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20 Clifford Theory

Clifford theory is a generic term for a series of results relating the representation / character theory of
a given group G to that of a normal subgroup N < G through induction and restriction.

Definition 20.1 (Conjugate class function | inertia group)
Let H < G, let ¢ € Cl(H) and let g € G.

(a) We define 99 € Cl(gHg™") to be the class function on gHg~" defined by

1 1

— C.x— (g™ xg).

Yp:gHg™

(b) The subgroup Zg(¢) :={g € G| % = ¢} < G is called the inertia group of ¢ in G.
Exercise 20.2 (Exercise 26, Sheet 7)
With the notation of Definition 20.1, prove that:

(@) 9 is indeed a class function on gHg~';

(b) Za(p) < G and H < () < No(H);

(c) for g, h e G we have % = "9 < h~'geIg(p) < gZa(p) = hIc(p);

(d) if p: H— GL(V) is a C-representation of H with character y, then
Pp:gHg™ — GL(V),x — p(g~"xq)

1

is C-representation of gHg ™" with character 9 and 9 (1) = x(1);

(e) if J < H then (e |!!) = (%)ljﬂff.

Lemma 20.3
(@) t H< G, ¢, eCl(H) and g € G, then {9, 9l,ll>gHg,1 ={@, YOn.
(b) f NG and g € G, then we have ¢ e Irr(N) < 9 € Irr(N).

(c) If N< G and ¢ is a character of N, then (¢15) 9= [Zc(y) : N| 29e[G/Te(w)] P -

Proof: (a) Clearly

1

(90, W) g DT p(x) Ap(x)

—1
lgHg ™"l 2o,
‘] -~ -
= > e(g7'xg)d(gxg)
xegHg—1
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(b) As N <G, gNg=' = N. Thus, if ¢ € Irr(N), then on the one hand %) is also a character of
N by Exercise 20.2(d), and on the other hand it follows from (a) that {9, )\ = (P, YN = 1.

Hence 9 is an irreducible character of N. Therefore, if %) € Irr(N), then ¢ = 97 (%) € Irr(N),
as required.

(c) If n e N then so does g~'ng ¥V g € G, hence

9L (n) — 1 (g 94(n |IG )| Ii(n).
NN N |/\/| 2 INI g;G INI gE[G;c(#U)] "

Notation 20.4
Given N < G and ¢ € Irr(N), we set Irr(G | ) := {x € Irr(G) | { |G, ¢y # 0}

Theorem 20.5 (CLIFFORD THEORY)

Let NI G. Let x € Irr(G), ¢ € Irr(N) and set T := Zg(¢). Then the following assertions hold.

(a) If ¢ is a constituent of)(i,(\;/, then

xli=e 9y,
ge[G/Ic(¢)]

where e = (¢ 1S, Uon = G W16 € Zo is called the ramification index of y in N (or of
¢ in G). In particular, all the constituents of Xlﬁ have the same degree.

(b) Induction from Z = Z5(¢) to G induces a bijection

Indg: Irr(Z | ) —> Irr(G | )
n — 1

preserving ramification indices, i.e. (n]%, Yy = (M1SL%, YN = e.

Proof:

(a) By Frobenius reciprocity, {x, ¥ 1%>c = (¢ 1S )y # 0. Thus x is a constituent of ¢ 1§ and
therefore Xl/% is a constituent of zJJTf,l,(i.

Now, if n € Irr(N) is an arbitrary constituent of x | (i.e. {x 1S, n)n # 0) then by the above, we
have

WAL N = Ol oy > 0.

Moroever, by Lemma 20.3(c) the constituents of (154 are preciely { % | g € [G/Zc(¢)]}. Hence
n is G-conjugate to L[/. Furthermore, for every g € G we have

<Xigllg¢>N |N| ZX = ZX 1h71g)
heN he/\/
Cl(G) _
X€: |N|ZX 1hg 1h 1g)
heN
s:=g—'hgeN

7= Z <XlN Yon=e.

|N| seN

Therefore, every G-conjugate 9¢s (g € [G/Zc()]) of ¢ occurs as a constituent of x |§ with the
same multiplicity e. The claim about the degrees is then clear as 9¢(1) = (1) Vg € G.
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(b) Claim 1: nelrr(Z | ¢) = ntéelrr(Gly).

