C Tensor Products of Vector Spaces

Throughout this section, we assume that K is a field.

Definition C. 1 (Tensor product of vector spaces)

Let V, W be two finite-dimensional K-vector spaces with bases $B_{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $B_{W}=$ $\left\{w_{1}, \ldots, w_{m}\right\}\left(m, n \in \mathbb{Z}_{\geqslant 0}\right)$ respectively. The tensor product of V and W (balanced) over K is by definition the $(n \cdot m)$-dimensional K-vector space

$$
V \otimes_{K} W
$$

with basis $B_{V \otimes K} W=\left\{v_{i} \otimes w_{j} \mid 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m\right\}$.
In this definition, you should understand the symbole " $v_{i} \otimes w_{j}$ " as an element that depends on both v_{i} and w_{j}. The symbole " \otimes " itself does not have any hidden meaning, it is simply a piece of notation: we may as well write something like $x\left(v_{i}, w_{j}\right)$ instead of " $v_{i} \otimes w_{j}$ ", but we have chosen to write " $v_{i} \otimes w_{j}$ ".

Properties C. 2
(a) An arbitrary element of $V \otimes_{K} W$ has the form

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i j}\left(v_{i} \otimes w_{j}\right) \quad \text { with }\left\{\lambda_{i j}\right\}_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant \leqslant \leqslant}} \subseteq K
$$

(b) The binary operation

$$
\begin{array}{ccc}
B_{V} \times B_{W} & \longrightarrow & B_{V \otimes \kappa} w \\
\left(v_{i}, w_{j}\right) & \mapsto & v_{i} \otimes w_{j}
\end{array}
$$

can be extended by \mathbb{C}-linearity to

$$
\begin{aligned}
& -\otimes-: \quad V \times W \quad \longrightarrow \quad V \otimes_{K} W \\
& \left(v=\sum_{i=1}^{n} \lambda_{i} v_{i}, w=\sum_{i=1}^{n} \mu_{j} w_{j}\right) \quad \mapsto \quad v \otimes w=\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i} \mu_{j}\left(v_{i} \otimes w_{j}\right) .
\end{aligned}
$$

It follows that $\forall v \in V, w \in W, \lambda \in K$,

$$
v \otimes(\lambda w)=(\lambda v) \otimes w=\lambda(v \otimes w),
$$

and $\forall x_{1}, \ldots, x_{r} \in V, y_{1}, \ldots y_{s} \in W$,

$$
\left(\sum_{i=1}^{r} x_{i}\right) \otimes\left(\sum_{j=1}^{s} y_{j}\right)=\sum_{i=1}^{r} \sum_{j=1}^{s} x_{i} \otimes y_{j} .
$$

Thus any element of $V \otimes_{K} W$ may also be written as a K-linear combination of elements of the form $v \otimes w$ with $v \in V, w \in W$. In other words $\{v \otimes w \mid v \in V, w \in W\}$ generates $V \otimes K W$ (although it is not a K-basis).
(c) Up to isomorphism $V \otimes_{K} W$ is independent of the choice of the K-bases of V and W.

Definition C. 3 (Kronecker product)

If $A=\left(A_{i j}\right)_{i j} \in M_{n}(K)$ and $B=\left(B_{r s}\right)_{r s} \in \mathcal{M}_{m}(K)$ are two square matrices, then their Kronecker product (or tensor product) is the matrix

$$
A \otimes B=\left[\begin{array}{ccc}
A_{11} B & \cdots \cdots & A_{1 n} B \\
\vdots & & \vdots \\
A_{n 1} B & \cdots \cdots & A_{n n} B
\end{array}\right] \in M_{n \cdot m}(K)
$$

Notice that it is clear from the above definition that $\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B)$.

Example 9

E.g. the tensor product of two 2×2-matrices is of the form

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \otimes\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{cccc}
a e & a f & b e & b f \\
a g & a h & b g & b h \\
c e & c f & d e & d f \\
c g & c h & d g & d h
\end{array}\right] \in M_{4}(K)
$$

Lemma-Definition C. 4 (Tensor product of K-endomorphisms)

If $f_{1}: V \longrightarrow V$ and $f_{2}: W \longrightarrow W$ are two endomorphisms of finite-dimensional K-vector spaces V and W, then the tensor product of f_{1} and f_{2} is the K-endomorphism $f_{1} \otimes f_{2}$ of $V \otimes_{K} W$ defined by

$$
\begin{array}{rlll}
f_{1} \otimes f_{2}: \quad & V \otimes K W & \longrightarrow \otimes_{K} W \\
v \otimes w & \mapsto & \left(f_{1} \otimes f_{2}\right)(v \otimes w):=f_{1}(v) \otimes f_{2}(w) .
\end{array}
$$

Furthermore, $\operatorname{Tr}\left(f_{1} \otimes f_{2}\right)=\operatorname{Tr}\left(f_{1}\right) \operatorname{Tr}\left(f_{2}\right)$.
Proof: It is straightforward to check that $f_{1} \otimes f_{2}$ is K-linear. Then, choosing ordered bases $B_{V}=\left(v_{1}, \ldots, v_{n}\right)$ and $B_{W}=\left(w_{1}, \ldots, w_{m}\right)$ of V and W respectively, it is straightforward from the definitions to check that the matrix of $f_{1} \otimes f_{2}$ w.r.t. the basis $B_{V \otimes_{k} w}$, ordered w.r.t. the lexicographical order, is the Kronecker product of the matrices of f_{1} w.r.t. B_{V} and of f_{2} w.r.t. to B_{W}. The trace formula follows.

