CHARACTER THEORY OF FINITE GROUPS Exercise Sheet 2 Jun.-Prof. Dr. Caroline Lassueur

Due date: Wednesday, the 24th of May 2023, 17:00

RPTU KAISERSLAUTERN-LANDAU FB Mathematik Annika Bartelt and Marie Roth SS 2023

Throughout, unless otherwise stated, *K* denotes a field of arbitrary characteristic, (G, \cdot) a finite group with neutral element 1_G , and $(V, +, \cdot)$ a finite-dimensional *K*-vector space. Each Exercise is worth 4 points.

EXERCISE 1 (From *K*-representations of *G* to *KG*-modules and back) The goal of this exercise is to better understand Proposition 4.3.

(a) (Proof of Remark 4.4). We define an external composition law on *V* by the elements of *KG* through a left action $G \times V \longrightarrow V$, $(g, v) \mapsto g \cdot v$ of *G* on *V* which we extend by *K*-linearity to the whole of *KG*. We now have a *KG*-module $(V, +, \cdot)$, where the new external composition law $\cdot : KG \longrightarrow V$ extends the initial external composition law on *V* by the elements of *K*.

Prove that checking the *KG*-module axioms (Appendix A, Definition A.1) for $(V, +, \cdot)$ is equivalent to checking the following axioms:

- (GV1) $(gh) \cdot v = g \cdot (h \cdot v)$,
- (GV2) $1_G \cdot v = v$,
- (GV3) $g \cdot (u+v) = g \cdot u + g \cdot v$,
- (GV4) $g \cdot (\lambda v) = \lambda (g \cdot v) = (\lambda g) \cdot v$,

for all $g, h \in G$, $\lambda \in K$ and $u, v \in V$.

- (b) Check the details of the proof of Proposition 4.3.
- (c) Use Proposition 4.3 to express the trivial representation in terms of KG-modules.
- (d) Use Proposition 4.3 to express the regular representation in terms of *KG*-modules. Prove that the *KG*-module you have obtained is isomorphic to *KG* (the group algebra) seen as a left *KG*-module over itself.

From now on, $K = \mathbb{C}$ is the field of complex numbers and V a finite-dimensional \mathbb{C} -vector space.

EXERCISE 2 (On the existence of faithful representations)

Prove the following assertions.

- (a) The regular C-representation of any finite group is faithful.
- (b) Every finite simple group G admits a faithful irreducible \mathbb{C} -representation.
- (c) If $G = C_{n_1} \times \cdots \times C_{n_r}$ is a product of finite cyclic groups of order n_1, \ldots, n_r ($r \in \mathbb{Z}_{>0}$), then *G* admits a faithful \mathbb{C} -representation of degree *r*.

EXERCISE 3 (Values of characters)

Let $\rho_V : G \longrightarrow GL(V)$ be a \mathbb{C} -representation and let χ_V be its character. Prove the following statements.

- (a) If $g \in G$ is conjugate to g^{-1} , then $\chi_V(g) \in \mathbb{R}$.
- (b) If $g \in G$ is an element of order 2, then $\chi_V(g) \in \mathbb{Z}$ and $\chi_V(g) \equiv \chi_V(1) \pmod{2}$.

EXERCISE 4 (The dual representation)

Let $\rho_V : G \longrightarrow GL(V)$ be a \mathbb{C} -representation.

(a) Prove that:

(i) the dual space $V^* := \text{Hom}_{\mathbb{C}}(V, \mathbb{C})$ is endowed with the structure of a $\mathbb{C}G$ -module via

$$\begin{array}{rccc} G \times V^* & \longrightarrow & V^* \\ (g,f) & \mapsto & g.f \end{array}$$

where $(g.f)(v) := f(g^{-1}v) \forall v \in V;$

- (ii) the character of the associated C-representation ρ_{V^*} is then $\chi_{V^*} = \overline{\chi_V}$; and
- (iii) if ρ_V decomposes as a direct sum $\rho_{V_1} \oplus \rho_{V_2}$ of two subrepresentations, then $\rho_{V^*} = \rho_{V_1^*} \oplus \rho_{V_2^*}$.
- (b) Determine the duals of the three irreducible representations of S_3 given in Example 2(d).