20 Clifford Theory

Clifford theory is a generic term for a series of results relating the representation / character theory of a given group G to that of a normal subgroup $N \trianglelefteq G$ through induction and restriction.

Definition 20.1 (Conjugate class function / inertia group)

- Let $H \leq G$, let $\varphi \in Cl(H)$ and let $g \in G$. (a) We define ${}^{g}\varphi \in Cl(gHg^{-1})$ to be the class function on gHg^{-1} defined by ${}^{g}\varphi : gHg^{-1} \longrightarrow \mathbb{C}, x \mapsto \varphi(g^{-1}xg)$.
 - (b) The subgroup $\mathcal{I}_G(\varphi) := \{g \in G \mid g \varphi = \varphi\} \leq G$ is called the **inertia group** of φ in G.

Exercise 20.2 (Exercise 26, Sheet 7)

With the notation of Definition 20.1, prove that:

- (a) ${}^{g}\varphi$ is indeed a class function on gHg^{-1} ;
- (b) $\mathcal{I}_G(\varphi) \leq G$ and $H \leq \mathcal{I}_G(\varphi) \leq N_G(H)$;
- (c) for $g, h \in G$ we have ${}^{g}\varphi = {}^{h}\varphi \Leftrightarrow h^{-1}g \in \mathcal{I}_{G}(\varphi) \Leftrightarrow g\mathcal{I}_{G}(\varphi) = h\mathcal{I}_{G}(\varphi);$
- (d) if $\rho: H \longrightarrow GL(V)$ is a C-representation of H with character χ , then

$${}^{g}\rho: gHg^{-1} \longrightarrow \operatorname{GL}(V), x \mapsto \rho(g^{-1}xg)$$

- is C-representation of gHg^{-1} with character ${}^g\chi$ and ${}^g\chi(1) = \chi(1)$;
- (e) if $J \leq H$ then ${}^{g}(\varphi \downarrow_{J}^{H}) = ({}^{g}\varphi) \downarrow_{gJg^{-1}}^{gHg^{-1}}$.

Lemma 20.3

- (a) If $H \leq G$, $\varphi, \psi \in Cl(H)$ and $g \in G$, then $\langle {}^{g}\varphi, {}^{g}\psi \rangle_{aHa^{-1}} = \langle \varphi, \psi \rangle_{H}$.
- (b) If $N \trianglelefteq G$ and $g \in G$, then we have $\psi \in Irr(N) \iff {}^{g}\psi \in Irr(N)$.
- (c) If $N \leq G$ and ψ is a character of N, then $(\psi \uparrow_N^G) \downarrow_N^G = |\mathcal{I}_G(\psi) : N| \sum_{q \in [G/\mathcal{I}_G(\psi)]} {}^g \psi$.

Proof: (a) Clearly

$$\langle {}^{g}\varphi, {}^{g}\psi \rangle_{gHg^{-1}} = \frac{1}{|gHg^{-1}|} \sum_{x \in gHg^{-1}} {}^{g}\varphi(x) \overline{{}^{g}\psi(x)}$$

$$= \frac{1}{|H|} \sum_{x \in gHg^{-1}} \varphi(g^{-1}xg) \overline{\psi(g^{-1}xg)}$$

$${}^{g:=g^{-1}xg} = \frac{1}{|H|} \sum_{y \in H} \varphi(y) \overline{\psi(y)} = \langle \varphi, \psi \rangle_{H}.$$

- (b) As $N \leq G$, $gNg^{-1} = N$. Thus, if $\psi \in Irr(N)$, then on the one hand ${}^{g}\psi$ is also a character of N by Exercise 20.2(d), and on the other hand it follows from (a) that $\langle {}^{g}\psi, {}^{g}\psi \rangle_{N} = \langle \psi, \psi \rangle_{N} = 1$. Hence ${}^{g}\psi$ is an irreducible character of N. Therefore, if ${}^{g}\psi \in Irr(N)$, then $\psi = {}^{g^{-1}}({}^{g}\psi) \in Irr(N)$, as required.
- (c) If $n \in N$ then so does $g^{-1}ng \forall g \in G$, hence

$$\psi \uparrow_{N \downarrow N}^{G}(n) = \psi \uparrow_{N}^{G}(n) = \frac{1}{|N|} \sum_{g \in G} \psi(g^{-1}ng) = \frac{1}{|N|} \sum_{g \in G} {}^{g} \psi(n) = \frac{|\mathcal{I}_{G}(\psi)|}{|N|} \sum_{g \in [G/\mathcal{I}_{G}(\psi)]} {}^{g} \psi(n).$$

