CHARACTER THEORY OF FINITE GROUPS EXERCISE SHEET 3 JUN.-PROF. DR. CAROLINE LASSUEUR Due date: Wednesday, the 7th of June 2023, 17:00

RPTU KAISERSLAUTERN-LANDAU FB Mathematik Annika Bartelt and Marie Roth SS 2023

Throughout, unless otherwise stated, $K = \mathbb{C}$ is the field of complex numbers and (G, \cdot) a finite group with neutral element 1_G . Each Exercise is worth 4 points.

Exercise 1

- (a) Exhibit a C-basis of Cl(G) and deduce that $\dim_{\mathbb{C}} Cl(G) = |C(G)|$.
- (b) Verify that the form

$$\langle -, - \rangle_G : \mathcal{F}(G, \mathbb{C}) \times \mathcal{F}(G, \mathbb{C}) \longrightarrow \mathbb{C}, (f_1, f_2) \mapsto \langle f_1, f_2 \rangle_G := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$$

is sesquilinear and Hermitian.

Exercise 2

Let *V* be a C*G*-module (i.e. finite-dimensional) with character χ_V . Consider the C-subspace $V^G := \{v \in V \mid g \cdot v = v \forall g \in G\}$. Prove that

$$\dim_{\mathbb{C}} V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)$$

in two different ways:

- 1. considering the scalar product of χ_V with the trivial character $\mathbf{1}_G$;
- 2. seeing V^G as the image of the projector $\pi: V \longrightarrow V, v \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot v$.

Exercise 3

- (a) Suppose that G is a finite abelian group. Describe all pairwise non-equivalent irreducible \mathbb{C} -representations of G.
- (b) Fix $n \in \mathbb{Z}_{>0}$ and let $\zeta \in \mathbb{C}$ be a primitive *n*th root of unity. Use the first orthogonality relations to prove that for all $j \in \mathbb{Z}$,

$$\sum_{i=0}^{n-1} \zeta^{ij} = \begin{cases} n & \text{if } j \equiv 0 \pmod{n}, \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 4

(a) Let *V* be a $\mathbb{C}G$ -module (i.e. finite-dimensional), and $W \leq V$ a $\mathbb{C}G$ -submodule. We denote by $\chi_V, \chi_W, \chi_{V/W}$ the characters afforded by the $\mathbb{C}G$ -modules *V*, *W* and *V*/*W* respectively. Prove that

$$\chi_V = \chi_W + \chi_{V/W}.$$

- (b) Let G_1 and G_2 be two finite groups and $\phi : G_1 \longrightarrow G_2$ a group homomorphism. Let $\chi \in Irr(G_2)$.
 - (i) Prove that $\chi \circ \phi$ is a character of G_1 , it is called the **restriction of** χ **along** ϕ .
 - (ii) Prove that if ϕ is an isomorphism, then $\chi \circ \phi$ is irreducible.
 - (iii) Prove that if ϕ is surjective, then $\chi \circ \phi$ is irreducible.
 - (iv) Prove that in general $\chi \circ \phi$ is not irreducible.

EXERCISE 5 (Bonus Exercise, +2 points)

Solve again Parts (a)(iii) and (b) of Exercise 4 on Sheet 2 using characters.