D Integrality and Algebraic Integers

We recall/introduce here some notions of the Commutative Algebra lecture on integrality of ring elements. However, we are essentially interested in the field of complex numbers and its subring \mathbb{Z}.

Definition D. 1 (integral element, algebraic integer)

Let A be a subring of a commutative ring B.
(a) An element $b \in B$ is said to be integral over A if b is a root of monic polynomial $f \in A[X]$, that is $f(b)=0$ and f is a polynomial of the form $X^{n}+a_{n-1} X^{n-1}+\ldots+a_{1} X+a_{0}$ with $a_{n-1}, \ldots, a_{0} \in A$. If all the elements of B are integral over A, then we say that B is integral over A.
(b) If $A=\mathbb{Z}$ and $B=\mathbb{C}$, an element $b \in \mathbb{C}$ integral over \mathbb{Z} is called an algebraic integer.

Theorem D. 2

Let $A \subseteq B$ be a subring of a commutative ring and let $b \in B$. TFAE:
(a) b is integral over A;
(b) the ring $A[b]$ is finitely generated as an A-module;
(c) there exists a subring S of B containing A and b which is finitely generated as an A-module.

Recall that $A[b]$ denotes the subring of B generated by A and b.

Proof:

(a) \Rightarrow (b): Let $a_{0}, \ldots, a_{n-1} \in A$ such that $b^{n}+a_{n-1} b^{n-1}+\ldots+a_{1} b+a_{0}=0 \quad(*)$. We prove that $A[b]$ is generated as an A-module by $1, b, \ldots, b^{n-1}$, i.e. $A[b]=A+A b+\ldots+A b^{n-1}$. Therefore it suffices to prove that $b^{k} \in A+A b+\ldots+A b^{n-1}=: C$ for every $k \geqslant n$. We proceed by induction on k :

- If $k=n$, then (*) yields $b^{n}=-a_{n-1} b^{n-1}-\ldots-a_{1} b-a_{0} \in C$.
- If $k>n$, then we may assume that $b^{n}, \ldots, b^{k-1} \in C$ by the induction hypothesis. Hence multiplying (*) by b^{k-n} yields

$$
b^{k}=-a_{n-1} b^{k-1}-\ldots-a_{1} b^{k-n+1}-a_{0} b^{k-n} \in C
$$

because $a_{n-1}, \ldots, a_{0}, b^{k-1}, \ldots, b^{k-n} \in C$.
$(\mathrm{b}) \Rightarrow(\mathrm{c}):$ Set $S:=A[b]$.
(c) \Rightarrow (a): By assumption $A[b] \subseteq S=A x_{1}+\ldots+A x_{n}$, where $x_{1}, \ldots, x_{n} \in B, n \in \mathbb{Z}_{>0}$. Thus for each $1 \leqslant i \leqslant n$ we have $b x_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$ for certain $a_{i j} \in A$. Set $x:=\left(x_{1}, \ldots, x_{n}\right)^{\operatorname{Tr}}$ and consider the $n \times n$-matrix $M:=b I_{n}-\left(a_{i j}\right)_{i j} \in M_{n}(S)$. Hence

$$
M x=0 \quad \Rightarrow \quad \operatorname{adj}(M) M x=0
$$

where $\operatorname{adj}(M)$ is the adjugate matrix of M (i.e. the transpose of its cofactor matrix). By the properties of the determinant (GDM), we have

$$
\operatorname{adj}(\mathcal{M}) \mathcal{M}=\operatorname{det}(\mathcal{M}) I_{n}
$$

Hence $\operatorname{det}(\mathcal{M}) x_{i}=0$ for each $1 \leqslant i \leqslant n$, and so $\operatorname{det}(\mathcal{M}) s=0$ for every $s \in S$. As $1 \in S$ this gives us $\operatorname{det}(M)=0$. It now follows from the definition of M that b is a root of the monic polynomial $\operatorname{det}\left(X \cdot I_{n}-\left(a_{i j}\right)_{i j}\right) \in A[X]$, thus integral over A.

Corollary D. 3

Let $A \subseteq B$ be a subring of a commutative ring. Then $\{b \in B \mid b$ integral over $A\}$ is a subring of B.
Proof: We need to prove that if $b, c \in B$ are integral over A, then so are $b+c$ and $b \cdot c$. By Theorem D.2(b) and its proof both $A[b]=A+A b+\ldots+A b^{n-1}$ and $A[c]=A+A c+\ldots+A c^{m-1}$ for some $n, m \in \mathbb{Z}_{>0}$. Thus $S:=A[b, c]$ is finitely generated as an A-module by $\left\{b^{i} c^{j} \mid 0 \leqslant i \leqslant n, 0 \leqslant j \leqslant m\right\}$. Theorem D.2(c) now yields that $b+c$ and $b \cdot c$ are integral over A because they belong to S.

Example 13

All the elements of the ring $\mathbb{Z}[i]$ of Gaussian intergers are integral over \mathbb{Z}, hence algebraic integers, since i is a root of $X^{2}+1 \in \mathbb{Z}[X]$.

Lemma D. 4

If $b \in \mathbb{Q}$ is integral over \mathbb{Z}, then $b \in \mathbb{Z}$.
Proof: We may write $b=\frac{c}{d}$, where c and d are coprime integers and $d \geqslant 1$. By the hypothesis there exist $a_{0}, \ldots, a_{n-1} \in \mathbb{Z}$ such that

$$
\frac{c^{n}}{d^{n}}+a_{n-1} \frac{c^{n-1}}{d^{n-1}}+\ldots+a_{1} \frac{c}{d}+a_{0}=0
$$

hence

$$
c^{n}+\underbrace{d a_{n-1} c^{n-1}+\ldots+d^{n-1} a_{1}+d^{n} a_{0}}_{\text {divisible by } d}=0 .
$$

Thus $d \mid c^{n}$. As $\operatorname{gcd}(c, d)=1$ and $d \geqslant 1$ this is only possible if $d=1$, and we deduce that $b \in \mathbb{Z}$.
Clearly, the aforementionnend lemma can be generalised to integral domains (=Integritätsring) and their field of fractions.