Notation 20.4

Given $N \trianglelefteq G$ and $\psi \in Irr(N)$, we set $Irr(G \mid \psi) := \{\chi \in Irr(G) \mid \langle \chi \downarrow_N^G, \psi \rangle_N \neq 0\}.$

Theorem 20.5 (CLIFFORD THEORY)

Let $N \leq G$. Let $\chi \in Irr(G)$, $\psi \in Irr(N)$ and set $\mathcal{I} := \mathcal{I}_G(\psi)$. Then the following assertions hold.

(a) If ψ is a constituent of $\chi \downarrow_N^G$, then

$$\chi\!\downarrow^G_N = e \sum_{g\in [G/\mathcal{I}_G(\psi)]}{}^g \psi$$
 ,

where $e = \langle \chi \downarrow_N^G, \psi \rangle_N = \langle \chi, \psi \uparrow_N^G \rangle_G \in \mathbb{Z}_{>0}$ is called the **ramification index** of χ in N (or of ψ in G). In particular, all the constituents of $\chi \downarrow_N^G$ have the same degree.

(b) Induction from $\mathcal{I} = \mathcal{I}_G(\psi)$ to *G* induces a bijection

$$\begin{array}{cccc} \operatorname{Ind}_{\mathcal{I}}^{G} \colon & \operatorname{Irr}(\mathcal{I} \mid \psi) & \longrightarrow & \operatorname{Irr}(G \mid \psi) \\ & \eta & \mapsto & \eta \uparrow_{\mathcal{I}}^{G} \end{array}$$

preserving ramification indices, i.e. $\langle \eta \downarrow_N^{\mathcal{I}}, \psi \rangle_N = \langle \eta \uparrow_{\mathcal{I}}^{\mathcal{G}} \downarrow_N^{\mathcal{I}}, \psi \rangle_N = e.$

Proof:

(a) By Frobenius reciprocity, $\langle \chi, \psi \uparrow_N^G \rangle_G = \langle \chi \downarrow_N^G, \psi \rangle_N \neq 0$. Thus χ is a constituent of $\psi \uparrow_N^G$ and therefore $\chi \downarrow_N^G$ is a constituent of $\psi \uparrow_N^G \downarrow_N^G$.

Now, if $\eta \in Irr(N)$ is an arbitrary constituent of $\chi \downarrow_N^G$ (i.e. $\langle \chi \downarrow_N^G, \eta \rangle_N \neq 0$) then by the above, we have

$$\langle\psi\!\uparrow^G_N\!\downarrow^G_N,\eta
angle_N\geqslant\langle\chi\!\downarrow^G_N,\eta
angle_N>0$$
 .

Moroever, by Lemma 20.3(c) the constituents of $\psi \uparrow_N^G \downarrow_N^G$ are preciely $\{ {}^g \psi \mid g \in [G/\mathcal{I}_G(\psi)] \}$. Hence η is *G*-conjugate to ψ . Furthermore, for every $g \in G$ we have

$$\begin{split} \langle \chi \downarrow_N^G, {}^g \psi \rangle_N &= \frac{1}{|N|} \sum_{h \in N} \chi(h)^g \psi(h^{-1}) &= \frac{1}{|N|} \sum_{h \in N} \chi(h) \psi(g^{-1}h^{-1}g) \\ &\stackrel{\chi \in \mathcal{Cl}(G)}{=} \frac{1}{|N|} \sum_{h \in N} \chi(g^{-1}hg) \psi(g^{-1}h^{-1}g) \\ &\stackrel{s:=g^{-1}hg \in N}{=} \frac{1}{|N|} \sum_{s \in N} \chi(s) \psi(s^{-1}) = \langle \chi \downarrow_N^G, \psi \rangle_N = e \,. \end{split}$$

Therefore, every *G*-conjugate ${}^{g}\psi$ ($g \in [G/\mathcal{I}_{G}(\psi)]$) of ψ occurs as a constituent of $\chi \downarrow_{N}^{G}$ with the same multiplicity *e*. The claim about the degrees is then clear as ${}^{g}\psi(1) = \psi(1) \ \forall g \in G$.