Since T = I7(¢), (a) implies that n %= e’ with ' = {(n |, Y)p = % > 0. Now, let y € Irr(G)

be a constituent of n1%. By Frobenius Reciprocity we have

0 One =l mr .

It follows that n|% is a constituent of x | ¢|% and

e =l Won = QLR Won = (0l oy = € > 0,

hence x € Irr(G|¢). Moreover, by (a) we have e = (x|, 9¢)n = € for each g € G. Therefore,

x(=e 31 94(1) L elG: TIy(1) = |G T|Y(1) = |G : T|n(1) = n1¢ (1) = x(1).
ge[G/T]

Thus e = €/, n1%= x € Irr(G), and therefore n1%e Irr(G|y).

Claim 2: x e lrr(G | ) = I nelr(T | ) such that (x |S, n); # 0.

Again by (a), as x € Irr(G | ¢), we have x I{= e cg/r) I, where e = {x IR, ¢ € Zxo.
Therefore, there exists n € Irr(Z) such that

LS myr # 0 # (i, g

because x |$= x |%l%, so in particular n e Irr(Z | ). Hence existence holds and it remains to see
that uniqueness holds. Again by Frobenius reciprocity we have 0 # {x,n1¢).. By Claim 1 this
forces x = n1% and n|%= ey, so e is also the ramification index of ¢ in T.

Now, write x | = 2eln(T) GAA = 2z, @A+ ayn with a, > 0 for each A € Irr(Z) and a, > 0. It
follows that

(@ =Dnlk+ 2 wrli= xI& - nlk =e > 9

i S em W =ed 9elG/TI\[1]
Since ¢ does not occur in this sum, but occurs in n|%, the only possibility is a, = 1 and A ¢ Irr(Z|¢)
for A # n. Thus n is uniquely determined as the only constituent of y | in Irr(Z | ¢).

Finally, Claims 1 and 2 prove that Ind¥ : Irr(Z | ¢) — Irr(G | ¢), n — 01§ is well-defined and
bijective, and the proof of Claim 2 shows that the ramification indices are preserved. u

Example 13 (Normal subgroups of index 2)
Let N < G be a subgroup of index |G : N| =2 (= N < G) and let x € Irr(G), then either

(1) Xl/(\;/E Irr(N), or
(2) x1$=¢+ 9y fora gelrr(N) and a g € G\N.

Indeed, let ¢y € Irr(N) be a constituent of x |$. Since |G : N| = 2, we have Zg(y) € {N, G}.
Theorem 20.5 yields the following:

- Zg(y) = Nthen Irr(Za () | ¢) = {¢} and Y 1§ = x, so that e = 1 and we get x | §= y+9¢
for any g € G\N.

- f Zg(y) = G then G/Zg(y) = {1}, so that
xly=ey  withe=ClR oon = OGP R06-
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Moroever, by Lemma 20.3(c),
YIRIR=Zc(W) =Nl D) W =24

9eG/Ia(¢)

Hence
20(1) = IR (D =2 xR (1) =x() =eg(1) = e<2.
Were e = 2 then we would have 2¢s(1) = 1§ (1), hence x = /15 and thus
1= P1R06 = IR Pon —e =2

a contradiction. Whence e = 1, which implies that x | § € Irr(N). Moreover, 1= x + x' for
some x’ € Irr(G) such that ' # x.

The following consequence of Clifford’s theorem due to N. Itd provides us with a generalisation of the
fact that the degrees of the irreducible characters divide the order of the group.

