Character Theory of Finite Groups

Exercise Sheet 3

RPTU Kaiserslautern-Landau

Jun.-Prof. Dr. Caroline Lassueur
Due date: Wednesday, the 7th of June 2023, 17:00

Throughout, unless otherwise stated, $K=\mathbb{C}$ is the field of complex numbers and (G, \cdot) a finite group with neutral element 1_{G}. Each Exercise is worth 4 points.

Exercise 1

(a) Exhibit a \mathbb{C}-basis of $C l(G)$ and deduce that $\operatorname{dim}_{\mathbb{C}} C l(G)=|C(G)|$.
(b) Verify that the form

$$
\langle-,-\rangle_{G}: \mathcal{F}(G, \mathbb{C}) \times \mathcal{F}(G, \mathbb{C}) \longrightarrow \mathbb{C},\left(f_{1}, f_{2}\right) \mapsto\left\langle f_{1}, f_{2}\right\rangle_{G}:=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}
$$

is sesquilinear and Hermitian.

Exercise 2

Let V be a $\mathbb{C} G$-module (i.e. finite-dimensional) with character χ_{V}. Consider the \mathbb{C}-subspace $V^{G}:=\{v \in V \mid g \cdot v=v \forall g \in G\}$. Prove that

$$
\operatorname{dim}_{\mathbb{C}} V^{G}=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g)
$$

in two different ways:

1. considering the scalar product of χ_{V} with the trivial character $\mathbf{1}_{G}$;
2. seeing V^{G} as the image of the projector $\pi: V \longrightarrow V, v \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot v$.

Exercise 3

(a) Suppose that G is a finite abelian group. Describe all pairwise non-equivalent irreducible \mathbb{C}-representations of G.
(b) Fix $n \in \mathbb{Z}_{>0}$ and let $\zeta \in \mathbb{C}$ be a primitive nth root of unity. Use the first orthogonality relations to prove that for all $j \in \mathbb{Z}$,

$$
\sum_{i=0}^{n-1} \zeta^{i j}= \begin{cases}n & \text { if } j \equiv 0 \quad(\bmod n) \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 4

(a) Let V be a $\mathbb{C} G$-module (i.e. finite-dimensional), and $W \leq V$ a $\mathbb{C} G$-submodule. We denote by $\chi_{V^{\prime}} \chi_{W^{\prime}} \chi_{V / W}$ the characters afforded by the $\mathbb{C} G$-modules V, W and V / W respectively. Prove that

$$
\chi_{V}=\chi_{W}+\chi_{V / W} .
$$

(b) Let G_{1} and G_{2} be two finite groups and $\phi: G_{1} \longrightarrow G_{2}$ a group homomorphism. Let $\chi \in \operatorname{Irr}\left(G_{2}\right)$.
(i) Prove that $\chi \circ \phi$ is a character of G_{1}, it is called the restriction of χ along ϕ.
(ii) Prove that if ϕ is an isomorphism, then $\chi \circ \phi$ is irreducible.
(iii) Prove that if ϕ is surjective, then $\chi \circ \phi$ is irreducible.
(iv) Prove that in general $\chi \circ \phi$ is not irreducible.

Exercise 5 (Bonus Exercise, +2 points)
Solve again Parts (a)(iii) and (b) of Exercise 4 on Sheet 2 using characters.