(b) Claim 1: $\eta \in \operatorname{Irr}(\mathcal{I} \mid \psi) \Rightarrow \eta \uparrow_{\mathcal{I}}^{G} \in \operatorname{Irr}(G \mid \psi).$

Since $\mathcal{I} = \mathcal{I}_{\mathcal{I}}(\psi)$, (a) implies that $\eta \downarrow_{N}^{\mathcal{I}} = e' \psi$ with $e' = \langle \eta \downarrow_{N}^{\mathcal{I}}, \psi \rangle_{N} = \frac{\eta(1)}{\psi(1)} > 0$. Now, let $\chi \in Irr(G)$ be a constituent of $\eta \uparrow^G_{\mathcal{I}}$. By Frobenius Reciprocity we have

$$0 \neq \langle \chi, \eta \uparrow_{\mathcal{I}}^{G} \rangle_{G} = \langle \chi \downarrow_{\mathcal{I}}^{G}, \eta \rangle_{\mathcal{I}}.$$

It follows that $\eta \downarrow_N^{\mathcal{I}}$ is a constituent of $\chi \downarrow_{\mathcal{I}}^{G} \downarrow_N^{\mathcal{I}}$ and

$$e := \langle \chi \downarrow_N^G, \psi \rangle_N = \langle \chi \downarrow_\mathcal{I}^G \downarrow_N^\mathcal{I}, \psi \rangle_N \ge \langle \eta \downarrow_N^\mathcal{I}, \psi \rangle_N = e' > 0,$$

hence $\chi \in Irr(G|\psi)$. Moreover, by (a) we have $e = \langle \chi \downarrow_N^G, {}^g \psi \rangle_N \ge e'$ for each $g \in G$. Therefore,

$$\chi(1) = e \sum_{g \in [G/\mathcal{I}]} {}^g \psi(1) \stackrel{(a)}{=} e|G: \mathcal{I}|\psi(1) \ge e'|G: \mathcal{I}|\psi(1) = |G: \mathcal{I}|\eta(1) = \eta \uparrow_{\mathcal{I}}^G (1) \ge \chi(1)$$

Thus e = e', $\eta \uparrow_{\tau}^{G} = \chi \in Irr(G)$, and therefore $\eta \uparrow_{\tau}^{G} \in Irr(G|\psi)$.

Therefore, there exists $\eta \in Irr(\mathcal{I})$ such that

$$\langle \chi \downarrow_{\mathcal{I}}^{G}, \eta \rangle_{\mathcal{I}} \neq 0 \neq \langle \eta \downarrow_{N}^{\mathcal{I}}, \psi \rangle_{N}$$

because $\chi \downarrow_N^G = \chi \downarrow_{\mathcal{I}}^G \downarrow_{N'}^{\mathcal{I}}$ so in particular $\eta \in \operatorname{Irr}(\mathcal{I} \mid \psi)$. Hence existence holds and it remains to see that uniqueness holds. Again by Frobenius reciprocity we have $0 \neq \langle \chi, \eta \uparrow_{\mathcal{I}}^{G} \rangle_{G}$. By Claim 1 this forces $\chi = \eta \uparrow_{\mathcal{I}}^{G}$ and $\eta \downarrow_{N}^{\mathcal{I}} = e\psi$, so *e* is also the ramification index of ψ in \mathcal{I} . Now, write $\chi \downarrow_{\mathcal{I}}^{G} = \sum_{\lambda \in \operatorname{Irr}(\mathcal{I})} a_{\lambda} \lambda = \sum_{\lambda \neq \eta} a_{\lambda} \lambda + a_{\eta} \eta$ with $a_{\lambda} \ge 0$ for each $\lambda \in \operatorname{Irr}(\mathcal{I})$ and $a_{\eta} > 0$. It

