20 Clifford Theory

Clifford theory is a generic term for a series of results relating the representation / character theory of a given group *G* to that of a normal subgroup $N \trianglelefteq G$ through induction and restriction.

Definition 20.1 (*Conjugate class function / inertia group***)**

Let $H \le G$, let $\varphi \in \mathcal{C}l(H)$ and let $q \in G$. (a) We define ${}^g\varphi \in Cl(gHg^{-1})$ to be the class function on gHg^{-1} defined by $^g\varphi$: $gHg^{-1} \longrightarrow \mathbb{C}$, $x \mapsto \varphi(g^{-1}xg)$.

(b) The subgroup $\mathcal{I}_G(\varphi) := \{ g \in G \mid {}^g \varphi = \varphi \} \leqslant G$ is called the inertia group of φ in G .

Exercise 20.2 (*Exercise 26, Sheet 7***)**

With the notation of Definition 20.1, prove that:

- (a) ${}^g\varphi$ is indeed a class function on gHg^{-1} ;
- (b) $\mathcal{I}_G(\varphi) \leq G$ and $H \leq \mathcal{I}_G(\varphi) \leq N_G(H)$;
- (c) for $g, h \in G$ we have ${}^g \varphi = {}^h \varphi \iff h^{-1}g \in \mathcal{I}_G(\varphi) \iff g\mathcal{I}_G(\varphi) = h\mathcal{I}_G(\varphi);$

(d) if $\rho : H \longrightarrow GL(V)$ is a *C*-representation of *H* with character *χ*, then

$$
{}^g \rho : g H g^{-1} \longrightarrow GL(V), x \mapsto \rho(g^{-1} x g)
$$

is C-representation of gHg^{-1} with character $g\chi$ and $g\chi(1) = \chi(1)$;

(e) if $J \le H$ then ${}^g(\varphi \downarrow_f^H) = ({}^g\varphi) \downarrow_{gJg^{-1}}^{gHg^{-1}}$.

Lemma 20.3

- (a) If $H \leqslant G$, φ , $\psi \in Cl(H)$ and $g \in G$, then $\langle \varphi, \varphi, \psi \rangle_{gHg^{-1}} = \langle \varphi, \psi \rangle_H$.
- (b) If $N \trianglelefteq G$ and $g \in G$, then we have $\psi \in \text{Irr}(N) \iff g\psi \in \text{Irr}(N)$.
- (c) If $N \trianglelefteq G$ and ψ is a character of N , then $(\psi \uparrow_N^G) \downarrow_N^G = |\mathcal{I}_G(\psi):N| \sum_{g \in [G/\mathcal{I}_G(\psi)]} g \psi$.

Proof: (a) Clearly

$$
\langle \, ^g\varphi, \, ^g\psi \rangle_{gHg^{-1}} = \frac{1}{|gHg^{-1}|} \sum_{x \in gHg^{-1}} {}^g\varphi(x) \overline{^g\psi(x)}
$$

$$
= \frac{1}{|H|} \sum_{x \in gHg^{-1}} \varphi(g^{-1}xg) \overline{\psi(g^{-1}xg)}
$$

$$
^{g:=\frac{g^{-1}xg}}{\frac{1}{|H|}} \sum_{y \in H} \varphi(y) \overline{\psi(y)} = \langle \varphi, \psi \rangle_H.
$$

- (b) As $N \trianglelefteq G$, $qNq^{-1} = N$. Thus, if $\psi \in \text{Irr}(N)$, then on the one hand $^g\psi$ is also a character of *ψ* is also a character of *N* by Exercise 20.2(d), and on the other hand it follows from (a) that $\langle \Psi, \Psi \rangle_N = \langle \Psi, \Psi \rangle_N = 1$. Hence ${}^g\psi$ is an irreducible character of *N*. Therefore, if ${}^g\psi \in \text{Irr}(N)$, then $\psi = {}^{g^{-1}}({}^g\psi) \in \text{Irr}(N)$, as required.
- (c) If $n \in \mathbb{N}$ then so does $q^{-1}nq \forall q \in G$, hence

$$
\psi \uparrow_{N}^{G} \mathcal{G}(n) = \psi \uparrow_{N}^{G}(n) = \frac{1}{|N|} \sum_{g \in G} \psi(g^{-1} n g) = \frac{1}{|N|} \sum_{g \in G} {}^{g} \psi(n) = \frac{|\mathcal{I}_{G}(\psi)|}{|N|} \sum_{g \in [G/\mathcal{I}_{G}(\psi)]} {}^{g} \psi(n).
$$

