Throughout, unless otherwise stated, *K* denotes a field of arbitrary characteristic, *G* a finite group and all *K*-vector spaces are finite-dimensional. Each Exercise is worth 4 points.

Exercise 1

Let $G := S_3 = \langle (1 \ 2), (1 \ 2 \ 3) \rangle$ and $K = \mathbb{C}$. Prove that

 $\rho_{1}: S_{3} \longrightarrow \mathbb{C}^{\times}, \sigma \mapsto 1,$ $\rho_{2}: S_{3} \longrightarrow \mathbb{C}^{\times}, \sigma \mapsto \operatorname{sign}(\sigma),$ $\rho_{3}: S_{3} \longrightarrow \operatorname{GL}_{2}(\mathbb{C})$ $(1 \ 2) \mapsto \begin{pmatrix} 0 \ 1 \\ 1 \ 0 \end{pmatrix}$ $(1 \ 2 \ 3) \mapsto \begin{pmatrix} 0 \ -1 \\ 1 \ -1 \end{pmatrix}$

are three non-equivalent irreducible matrix representations of G.

Exercise 2

- (a) Prove that the trivial representation of *G* is a subrepresentation of any permutation representation of *G* over *K*.
- (b) Assume $char(K) \neq 2$ and let $G := C_2 \times C_2 \times C_2$. Find eight pairwise non-equivalent (matrix) representations of *G* over *K* of degree one.

Exercise 3

- (a) Let $\rho_1 : G \longrightarrow GL(V_1)$ and $\rho_2 : G \longrightarrow GL(V_2)$ be two *K*-representations of *G* and let $\alpha : V_1 \longrightarrow V_2$ be a *G*-homomorphism. Prove the following assertions.
 - (i) If $W \subseteq V_1$ is a *G*-invariant subspace of V_1 , then $\alpha(W) \subseteq V_2$ is *G*-invariant.
 - (ii) If $W \subseteq V_2$ is a *G*-invariant subspace of V_2 , then $\alpha^{-1}(W) \subseteq V_1$ is *G*-invariant.
 - (iii) Both ker(α) and Im(α) are *G*-invariant subspaces of V_1 and V_2 respectively.
- (b) Assume $K = \mathbb{C}$ and $G = C_3$. Find a decomposition into a direct sum of three irreducible subrepresentations of the regular representation of *G*.

EXERCISE 4 (Maschke's Theorem does not hold without the assumption that $char(K) \nmid |G|$.) Let *p* be a prime number, let $G := C_p = \langle g | g^p = 1 \rangle$ and let $K := \mathbb{F}_p$. Let $B := (e_1, e_2)$ be the standard ordered basis of $V := K^2$. Consider the matrix representation

$$\begin{array}{rccc} R: & G & \longrightarrow & \operatorname{GL}_2(K) \\ & g^b & \mapsto & \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}. \end{array}$$

- (a) Prove that $W := Ke_1$ is *G*-invariant and deduce that *R* is reducible.
- (b) Prove that there is no direct sum decomposition of *V* into irreducible *G*-invariant subspaces.