123)\right)=1
\end{array}
$$

Step 2. Character values :
Next, we calculate the characters of G and their values. In Example 2(d) we exhibited 3 pairwise non-equivalent irreducible representations of S_{3}, namely

$$
\begin{aligned}
& \rho_{1}: S_{3} \rightarrow \mathbb{C}^{x} \\
& \sigma \mapsto 1 \\
& \rho_{2}: S_{3} \rightarrow \mathbb{C}^{x} \\
& \sigma \mapsto \operatorname{sgn}(\sigma) \\
& m>x_{1}(\sigma)=1 \quad \forall \sigma \in S_{3} \\
& \rho_{3}: S_{3} \rightarrow G L_{2}(\mathbb{C}) \\
& (12) \mapsto\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right) \\
& (123) \mapsto\binom{0-1}{1-1} \\
& m>\begin{array}{l}
x_{2}(i d)=1 \\
x_{2}((12))=-1
\end{array} \\
& \left.x_{2}(123)\right)=1 \\
& \text { m> } x_{3}(\text { id })=2 \\
& x_{3}((12))=0 \\
& \left.x_{3}(123)\right)=-1
\end{aligned}
$$

Step 2. Character values :
Next, we calculate the characters of G and their values. In Example 2(d) we exhibited 3 pairwise non-equivalent irreducible representations of S_{3}, namely

$$
\begin{aligned}
& x_{1}(\sigma)=1 \quad \forall \sigma \in S_{3} \\
& x_{2}(i d)=1 \\
& x_{2}((12))=-1 \\
& \left.x_{2}(123)\right)=1 \\
& x_{3}(i d)=2 \\
& x_{3}((12))=0 \\
& x_{3}((123))=-1
\end{aligned}
$$

\Rightarrow The character table of S_{3} is :

$$
X\left(S_{3}\right)=\begin{array}{l|ccc}
& \text { Id } & \text { (12) } & (\text { (123) } \\
x_{1} & 1 & 1 & 1 \\
x_{2} & 1 & -1 & 1 \\
x_{3} & 2 & 0 & -1
\end{array} \quad \text { (trivial character) }
$$

\Rightarrow The character table of S_{3} is :

$$
X\left(\delta_{3}\right)=\begin{array}{l|ccc|}
& \text { Id } & \text { (12) } & (123) \\
\hline x_{1} & 1 & 1 & 1 \\
x_{2} & 1 & -1 & 1 \\
x_{3} & 2 & 0 & -1
\end{array} \quad \text { (trivial character) }
$$

Notice: the degree formula reds

$$
x_{1}(1)^{2}+x_{2}(1)^{2}+x_{3}(1)^{2}=1+1+4=6=|6|
$$

\Rightarrow The character table of S_{3} is :

$$
X\left(S_{3}\right)=\begin{array}{l|ccc}
& \text { Id } & \text { (12) } & (\text { (123) } \\
x_{1} & 1 & 1 & 1 \\
x_{2} & 1 & -1 & 1 \\
x_{3} & 2 & 0 & -1
\end{array} \quad \text { (trivial character) }
$$

Notice: the degree formula reds

$$
x_{1}(1)^{2}+x_{2}(1)^{2}+x_{3}(1)^{2}=1+1+4=6=|G|
$$

so, we could also have deduced from this that x_{1}, x_{2}, x_{3} are all the irreducible characters of S_{3}.