Notation 20.4

 G iven $N \trianglelefteq G$ and $\psi \in \text{Irr}(N)$, we set $\text{Irr}(G \mid \psi) := \{ \chi \in \text{Irr}(G) \mid \langle \chi \downarrow_N^G, \psi \rangle_N \neq 0 \}.$

Theorem 20.5 (Clifford Theory)

Let $N \le G$. Let $\chi \in \text{Irr}(G)$, $\psi \in \text{Irr}(N)$ and set $\mathcal{I} := \mathcal{I}_G(\psi)$. Then the following assertions hold.

(a) If ψ is a constituent of $\chi \downarrow_N^{\omega}$, then

$$
\chi \downarrow_N^G = e \sum_{g \in [G/\mathcal{I}_G(\psi)]} g \psi ,
$$

where $e = \langle \chi | \psi, \psi \rangle_N = \langle \chi, \psi \uparrow \psi \rangle_G \in \mathbb{Z}_{>0}$ is called the **ramification index** of χ in N (or of ψ in G). In particular, all the constituents of $\chi \downarrow^G_N$ have the same degree.

(b) Induction from $\mathcal{I} = \mathcal{I}_G(\psi)$ to *G* induces a bijection

$$
\operatorname{Ind}_{\mathcal{I}}^G: \operatorname{Irr}(\mathcal{I} \mid \psi) \longrightarrow \operatorname{Irr}(G \mid \psi) \eta \longrightarrow \eta \uparrow_{\mathcal{I}}^G
$$

 ρ preserving ramification indices, i.e. $\langle \eta \downarrow_N^L, \psi \rangle_N = \langle \eta \uparrow_N^L \downarrow_N^L, \psi \rangle_N = e.$

Proof :

(a) By Frobenius reciprocity, $\langle \chi, \psi \rangle^{\infty}_{0} = \langle \chi \downarrow^{\infty}_{N}, \psi \rangle^{\infty}_{N} \neq 0$. Thus χ is a constituent of $\psi \uparrow^{\infty}_{N}$ and therefore $\chi \downarrow^{\infty}_N$ is a constituent of $\psi \uparrow^{\infty}_{N^{\bullet} N^{\bullet}}$

 $\mathsf{Now}, \text{ } \mathsf{if} \text{ } \mathsf{q} \in \mathsf{Irr}(N) \text{ is an arbitrary constant of } \chi \downarrow_N^\mathsf{G} \text{ (i.e. } \langle \chi \downarrow_N^\mathsf{G}, \eta \rangle_N \neq 0 \text{)}$ then by the above, we have

$$
\langle \psi \uparrow_N^G \downarrow_N^G, \eta \rangle_N \geq \langle \chi \downarrow_N^G, \eta \rangle_N > 0.
$$

Moroever, by Lemma 20.3(c) the constituents of $\psi \uparrow_{N}^{\omega}$ are preciely { $^g \psi \mid g \in [G/L_G(\psi)]$ }. Hence *η* is *G*-conjugate to ψ . Furthermore, for every $q \in G$ we have

$$
\langle \chi \downarrow_{N}^{G} g \psi \rangle_{N} = \frac{1}{|N|} \sum_{h \in N} \chi(h)^{g} \psi(h^{-1}) = \frac{1}{|N|} \sum_{h \in N} \chi(h) \psi(g^{-1}h^{-1}g)
$$

$$
\chi \in \mathcal{C}_{\pm}^{l(G)} = \frac{1}{|N|} \sum_{h \in N} \chi(g^{-1}hg) \psi(g^{-1}h^{-1}g)
$$

$$
s := g^{-1}hg \in N = \frac{1}{|N|} \sum_{s \in N} \chi(s) \psi(s^{-1}) = \langle \chi \downarrow_{N}^{G}, \psi \rangle_{N} = e.
$$

Therefore, every *G*-conjugate $^g\psi$ (*g* ∈ [*G*/*L_G*(ψ)]) of ψ occurs as a constituent of *χ* ↓ g with the same multiplicity *e*. The claim about the degrees is then clear as $^g\psi(1) = \psi(1) \,\forall g \in G$.