follows that

$$(a_{\eta}-1)\eta\downarrow_{N}^{\mathcal{I}}+\sum_{\lambda\neq\eta}a_{\lambda}\lambda\downarrow_{N}^{\mathcal{I}}=\underbrace{\chi\downarrow_{N}^{G}}_{=e\sum_{q\in[G/\mathcal{I}]}g\psi}-\underbrace{\eta\downarrow_{N}^{\mathcal{I}}}_{=e\psi}=e\sum_{g\in[G/\mathcal{I}]\setminus[1]}g\psi.$$

Since ψ does not occur in this sum, but occurs in $\eta \downarrow_N^{\mathcal{I}}$, the only possibility is $a_\eta = 1$ and $\lambda \notin Irr(\mathcal{I}|\psi)$ for $\lambda \neq \eta$. Thus η is uniquely determined as the only constituent of $\chi \downarrow_{\mathcal{I}}^{G}$ in $Irr(\mathcal{I} \mid \psi)$.

Finally, Claims 1 and 2 prove that $\operatorname{Ind}_{\mathcal{I}}^{G}$: $\operatorname{Irr}(\mathcal{I} \mid \psi) \longrightarrow \operatorname{Irr}(G \mid \psi), \eta \mapsto \eta \uparrow_{\mathcal{I}}^{G}$ is well-defined and bijective, and the proof of Claim 2 shows that the ramification indices are preserved.

Example 13 (Normal subgroups of index 2)

Let N < G be a subgroup of index $|G:N| = 2 \iff N \lhd G$ and let $\chi \in Irr(G)$, then either

- (1) $\chi \downarrow_N^G \in \operatorname{Irr}(N)$, or
- (2) $\chi \downarrow_N^G = \psi + {}^g \psi$ for a $\psi \in \operatorname{Irr}(N)$ and a $g \in G \setminus N$.

Indeed, let $\psi \in Irr(N)$ be a constituent of $\chi \downarrow_N^G$. Since |G : N| = 2, we have $\mathcal{I}_G(\psi) \in \{N, G\}$. Theorem 20.5 yields the following:

• If $\mathcal{I}_G(\psi) = N$ then $\operatorname{Irr}(\mathcal{I}_G(\psi) \mid \psi) = \{\psi\}$ and $\psi \uparrow_N^G = \chi$, so that e = 1 and we get $\chi \downarrow_N^G = \psi + {}^g \psi$ for any $g \in G \setminus N$.

 \cdot If ${\mathcal I}_G(\psi)=G$ then $G/{\mathcal I}_G(\psi)=\{1\}$, so that

$$\chi \downarrow_N^G = e\psi$$
 with $e = \langle \chi \downarrow_N^G, \psi \rangle_N = \langle \chi, \psi \uparrow_N^G \rangle_G$.

Moroever, by Lemma 20.3(c),

$$\psi \uparrow^G_N \downarrow^G_N = |\mathcal{I}_G(\psi) : N| \sum_{g \in G/\mathcal{I}_G(\psi)} {}^g \psi = 2\psi.$$

Hence

$$2\psi(1) = \psi \uparrow_N^G \downarrow_N^G (1) \ge \chi \downarrow_N^G (1) = \chi(1) = e\psi(1) \quad \Rightarrow \quad e \le 2.$$

Were e = 2 then we would have $2\psi(1) = \psi \uparrow_N^G(1)$, hence $\chi = \psi \uparrow_N^G$ and thus

$$1 = \langle \chi, \psi \uparrow_N^G \rangle_G = \langle \chi \downarrow_N^G, \psi \rangle_N = e = 2$$

a contradiction. Whence e = 1, which implies that $\chi \downarrow_N^G \in Irr(N)$. Moreover, $\psi \uparrow_N^G = \chi + \chi'$ for some $\chi' \in Irr(G)$ such that $\chi' \neq \chi$.

The following consequence of Clifford's theorem due to N. Itô provides us with a generalisation of the fact that the degrees of the irreducible characters divide the order of the group.