Theorem 20.6 (IT6)
Let A< G be an abelian subgroup of G and let x € Irr(G). Then the following assertions hold:

(@) x(1) <|G:A

; and

(b) if A< G, then x(1)]|G : Al

Proof:

(a) Exercise 27, Sheet 7.
(b) Let ¢ € Irr(A) be a constituent of x |§, so that in other words x € Irr(G | ¢). By Theorem 20.5(b)

there exists n € Irr(Zg () | ) such that y = ”Tzcc(q;) and nlﬁcw): ey (proof of Claim 2). Now,
as A is abelian, all the irreducible characters of A have degree 1 and for each x € A, ¢(x) is an
o(x)-th root of unity. Hence ¥ x € A we have

()] = 0152 ()] = leg()| = elg(x)| =e-1=e=n(1) = AcZ(n).
Therefore, by Remark 17.5, we have

(| Ze() : Z)l | Za(w) : A
and since x = n1% ) it follows that

x(1) =[G :Za(¢)n(1) ‘ |G Ta()] - Zc() : Al = |G- Al m

21 The Theorem of Gallagher

In the context of Clifford theory (Theorem 20.5) we understand that irreducibility of characters is pre-
served by induction from Z5(¢) to G. Thus we need to understand induction of characters from N to
Zc(y), in particular what if G = Z(¢). What can be said about Irr(G | ¢)?
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Lemma 21.1
Let N < G and let ¢ € Irr(N) such that Z¢(¢) = G. Then
Y= D, exx
Xx€Elrr(G)

where e, = <Xl/c\;/ Yyn is the ramification index of x in N; in particular

D e =1G: NI
Xx€Elrr(G)

Proof: Write ¢/15= 2yeln(G) x X With suitable a, = (x, Y1) By Frobenius reciprocity, a, # 0 if and
only if x € Irr(G | ). But by Theorem 20.5: if x € Irr(G|y), then x |$= ey, so that

€x =<Xl/GVr¢’>N :<Xr¢’Tg>G =0y

Therefore,
GENG() =R ()= D) ax()= D ex()= >, epg(l)=y¢(1) ey
Xx€Elrr(G) Xx€Elrr(G) Xx€Elrr(G) Xx€Elrr(G)
and it follows that [G : N| =3 . ) €5 [ ]

Therefore the multiplicities {e, },eir(G) behave like the irreducible character degrees of the factor group
G/N. This is not a coincidence in many cases.

Definition 21.2 (Extension of a character)

Let N < G and x € Irr(G) such that ¢ := x | is irreducible. Then we say that |/ extends to G,
and y is an extension of (.

Exercise 21.3 (Exercise 28, Sheet 7)
Let N < G and x € Irr(G). Prove that

Xl/(\;/Tg/: lnfg/N(Xreg) "X

where )., is the reqular character of G/N.

Theorem 21.4 (GALLAGHER)

Let N < G and let x € Irr(G) such that ¢ := x | € Irr(N). Then

PrG= 31 A0 InfE () - x,

Aelrr(G/N)

where the characters {Infg/N()\) -x | A€ lrr(G/N)} of G are pairwise distinct and irreducible.

Proof: By Exercise 21.3 we have ¢/1§= Infg/N(Xreg) - X, where .., denotes the reqular character of G/N.
Recall that by Theorem 10.3, Xoq = X 3cirr(c/n) A(1) A, so that we have

Y= >, A()Infg (A - x.

Aelrr(G/N)
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Now, by Lemma 21.1, we have

G:Nl= ) e =W dte = D) AMuMnfgnA) - X, InfEn (1) - X)g
X€lrr(G) Apelrr(G/N)

> > A1) =GN
Aelrr(G/N)

Hence equality holds throughout. This proves that
(nfE/n(A) - X I n (1) - X) = B

By Erercise 13.4, Infg/N(/\) -x are characters of G and hence the characters {Infg/N(A) x| Aelrr(G/N)}
are irreducible and pairwise distinct, as claimed. ]

Therefore, given ¢ € Irr(N) which extends to x € Irr(G), we get Infg/N()\) -x (A€ lrr(G/N)) as further
irreducible characters.

Example 14
Let N < G with |G: N| =2 (= N<G) and let ¢ € Irr(N). We saw:
- Zg(¢) = N then Y15e Irr(G);

- if Zg(¢) = G then | extends to some y € Irr(G) and Y = x + x’ with ¥’ € Irr(G)\{x}. It
follows that x’ = x - sign, where sign is the inflation of the sign character of G/N =~ &, to G.