(b) $\frac{\text{Claim 1: } \eta \in \text{Irr}(\mathcal{I} \mid \psi) \implies \eta \uparrow^{\omega}_{\mathcal{I}} \in \text{Irr}(G|\psi)}{\sigma}$

Since $\mathcal{I} = \mathcal{I}_{\mathcal{I}}(\psi)$, (a) implies that $\eta \downarrow_{N}^{\mathcal{I}} = e' \psi$ with $e' = \langle \eta \downarrow_{N}^{\mathcal{I}}, \psi \rangle_{N} = \frac{\eta(1)}{\psi(1)} > 0$. Now, let $\chi \in \text{Irr}(G)$ be a constituent of $\eta \uparrow_{\mathcal{I}}^{\omega}$. By Frobenius Reciprocity we have

$$
0 \neq \langle \chi, \eta \uparrow_{\mathcal{I}}^G \rangle_G = \langle \chi \downarrow_{\mathcal{I}}^G, \eta \rangle_{\mathcal{I}}.
$$

It follows that $\eta\downarrow^{\mathcal{L}}_{N}$ is a constituent of $\chi\downarrow^{\mathcal{L}}_{\mathcal{I}}\downarrow^{\mathcal{L}}_{N}$ and

$$
e := \langle \chi \downarrow_N^G, \psi \rangle_N = \langle \chi \downarrow_N^G \downarrow_N^T, \psi \rangle_N \ge \langle \eta \downarrow_N^T, \psi \rangle_N = e' > 0,
$$

 $\lambda \in \text{Irr}(G|\psi)$. Moreover, by (a) we have $e = \langle \chi \downarrow_N^G, {}^g \psi \rangle_N \geqslant e'$ for each $g \in G$. Therefore,

$$
\chi(1) = e \sum_{g \in [G/T]} \frac{g \psi(1)}{g} = e|G : \mathcal{I}| \psi(1) \geq e'|G : \mathcal{I}| \psi(1) = |G : \mathcal{I}| \eta(1) = \eta \uparrow_{\mathcal{I}}^G(1) \geq \chi(1).
$$

Thus $e = e', \eta \uparrow_{\mathcal{I}}^G = \chi \in \text{Irr}(G)$, and therefore $\eta \uparrow_{\mathcal{I}}^G \in \text{Irr}(G|\psi)$.

Claim 2: $\chi \in \text{Irr}(G \mid \psi) \Rightarrow \exists! \eta \in \text{Irr}(I \mid \psi) \text{ such that } \langle \chi \downarrow^{\sigma}_{I}, \eta \rangle_{I} \neq 0.$ Δ gain by (a), as $\chi \in \text{Irr}(G \mid \psi)$, we have $\chi \downarrow_{N}^{G} = e \sum_{g \in [G/T]} g \psi$, where $e = \langle \chi \downarrow_{N}^{G}, \psi \rangle_{N} \in \mathbb{Z}_{>0}$. Therefore, there exists $\eta \in \text{Irr}(\mathcal{I})$ such that

$$
\langle \chi \downarrow^G_{\mathcal{I}}, \eta \rangle_{\mathcal{I}} \neq 0 \neq \langle \eta \downarrow^{\mathcal{I}}_{N}, \psi \rangle_{N}
$$

because $\chi \downarrow_{N}^{\omega} = \chi \downarrow_{\mathcal{I}}^{\omega} \downarrow_{N}^{\omega}$, so in particular $\eta \in \text{Irr}(\mathcal{I} \mid \psi)$. Hence existence holds and it remains to see
that writings are holds. Again by Fasharing mainmaith we have 0, ((e.g. t⁰). By Cl that uniqueness holds. Again by Frobenius reciprocity we have 0 ≠ ⟨χ,η ῆ ^ץ /_G. By Claim 1 this
fauses is a a ^φ στεί α ι ^περαίνει του παρακτίσει του παρακτίσει του παρακτίσει π $\int \frac{d\theta}{dt}$ *f* $\int \frac{d\theta}{dt}$ and $\int \frac{d\theta}{dt} = e\psi$, so *e* is also the ramification index of ψ in *I*.