Theorem 20.6 (Itô)

Let $A \leq G$ be an abelian subgroup of G and let $\chi \in Irr(G)$. Then the following assertions hold:

- (a) $\chi(1) \le |G:A|$; and (b) if $A \le G$, then $\chi(1) ||G:A|$.

Proof:

- (a) Exercise 27, Sheet 7.
- (b) Let $\psi \in \operatorname{Irr}(A)$ be a constituent of $\chi \downarrow_A^G$, so that in other words $\chi \in \operatorname{Irr}(G \mid \psi)$. By Theorem 20.5(b) there exists $\eta \in \operatorname{Irr}(\mathcal{I}_G(\psi) \mid \psi)$ such that $\chi = \eta \uparrow_{\mathcal{I}_G(\psi)}^G$ and $\eta \downarrow_A^{\mathcal{I}_G(\psi)} = e\psi$ (proof of Claim 2). Now, as A is abelian, all the irreducible characters of A have degree 1 and for each $x \in A$, $\psi(x)$ is an o(x)-th root of unity. Hence $\forall x \in A$ we have

$$|\eta(x)| = |\eta\downarrow_A^{\mathcal{I}_G(\psi)}(x)| = |e\psi(x)| = e|\psi(x)| = e \cdot 1 = e = \eta(1) \quad \Rightarrow \quad A \subseteq Z(\eta) \,.$$

Therefore, by Remark 17.5, we have

$$\eta(1) \left| \left| \mathcal{I}_G(\psi) : Z(\eta) \right| \right| \left| \mathcal{I}_G(\psi) : A \right|$$

and since $\chi = \eta \!\uparrow^G_{\mathcal{I}_G(\psi)}$ it follows that

$$\chi(1) = |G: \mathcal{I}_G(\psi)|\eta(1)||G: \mathcal{I}_G(\psi)| \cdot |\mathcal{I}_G(\psi):A| = |G:A|.$$

21 The Theorem of Gallagher

In the context of Clifford theory (Theorem 20.5) we understand that irreducibility of characters is preserved by induction from $\mathcal{I}_G(\psi)$ to G. Thus we need to understand induction of characters from N to $\mathcal{I}_G(\psi)$, in particular what if $G = \mathcal{I}_G(\psi)$. What can be said about $Irr(G \mid \psi)$?

Lemma 21.1

Let $N \leq G$ and let $\psi \in Irr(N)$ such that $\mathcal{I}_G(\psi) = G$. Then

$$\psi \uparrow_N^G = \sum_{\chi \in \operatorname{Irr}(G)} e_{\chi} \chi$$

where $e_{\chi} := \langle \chi \downarrow_N^G, \psi \rangle_N$ is the ramification index of χ in N; in particular

$$\sum_{\chi \in \operatorname{Irr}(G)} e_{\chi}^2 = |G:N|.$$

Proof: Write $\psi \uparrow_N^G = \sum_{\chi \in Irr(G)} a_{\chi} \chi$ with suitable $a_{\chi} = \langle \chi, \psi \uparrow_N^G \rangle_G$. By Frobenius reciprocity, $a_{\chi} \neq 0$ if and only if $\chi \in Irr(G \mid \psi)$. But by Theorem 20.5: if $\chi \in Irr(G \mid \psi)$, then $\chi \downarrow_N^G = e_{\chi} \psi$, so that

$$e_{\chi} = \langle \chi \downarrow_{N}^{G}, \psi \rangle_{N} = \langle \chi, \psi \uparrow_{N}^{G} \rangle_{G} = a_{\chi}$$

Therefore,

$$|G:N|\psi(1) = \psi \uparrow_N^G (1) = \sum_{\chi \in Irr(G)} a_{\chi} \chi(1) = \sum_{\chi \in Irr(G)} e_{\chi} \chi(1) = \sum_{\chi \in Irr(G)} e_{\chi}^2 \psi(1) = \psi(1) \sum_{\chi \in Irr(G)} e_{\chi}^2$$

it follows that $|G:N| = \sum_{\chi \in Irr(G)} e_{\chi}^2$.

and

Therefore the multiplicities $\{e_{\chi}\}_{\chi \in Irr(G)}$ behave like the irreducible character degrees of the factor group G/N. This is not a coincidence in many cases.

