D Integrality and Algebraic Integers

We recall/introduce here some notions of the *Commutative Algebra* lecture on integrality of ring elements. However, we are essentially interested in the field of complex numbers and its subring \mathbb{Z} .

Definition D.1 (integral element, algebraic integer)

Let *A* be a subring of a commutative ring *B*.

- (a) An element $b \in B$ is said to be **integral** over A if b is a root of monic polynomial $f \in A[X]$, that is f(b) = 0 and f is a polynomial of the form $X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ with $a_{n-1}, \ldots, a_0 \in A$. If all the elements of B are integral over A, then we say that B is **integral** over A.
- (b) If $A = \mathbb{Z}$ and $B = \mathbb{C}$, an element $b \in \mathbb{C}$ integral over \mathbb{Z} is called an **algebraic integer**.

Theorem D.2

Let $A \subseteq B$ be a subring of a commutative ring and let $b \in B$. TFAE:

- (a) *b* is integral over *A*;
- (b) the ring A[b] is finitely generated as an A-module;
- (c) there exists a subring *S* of *B* containing *A* and *b* which is finitely generated as an *A*-module.

Recall that A[b] denotes the subring of *B* generated by *A* and *b*.

Proof:

- (a) \Rightarrow (b): Let $a_0, \ldots, a_{n-1} \in A$ such that $b^n + a_{n-1}b^{n-1} + \ldots + a_1b + a_0 = 0$ (*). We prove that A[b] is generated as an *A*-module by 1, b, \ldots, b^{n-1} , i.e. $A[b] = A + Ab + \ldots + Ab^{n-1}$. Therefore it suffices to prove that $b^k \in A + Ab + \ldots + Ab^{n-1} =: C$ for every $k \ge n$. We proceed by induction on k:
 - If k = n, then (*) yields $b^n = -a_{n-1}b^{n-1} \ldots a_1b a_0 \in C$.
 - · If k > n, then we may assume that $b^n, \ldots, b^{k-1} \in C$ by the induction hypothesis. Hence multiplying (*) by b^{k-n} yields

$$b^{k} = -a_{n-1}b^{k-1} - \ldots - a_{1}b^{k-n+1} - a_{0}b^{k-n} \in C$$

because $a_{n-1}, ..., a_0, b^{k-1}, ..., b^{k-n} \in C$.

(b) \Rightarrow (c): Set S := A[b].

(c) \Rightarrow (a): By assumption $A[b] \subseteq S = Ax_1 + \ldots + Ax_n$, where $x_1, \ldots, x_n \in B$, $n \in \mathbb{Z}_{>0}$. Thus for each $1 \leq i \leq n$ we have $bx_i = \sum_{j=1}^n a_{ij}x_j$ for certain $a_{ij} \in A$. Set $x := (x_1, \ldots, x_n)^{\text{Tr}}$ and consider the $n \times n$ -matrix $M := bI_n - (a_{ij})_{ij} \in M_n(S)$. Hence

$$Mx = 0 \Rightarrow \operatorname{adj}(M)Mx = 0$$
,

where adj(M) is the adjugate matrix of M (i.e. the transpose of its cofactor matrix). By the properties of the determinant (GDM), we have

$$\operatorname{adj}(M)M = \operatorname{det}(M)I_n$$
,

Hence $\det(M)x_i = 0$ for each $1 \le i \le n$, and so $\det(M)s = 0$ for every $s \in S$. As $1 \in S$ this gives us $\det(M) = 0$. It now follows from the definition of M that b is a root of the monic polynomial $\det(X \cdot I_n - (a_{ij})_{ij}) \in A[X]$, thus integral over A.

Corollary D.3

Let $A \subseteq B$ be a subring of a commutative ring. Then $\{b \in B \mid b \text{ integral over } A\}$ is a subring of B.

Proof: We need to prove that if $b, c \in B$ are integral over A, then so are b + c and $b \cdot c$. By Theorem D.2(b) and its proof both $A[b] = A + Ab + ... + Ab^{n-1}$ and $A[c] = A + Ac + ... + Ac^{m-1}$ for some $n, m \in \mathbb{Z}_{>0}$. Thus S := A[b, c] is finitely generated as an A-module by $\{b^i c^j \mid 0 \le i \le n, 0 \le j \le m\}$. Theorem D.2(c) now yields that b + c and $b \cdot c$ are integral over A because they belong to S.

Example 13

All the elements of the ring $\mathbb{Z}[i]$ of Gaussian intergers are integral over \mathbb{Z} , hence algebraic integers, since *i* is a root of $X^2 + 1 \in \mathbb{Z}[X]$.

Lemma D.4

If $b \in \mathbb{Q}$ is integral over \mathbb{Z} , then $b \in \mathbb{Z}$.

Proof: We may write $b = \frac{c}{d}$, where c and d are coprime integers and $d \ge 1$. By the hypothesis there exist $a_0, \ldots, a_{n-1} \in \mathbb{Z}$ such that

$$\frac{c^n}{d^n} + a_{n-1}\frac{c^{n-1}}{d^{n-1}} + \ldots + a_1\frac{c}{d} + a_0 = 0$$
,

hence

$$c^{n} + \underbrace{da_{n-1}c^{n-1} + \ldots + d^{n-1}a_{1} + d^{n}a_{0}}_{\text{divisible by } d} = 0.$$

Thus $d \mid c^n$. As gcd(c, d) = 1 and $d \ge 1$ this is only possible if d = 1, and we deduce that $b \in \mathbb{Z}$.

Clearly, the aforementionnend lemma can be generalised to integral domains (=Integritätsring) and their field of fractions.

62