Now, write $\chi \bar{V}^G_{\mathcal{I}} = \sum_{\lambda \in \text{Irr}(\mathcal{I})} a_{\lambda} \lambda = \sum_{\lambda \neq \eta} a_{\lambda} \lambda + a_{\eta} \eta$ with $a_{\lambda} \geq 0$ for each $\lambda \in \text{Irr}(\mathcal{I})$ and $a_{\eta} > 0$. It follows that

$$
(a_{\eta}-1)\eta\downarrow_N^{\mathcal{I}}+\sum_{\lambda\neq\eta}a_{\lambda}\lambda\downarrow_N^{\mathcal{I}}=\underbrace{\chi\downarrow_N^G}_{=e\sum_{g\in [G/\mathcal{I}]}\mathfrak{q}\psi}-\underbrace{\eta\downarrow_N^{\mathcal{I}}}_{=e\psi}=e\sum_{g\in [G/\mathcal{I}]\setminus[1]}^{\mathfrak{q}}\mathfrak{q}\psi.
$$

Since ψ does not occur in this sum, but occurs in $\eta \downarrow_{N}^{\rho}$, the only possibility is $a_{\eta} = 1$ and $\lambda \notin \text{Irr}(\mathcal{I}|\psi)$ δ *h* → *ή*. Thus *η* is uniquely determined as the only constituent of $\chi \downarrow^{\alpha}_\mathcal{I}$ in Irr($\mathcal{I} \mid \psi$).

Finally, Claims 1 and 2 prove that $Ind_{\mathcal{I}}^{\omega}: Irr(\mathcal{I} \mid \psi) \longrightarrow Irr(G \mid \psi), \eta \mapsto \eta \uparrow_{\mathcal{I}}^{\omega}$ is well-defined and bijective, and the proof of Claim 2 shows that the ramification indices are preserved.

Example 13 (*Normal subgroups of index 2***)**

Let $N < G$ be a subgroup of index $|G : N| = 2 \Leftrightarrow N \lhd G$ and let $\chi \in \text{Irr}(G)$, then either

- (1) $\chi \downarrow^{\text{G}}_N \in \text{Irr}(N)$, or
- (2) $\chi \downarrow_{N}^{\infty} = \psi + {^g \psi}$ for a $\psi \in \text{Irr}(N)$ and a $g \in G \backslash N$.

Indeed, let $\psi \in \text{Irr}(N)$ be a constituent of $\chi \downarrow_N^G$. Since $|G:N| = 2$, we have $\mathcal{I}_G(\psi) \in \{N, G\}.$ Theorem 20.5 yields the following:

 $\mathcal{L} \cap \mathcal{L}(f) = \mathcal{L}(f) \cap \mathcal{L}(f)$ and $\psi \upharpoonright \mathcal{L}(f) = \mathcal{L}(f) \cap \mathcal{L}(f)$ and $\psi \upharpoonright \mathcal{L}(f) = \mathcal{L}(f) \cap \mathcal{L}(f)$ and we get $\chi \downarrow \chi = \psi + \psi \psi$ for any $g \in G\backslash N$.

 \cdot If *I*_{*G*}(ψ) = *G* then *G*/*I_G*(ψ) = {1}, so that

$$
\chi \downarrow_{N}^{G} = e\psi
$$
 with $e = \langle \chi \downarrow_{N}^{G}, \psi \rangle_{N} = \langle \chi, \psi \uparrow_{N}^{G} \rangle_{G}$.

Moroever, by Lemma 20.3(c),

$$
\psi \uparrow_{N}^{G} \downarrow_{N}^{G} = | \mathcal{I}_{G}(\psi) : N | \sum_{g \in G / \mathcal{I}_{G}(\psi)} \frac{q_{\psi}}{q_{\psi}} = 2\psi.
$$

Hence

$$
2\psi(1) = \psi \uparrow^G_{N} \downarrow^G_{N} (1) \geq \chi \downarrow^G_{N} (1) = \chi(1) = e\psi(1) \Rightarrow e \leq 2.
$$

Were $e = 2$ then we would have $2\psi(1) = \psi \uparrow_N^G (1)$, hence $\chi = \psi \uparrow_N^G$ and thus

$$
1 = \langle \chi, \psi \uparrow_N^G \rangle_G = \langle \chi \downarrow_N^G, \psi \rangle_N = e = 2
$$

a contradiction. Whence $e = 1$, which implies that $\chi \downarrow^G_N \in \text{Irr}(N)$. Moreover, $\psi \uparrow^G_N = \chi + \chi'$ for some $\chi' \in \text{Irr}(G)$ such that $\chi' \neq \chi$.