Definition 21.2 (Extension of a character)

Let $N \trianglelefteq G$ and $\chi \in Irr(G)$ such that $\psi := \chi \downarrow_N^G$ is irreducible. Then we say that ψ extends to G, and χ is an **extension of** ψ .

Exercise 21.3 (Exercise 28, Sheet 7)

Let $N \trianglelefteq G$ and $\chi \in Irr(G)$. Prove that

$$\chi \downarrow_N^G \uparrow_N^G = \operatorname{Inf}_{G/N}^G(\chi_{\operatorname{reg}}) \cdot \chi$$

where χ_{reg} is the regular character of G/N.

Theorem 21.4 (GALLAGHER)

Let $N \trianglelefteq G$ and let $\chi \in Irr(G)$ such that $\psi := \chi \downarrow_N^G \in Irr(N)$. Then

$$\psi \uparrow_N^G = \sum_{\lambda \in Irr(G/N)} \lambda(1) \, Inf_{G/N}^G(\lambda) \cdot \chi,$$

where the characters $\{ Inf_{G/N}^{G}(\lambda) \cdot \chi \mid \lambda \in Irr(G/N) \}$ of G are pairwise distinct and irreducible.

Proof: By Exercise 21.3 we have $\psi \uparrow_N^G = \inf_{G/N}^G (\chi_{reg}) \cdot \chi$, where χ_{reg} denotes the regular character of G/N. Recall that by Theorem 10.3, $\chi_{reg} = \sum_{\lambda \in Irr(G/N)} \lambda(1) \lambda$, so that we have

$$\psi \uparrow_N^G = \sum_{\lambda \in \operatorname{Irr}(G/N)} \lambda(1) \operatorname{Inf}_{G/N}^G(\lambda) \cdot \chi$$
.

Now, by Lemma 21.1, we have

$$\begin{split} |G:N| &= \sum_{\chi \in \operatorname{Irr}(G)} e_{\chi}^2 = \langle \psi \uparrow_N^G, \psi \uparrow_N^G \rangle_G = \sum_{\lambda, \mu \in \operatorname{Irr}(G/N)} \lambda(1) \mu(1) \langle \operatorname{Inf}_{G/N}^G(\lambda) \cdot \chi, \operatorname{Inf}_{G/N}^G(\mu) \cdot \chi \rangle_G \\ &\geqslant \sum_{\lambda \in \operatorname{Irr}(G/N)} \lambda(1)^2 = |G:N| \,. \end{split}$$

Hence equality holds throughout. This proves that

$$\langle \operatorname{Inf}_{G/N}^{G}(\lambda) \cdot \chi, \operatorname{Inf}_{G/N}^{G}(\mu) \cdot \chi \rangle = \delta_{\lambda\mu}.$$

By Erercise 13.4, $\inf_{G/N}^{G}(\lambda) \cdot \chi$ are characters of G and hence the characters $\{\inf_{G/N}^{G}(\lambda) \cdot \chi \mid \lambda \in Irr(G/N)\}$ are irreducible and pairwise distinct, as claimed.

Therefore, given $\psi \in Irr(N)$ which extends to $\chi \in Irr(G)$, we get $Inf_{G/N}^{G}(\lambda) \cdot \chi$ ($\lambda \in Irr(G/N)$) as further irreducible characters.

Example 14

- Let N < G with $|G:N| = 2 \iff N \leq G$ and let $\psi \in Irr(N)$. We saw:
 - \cdot if $\mathcal{I}_G(\psi) = N$ then $\psi \uparrow_N^G \in \operatorname{Irr}(G)$;
 - if $\mathcal{I}_G(\psi) = G$ then ψ extends to some $\chi \in \operatorname{Irr}(G)$ and $\psi^G = \chi + \chi'$ with $\chi' \in \operatorname{Irr}(G) \setminus \{\chi\}$. It follows that $\chi' = \chi \cdot \operatorname{sign}$, where sign is the inflation of the sign character of $G/N \cong \mathfrak{S}_2$ to G.