Character Theory of Finite Groups

Exercise Sheet 1

Jun.-Prof. Dr. Caroline Lassueur
Due date: Wednesday, the 10th of May 2023, 17:00

RPTU Kaiserslautern-Landau
FB Mathematik
Annika Bartelt and Marie Roth SS 2023

Throughout, unless otherwise stated, K denotes a field of arbitrary characteristic, G a finite group and all K-vector spaces are finite-dimensional. Each Exercise is worth 4 points.

Exercise 1

Let $G:=S_{3}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$ and $K=\mathbb{C}$. Prove that

$$
\begin{aligned}
& \rho_{1}: S_{3} \longrightarrow \mathbb{C}^{\times}, \sigma \mapsto 1, \\
& \rho_{2}: S_{3} \longrightarrow \mathbb{C}^{\times}, \sigma \mapsto \mapsto \operatorname{sign}(\sigma), \\
& \rho_{3}: \begin{array}{ccc}
S_{3} & \longrightarrow & \mathrm{GL}_{2}(\mathbb{C}) \\
\left(\begin{array}{lll}
1 & 2
\end{array}\right) & \mapsto & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) & \mapsto & \left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)
\end{array}
\end{aligned}
$$

are three non-equivalent irreducible matrix representations of G.

Exercise 2

(a) Prove that the trivial representation of G is a subrepresentation of any permutation representation of G over K.
(b) Assume $\operatorname{char}(K) \neq 2$ and let $G:=C_{2} \times C_{2} \times C_{2}$. Find eight pairwise non-equivalent (matrix) representations of G over K of degree one.

Exercise 3

(a) Let $\rho_{1}: G \longrightarrow \mathrm{GL}\left(V_{1}\right)$ and $\rho_{2}: G \longrightarrow \mathrm{GL}\left(V_{2}\right)$ be two K-representations of G and let $\alpha: V_{1} \longrightarrow V_{2}$ be a G-homomorphism. Prove the following assertions.
(i) If $W \subseteq V_{1}$ is a G-invariant subspace of V_{1}, then $\alpha(W) \subseteq V_{2}$ is G-invariant.
(ii) If $W \subseteq V_{2}$ is a G-invariant subspace of V_{2}, then $\alpha^{-1}(W) \subseteq V_{1}$ is G-invariant.
(iii) Both $\operatorname{ker}(\alpha)$ and $\operatorname{Im}(\alpha)$ are G-invariant subspaces of V_{1} and V_{2} respectively.
(b) Assume $K=\mathbb{C}$ and $G=C_{3}$. Find a decomposition into a direct sum of three irreducible subrepresentations of the regular representation of G.

Exercise 4 (Maschke's Theorem does not hold without the assumption that $\operatorname{char}(K) \nmid|G|$.) Let p be a prime number, let $G:=C_{p}=\left\langle g \mid g^{p}=1\right\rangle$ and let $K:=\mathbb{F}_{p}$. Let $B:=\left(e_{1}, e_{2}\right)$ be the standard ordered basis of $V:=K^{2}$. Consider the matrix representation

$$
\begin{array}{rlll}
R: & G & \longrightarrow & \mathrm{GL}_{2}(K) \\
g^{b} & \mapsto & \left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) .
\end{array}
$$

(a) Prove that $W:=K e_{1}$ is G-invariant and deduce that R is reducible.
(b) Prove that there is no direct sum decomposition of V into irreducible G-invariant subspaces.