The following consequence of Clifford's theorem due to N. Itô provides us with a generalisation of the fact that the degrees of the irreducible characters divide the order of the group.

Theorem 20.6 (Itô)

Let $A \le G$ be an abelian subgroup of *G* and let $\chi \in \text{Irr}(G)$. Then the following assertions hold:

- $(a) \chi(1) \leqslant |G : A|;$ and
- (b) if $A \leq G$, then $\chi(1) | |G : A|$.

Proof :

- (a) Exercise 27 , Sheet 7.
- (b) Let $\psi \in \text{Irr}(A)$ be a constituent of $\chi \downarrow_A^G$, so that in other words $\chi \in \text{Irr}(G \mid \psi)$. By Theorem 20.5(b) there exists $η \in \text{Irr}(\mathcal{I}_G(\psi) \mid \psi)$ such that $χ = η \uparrow_{\mathcal{I}_G(\psi)}^G$ and $η \downarrow_{A}^{L_G(\psi)} = eψ$ (proof of Claim 2). Now, as *A* is abelian, all the irreducible characters of \overrightarrow{A} have degree 1 and for each $x \in A$, $\psi(x)$ is an $o(x)$ -th root of unity. Hence $\forall x \in A$ we have

$$
|\eta(x)| = |\eta \downarrow_A^{\mathcal{I}_G(\psi)}(x)| = |e\psi(x)| = e|\psi(x)| = e \cdot 1 = e = \eta(1) \quad \Rightarrow \quad A \subseteq Z(\eta).
$$

Therefore, by Remark 17.5, we have

$$
\eta(1) \left| \left| \mathcal{I}_G(\psi) : Z(\eta) \right| \right| \left| \mathcal{I}_G(\psi) : A \right|
$$

and since $\chi = \eta \uparrow_{\mathcal{I}_G(\psi)}^{\omega}$ it follows that

$$
\chi(1) = |G : \mathcal{I}_G(\psi)|\eta(1) | |G : \mathcal{I}_G(\psi)| \cdot |\mathcal{I}_G(\psi) : A| = |G : A|.
$$

21 The Theorem of Gallagher

In the context of Clifford theory (Theorem 20.5) we understand that irreducibility of characters is preserved by induction from $\mathcal{I}_G(\psi)$ to G. Thus we need to understand induction of characters from N to *I*_{*G*}(ψ), in particular what if *G* = *I*_{*G*}(ψ). What can be said about Irr(*G* | ψ)?

Lemma 21.1

Let $N \le G$ and let $\psi \in \text{Irr}(N)$ such that $\mathcal{I}_G(\psi) = G$. Then

$$
\psi\!\uparrow^G_N=\sum_{\chi\in{\operatorname{Irr}}(G)}e_\chi\,\chi
$$

where $e_\chi:=\langle \chi \downarrow_{N'}^G \psi \rangle_N$ is the ramification index of χ in N ; in particular

$$
\sum_{\chi \in \text{Irr}(G)} e_{\chi}^{2} = |G:N|.
$$

Proof: Write $\psi \uparrow_{N}^{G} = \sum_{\chi \in \text{Irr}(G)} a_{\chi} \chi$ with suitable $a_{\chi} = \langle \chi, \psi \uparrow_{N}^{G} \rangle_{G}$. By Frobenius reciprocity, $a_{\chi} \neq 0$ if and only if *χ* ∈ Irr(*G* | $ψ$). But by Theorem 20.5: if *χ* ∈ Irr(*G*| $ψ$), then $χ \downarrow_N^{\alpha} = e_\chiψ$, so that

$$
e_{\chi} = \langle \chi \downarrow_N^G, \psi \rangle_N = \langle \chi, \psi \uparrow_N^G \rangle_G = a_{\chi}.
$$

Therefore,

$$
|G:N|\psi(1) = \psi \uparrow_N^G (1) = \sum_{\chi \in \text{Irr}(G)} a_\chi \chi(1) = \sum_{\chi \in \text{Irr}(G)} e_\chi \chi(1) = \sum_{\chi \in \text{Irr}(G)} e_\chi^2 \psi(1) = \psi(1) \sum_{\chi \in \text{Irr}(G)} e_\chi^2
$$

it follows that $|G:N| = \sum_{\chi \in \text{Irr}(G)} e_\chi^2$.

and it follows that $|G:N| = \sum$ *x*∈Irr(*G*) e^2 _{*X*} *χ* .

