Throughout, unless otherwise stated, $K = \mathbb{C}$ is the field of complex numbers and (G, \cdot) a finite group with neutral element 1_G . Each Exercise is worth 4 points.

EXERCISE 1 (On the Orthogonality Relations)

- (a) Prove that the degree formula can be read off from the 2nd Orthogonality Relations.
- (b) Use the degree formula to prove again that if *G* is a finite abelian group, then

$$Irr(G) = Lin(G).$$

(c) Set X := X(G) and

$$C := \begin{bmatrix} |C_G(g_1)| & 0 \cdots \cdots & 0 \\ 0 & |C_G(g_2)| & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 \cdots \cdots & \cdots & 0 & |C_G(g_r)| \end{bmatrix} \in M_r(\mathbb{C}).$$

Prove that the 1st Orthogonality Relations can be rewritten under the form

$$XC^{-1}\overline{X}^{\mathrm{Tr}} = I_r$$

where \overline{X}^{Tr} denotes the transpose of the complex-conjugate \overline{X} of the character table *X* of *G*.

(d) Prove that the character table is invertible.

Exercise 2

Let *G* and *H* be two finite groups. Prove that:

- (a) if $\lambda, \chi \in Irr(G)$ and $\lambda(1) = 1$, then $\lambda \cdot \chi \in Irr(G)$;
- (b) the set Lin(*G*) of linear characters of *G* forms a group for the product of characters;
- (c) $\operatorname{Irr}(G \times H) = \{\chi \cdot \psi \mid \chi \in \operatorname{Irr}(G), \psi \in \operatorname{Irr}(H)\}.$

[Hint: Use Corollary 9.8(d) and the degree formula.]

EXERCISE 3 (Faithful representations and simplicity)

- (a) Let $N \leq G$ and let $\rho : G/N \longrightarrow GL(V)$ be a \mathbb{C} -representation of G/N with character χ . Compute the kernel of $Inf_{G/N}^{G}(\rho)$ provided that ρ is faithful.
- (b) Let $\rho : G \longrightarrow GL(V)$ be a \mathbb{C} -representation of *G* with character χ . Prove that

$$\ker(\chi) = \ker(\rho),$$

thus is a normal subgroup of *G*.

(c) Prove that if $N \trianglelefteq G$, then

$$N = \bigcap_{\substack{\chi \in \operatorname{Irr}(G) \\ N \subseteq \ker(\chi)}} \ker(\chi) \,.$$

(d) Prove that *G* is simple if and only if $\chi(g) \neq \chi(1)$ for each $g \in G \setminus \{1\}$ and each $\chi \in Irr(G) \setminus \{\mathbf{1}_G\}$.

EXERCISE 4 (Does the character table determine the group?)

(a) Compute the character tables of the dihedral group D_8 of order 8 and of the quaternion group Q_8 .

[Hint: In each case, determine the commutator subgroup and deduce that there are 4 linear characters.]

(b) If $\rho : G \longrightarrow GL(V)$ is a C-representation of *G* and det : $GL(V) \longrightarrow \mathbb{C}^*$ denotes the determinant homomorphism, then we define a linear character of *G* through

$$\det_{\rho} := \det \circ \rho : G \longrightarrow \mathbb{C}^*$$
,

called the **determinant of** ρ . Prove that, although the finite groups D_8 and Q_8 have the "same" character table, they can be distinguished by considering the determinants of their irreducible \mathbb{C} -representations.