Index of Notation

General symbols	
\mathbb{C}	field of complex numbers
\mathbb{F}_q	finite field with q elements
i	$\sqrt{-1}$ in $\mathbb C$
$Id_{\mathcal{M}}$	identity map on the set M
$\operatorname{Im}(f)$	image of the map f
$\ker(\varphi)$	kernel of the morphism $arphi$
N	the natural numbers without 0
\mathbb{N}_0	the natural numbers with 0
P	the prime numbers in $\mathbb Z$
Q	field of rational numbers
\mathbb{R}	field of real numbers
\mathbb{Z}	ring of integer numbers
$\mathbb{Z}_{\geq a}, \mathbb{Z}_{\geq a}, \mathbb{Z}_{\leq a}, \mathbb{Z}_{\leq a}$	$\{m \in \mathbb{Z} \mid m \ge a \text{ (resp. } m > a, m \ge a, m < a)\}$
$ \hat{X} $	cardinality of the set X
δ_{ii}	Kronecker's delta
	union
ĬĬ	disjoint union
ñ	intersection
$\sum_{i=1}^{n}$	summation symbol
<u>П</u> , ×	cartesian product
\oplus	direct sum
\otimes	tensor product
Ø	empty set
A	for all
Ξ	there exists
\cong	isomorphism
\overline{a}	complex conjugate of $a \in \mathbb{C}$
$a \mid b$, $a \nmid b$	a divides b , a does not divide b
$f _S$	restriction of the map f to the subset S
Group theory	
A_n	alternating group on <i>n</i> letters
C_m	cyclic group of order <i>m</i> in multiplicative notation
$C_G(x)$	centraliser of x in G
C(G)	set of conjugacy classes of G
D_{2n}	dihedral group of order 2n
$Fix_{\chi}(g)$	set of fixed points of g on X

[*G*, *G*] or *G*′ commutator subgroup of GG/Nquotient group G modulo N $GL_n(K)$ general linear group over K $H \leq G, H < G$ H is a subgroup of G, resp. a proper subgroup $N \leq G$ N is a normal subgroup G $N_G(H)$ normaliser of H in G $PGL_n(K)$ projective linear group over Kquaternion group of order 8 Q_8 symmetric group on *n* letters S_n $SL_n(K)$ special linear group over K $\operatorname{Syl}_p(G)$ set of Sylow *p*-subgroups of the group *G* Z(G)centre of the group G $\mathbb{Z}/m\mathbb{Z}$ cyclic group of order *m* in additive notation order of the group G|G||G:H|index of H in Gconjugacy class of x[x]commutator of q and h[g, h]cyclic group generated by q $\langle q \rangle$ $\langle g \mid g^m = 1 \rangle$ cyclic group of order m generated by q

Rings and linear algebra R[X]

 R^{\times} char(K) det dim_K End_K(V) GL(V)

 $\langle x_1, \cdots, x_n \rangle_K$ $M_{n \times m}(K)$ $M_n(K)$ \overline{K} Tr $W \leq V$ $\{e_1, \cdots, e_n\}$ (e_1, \cdots, e_n)

Representations and characters

 C_{1}, \dots, C_{r} $\widehat{C}_{1}, \dots, \widehat{C}_{r}$ Cl(G) $Inf_{G/N}^{G}$ $Ind_{H}^{G}, \uparrow_{H}^{G}$ $Irr(G) = \{\chi_{1}, \dots, \chi_{r}\}$ $ker(\chi)$ $\mathcal{F}(G, K)$ KG

ring of polynomials in an indeterminate X over the ring Rgroup of units of the ring Rcharacteristic of the field Kdeterminant of a matrix/linear transformation *K*-dimension endomorphism ring of the K-vector space Vset of invertible linear transformations of the vector space V*K*-linear span of the set $\{x_1, \dots, x_n\}$ ring of $n \times m$ -matrices with coefficients in Kring of $n \times n$ -matrices with coefficients in Kalgebraic closure of the field Ktrace of a matrix/linear transformation W is a K-subspace of V a basis of K^n an ordered basis of K^n

the conjugacy classes of Gthe class sums of G \mathbb{C} -vector space of class functions on Ginflation from G/N to Ginduction from H to Gset of irreducible characters of Gkernel of the characters of χ space of K-valued functions of Ggroup algebra of G over the field K

$\operatorname{Res}^G_H, \downarrow^G_H$	restriction from G to H
Z(KG)	center of KG
$Z(\chi)$	center of the character χ
$ ho \sim ho'$	ho is equivalent to $ ho'$
$ ho_{ m reg}$	the regular representation of G
ρ_V	representation associated to the G -vector space V
Xreg	regular character of G
X _V	character of the G -vector space V
ω_1,\ldots,ω_r	the central characters of G
$\langle -, - \rangle_G$	scalar product on $\mathcal{Cl}(G)$
1 _G	the trivial character of G

Greek Alphabet

lower-case letter	upper-case letter	Name
α	А	alpha
β	В	beta
γ	Г	gamma
δ	Δ	delta
ε, ε	E	epsilon
ζ	Ζ	zeta
η	Н	eta
θ	Θ	theta
l		iota
К	K	kappa
λ	Λ	lambda
μ	М	mu
V	Ν	nu
ξ	Ξ	xi
0	0	omicron
π, ω	Π	pi
ρ, ϱ	Р	rho
σ, ς	Σ	sigma
τ	Т	tau
υ	Y	upsilon
ϕ , $arphi$	φ	phi
X	X	chi
ψ	Ψ	psi
ω	Ω	omega