Character Theory of Finite Groups
 Exercise Sheet 4

Jun.-Prof. Dr. Caroline Lassueur
Due date: Wednesday, the 21st of June 2023, 17:00

RPTU Kaiserslautern-Landau

FB Mathematik

Annika Bartelt and Marie Roth

Throughout, unless otherwise stated, $K=\mathbb{C}$ is the field of complex numbers and (G, \cdot) a finite group with neutral element 1_{G}. Each Exercise is worth 4 points.

Exercise 1 (On the Orthogonality Relations)

(a) Prove that the degree formula can be read off from the 2nd Orthogonality Relations.
(b) Use the degree formula to prove again that if G is a finite abelian group, then

$$
\operatorname{Irr}(G)=\operatorname{Lin}(G) .
$$

(c) Set $X:=X(G)$ and

Prove that the 1st Orthogonality Relations can be rewritten under the form

$$
X C^{-1} \bar{X}^{\mathrm{Tr}}=I_{r}
$$

where $\bar{X}^{\operatorname{Tr}}$ denotes the transpose of the complex-conjugate \bar{X} of the character table X of G.
(d) Prove that the character table is invertible.

Exercise 2

Let G and H be two finite groups. Prove that:
(a) if $\lambda, \chi \in \operatorname{Irr}(G)$ and $\lambda(1)=1$, then $\lambda \cdot \chi \in \operatorname{Irr}(G)$;
(b) the set $\operatorname{Lin}(G)$ of linear characters of G forms a group for the product of characters;
(c) $\operatorname{Irr}(G \times H)=\{\chi \cdot \psi \mid \chi \in \operatorname{Irr}(G), \psi \in \operatorname{Irr}(H)\}$.
[Hint: Use Corollary 9.8(d) and the degree formula.]

ExERCISE 3 (Faithful representations and simplicity)

(a) Let $N \unlhd G$ and let $\rho: G / N \longrightarrow G L(V)$ be a \mathbb{C}-representation of G / N with character χ. Compute the kernel of $\operatorname{Inf}_{G / N}^{G}(\rho)$ provided that ρ is faithful.
(b) Let $\rho: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation of G with character χ. Prove that

$$
\operatorname{ker}(\chi)=\operatorname{ker}(\rho),
$$

thus is a normal subgroup of G.
(c) Prove that if $N \unlhd G$, then

$$
N=\bigcap_{\substack{\chi \in \operatorname{Irrr}(G) \\ N \subseteq \operatorname{ker}(\chi)}} \operatorname{ker}(\chi)
$$

(d) Prove that G is simple if and only if $\chi(g) \neq \chi(1)$ for each $g \in G \backslash\{1\}$ and each $\chi \in \operatorname{Irr}(G) \backslash\left\{\mathbf{1}_{G}\right\}$.

Exercise 4 (Does the character table determine the group?)

(a) Compute the character tables of the dihedral group D_{8} of order 8 and of the quaternion group Q_{8}.
[Hint: In each case, determine the commutator subgroup and deduce that there are 4 linear characters.]
(b) If $\rho: G \longrightarrow G L(V)$ is a \mathbb{C}-representation of G and det $: G L(V) \longrightarrow \mathbb{C}^{*}$ denotes the determinant homomorphism, then we define a linear character of G through

$$
\operatorname{det}_{\rho}:=\operatorname{det} \circ \rho: G \longrightarrow \mathbb{C}^{*},
$$

called the determinant of ρ. Prove that, although the finite groups D_{8} and Q_{8} have the "same" character table, they can be distinguished by considering the determinants of their irreducible \mathbb{C}-representations.