Therefore the multiplicities $\{e_\chi\}_{\chi \in \text{Irr}(G)}$ behave like the irreducible character degrees of the factor group *G*{*N*. This is not a coincidence in many cases.

Definition 21.2 (*Extension of a character***)**

Let $N \trianglelefteq G$ and $\chi \in \text{Irr}(G)$ such that $\psi := \chi \downarrow_N^G$ is irreducible. Then we say that ψ **extends to** G , and χ is an **extension of** ψ .

Exercise 21.3 (*Exercise 28, Sheet 7***)**

Let $N \trianglelefteq G$ and $\chi \in \text{Irr}(G)$. Prove that

$$
\chi \downarrow_{N}^{G_1} \chi = \text{Inf}_{G/N}^{G}(\chi_{\text{reg}}) \cdot \chi,
$$

where χ_{req} is the regular character of G/N .

Theorem 21.4 (Gallagher)

Let $N \trianglelefteq G$ and let $\chi \in \text{Irr}(G)$ such that $\psi := \chi \downarrow_N^G \in \text{Irr}(N)$. Then

$$
\psi \uparrow_N^G = \sum_{\lambda \in \text{Irr}(G/N)} \lambda(1) \, \text{Inf}_{G/N}^G(\lambda) \cdot \chi,
$$

where the characters $\{\mathsf{Int}_{G/N}^{\omega}(\lambda)\cdot \chi\mid \lambda\in\mathsf{Irr}(G/N)\}$ of G are pairwise distinct and irreducible.

Proof: By Exercise 21.3 we have $\psi \uparrow_{N}^{\omega} = \text{Int}_{G/N}^{\omega}(X_{\text{reg}}) \cdot \chi$, where χ_{reg} denotes the regular character of G/N .
Recall that by Theorem 10.3, $\chi_{\text{reg}} = \sum_{\lambda \in \text{Irr}(G/N)} \lambda(1) \lambda$, so that we have

$$
\psi\uparrow_N^G=\sum_{\lambda\in\operatorname{Irr}(G/N)}\lambda(1)\operatorname{Inf}_{G/N}^G(\lambda)\cdot\chi.
$$

 \blacksquare

Now, by Lemma 21.1, we have

$$
|G:N| = \sum_{\chi \in \text{Irr}(G)} e_{\chi}^{2} = \langle \psi \uparrow_{N}^{G}, \psi \uparrow_{N}^{G} \rangle_{G} = \sum_{\lambda, \mu \in \text{Irr}(G/N)} \lambda(1) \mu(1) \langle \text{Inf}_{G/N}^{G}(\lambda) \cdot \chi, \text{Inf}_{G/N}^{G}(\mu) \cdot \chi \rangle_{G}
$$

$$
\geqslant \sum_{\lambda \in \text{Irr}(G/N)} \lambda(1)^{2} = |G:N|.
$$

Hence equality holds throughout. This proves that

$$
\langle \ln f_{G/N}^G(\lambda) \cdot \chi, \ln f_{G/N}^G(\mu) \cdot \chi \rangle = \delta_{\lambda \mu}.
$$

By Erercise 13.4, Inf_{G/N}(λ) · χ are characters of *G* and hence the characters {Inf_{G/N}(λ) · χ | λ ∈ Irr(*G/N*)} are irreducible and pairwise distinct, as claimed.

 T Inerefore, given $\psi \in \text{Irr}(N)$ which extends to $\chi \in \text{Irr}(G)$, we get $\text{Int}_{G/N}^{\omega}(\lambda) \cdot \chi$ (λ $\in \text{Irr}(G/N)$) as further irreducible characters.

Example 14

- Let $N < G$ with $|G : N| = 2 \implies N \leq G$ and let $\psi \in \text{Irr}(N)$. We saw:
	- \cdot if $\mathcal{I}_G(\psi) = N$ then $\psi \uparrow_N^{\omega} \in \text{Irr}(G)$;
	- \cdot if $\mathcal{I}_G(\psi) = G$ then ψ extends to some $\chi \in \text{Irr}(G)$ and $\psi^G = \chi + \chi'$ with $\chi' \in \text{Irr}(G)\setminus\{\chi\}$. It follows that $\chi' = \chi \cdot$ sign, where sign is the inflation of the sign character of $G/N \cong \mathfrak{S}_2$ to G .