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χ1p1q χ2p1q χ3p1q χ4p1q χ5p1q χ6p1q

1 2 4 5 6 �A9
1 2 3 3 8 �A9
1 2 �A5 �A5 7 8
1 2 4 7 7 7
1 3 3 6 7 8

p4q In order to eliminate the last-but-one possibility, we apply [Exercise 21(b), Sheet 6] saying
that a simple group cannot have an irreducible character of degree 2. Hence

χ1p1q “ 1 � χ2p1q “ 3 � χ3p1q “ 3 � χ4p1q “ 6 � χ5p1q “ 7 � χ6p1q “ 8 �

Exercise 16.8 (Exercise 22, Sheet 6)

Let G be a finite group of odd order and, as usual, let � denote the number of conjugacy classes
of G. Use character theory to prove that

� ” |G| pmod 16q �

[Hint: Label the set IrrpGq of irreducible characters taking dual characters into account. Use the divisibility property of
Corollary 16.7]

17 The Centre of a Character

Definition 17.1 (Centre of a character )

The centre of a character χ of G is Z pχq :“ t� P G | |χp�q| “ χp1qu.

Note: Recall that in contrast, χp�q “ χp1q ô � P kerpχq.

Example 9

Recall from Example 5 that the character table of G “ S3 is

Id p12q p123q

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

Hence Z pχ1q “ Z pχ2q “ G and Z pχ3q “ tIdu.

Lemma 17.2

If ρ : G ›Ñ GLpV q is a C-representation with character χ and � P G, then:

|χp�q| “ χp1q ñ ρp�q P Cˆ IdV �

In other words Z pχq “ ρ´1`
Cˆ IdV

˘
.
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Proof : Let � :“ χp1q. Recall that we can find a C-basis B of V such that pρp�qqB is a diagonal matrix
with diagonal entries ε1� � � � � ε� which are �p�q-th roots of unity. Hence ε1� � � � � ε� are the eigenvalues
of ρp�q. Applying the Cauchy-Schwartz inequality to the vectors � :“ pε1� � � � � ε�q and � :“ p1� � � � � 1q

in C� yields
|χp�q| “ |ε1 ` � � � ` ε�| “ |x�� �y| § ||� || ¨ ||�|| “

?
�

?
� “ � “ χp1q

and equality implies that � and � are C-linearly dependent so that ε1 “ � � � “ ε� “: ε . Therefore
ρp�q P Cˆ IdV . Conversely, if ρp�q P Cˆ IdV , then there exists λ P Cˆ such that ρp�q “ λ IdV . Therefore
the eigenvalues of ρp�q are all equal to λ, i.e. λ “ ε1 “ � � � “ ε� and therefore

|χp�q| “ |�λ| “ �|λ| “ � ¨ 1 “ � �

Proposition 17.3

Let χ be a character of G. Then:

(a) Z pχq E G;

(b) kerpχq E Z pχq and Z pχq{ kerpχq is a cyclic group;

(c) if χ is irreducible, then Z pχq{ kerpχq “ Z pG{ kerpχqq.

Proof : Let ρ : G ›Ñ GLpV q be a C-representation affording χ and set � :“ χp1q.

(a) Clearly Cˆ IdV § Z pGLpV qq and hence Cˆ IdV EGLpV q. Therefore, by Lemma 17.2,

Z pχq “ ρ´1`
Cˆ IdV

˘
E G

as the pre-image under a group homomorphism of a normal subgroup.
(b) By the definitions of the kernel and of the centre of a character, we have kerpχq Ñ Z pχq. There-

fore kerpχq E Z pχq by (a). If � P Z pχq, then by Lemma 17.2 restriction to Z pχq yields a group
homomorphism

ρ|Zpχq : Z pχq Cˆ IdV

with kernel kerpχq. Therefore, by the 1st ismomorphism theorem, Z pχq{ kerpχq is isomorphic to a
finite subgroup of Cˆ IdV – Cˆ, hence is cyclic (C.f. e.g. EZT).

(c) By the arguments of (a) and (b) we have

Z pχq{ kerpχq – ρ
`
Z pχq

˘
§ Z

`
ρpGq

˘
�

Applying again the first isomorphism theorem we have ρpGq – G{ kerpρq, hence

Z
`
ρpGq

˘
– Z

`
G{ kerpρq

˘
“ Z

`
G{ kerpχq

˘
�

Now let � “ � kerpχq P Z pG{ kerpχqq. As χ is irreducible, ρp�q “ λ IdV for some λ P Cˆ by Schur’s
Lemma. Thus � P Z pχq and it follows that

Z
`
G{ kerpχq

˘
§ Z pχq{ kerpχq �

Exercise 17.4 (Exercise 23, Sheet 6)

Prove that if χ P IrrpGq, then Z pGq § Z pχq and deduce that
ì

χPIrrpGq Z pχq “ Z pGq.
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Remark 17.5 (See [Exercise 24, Sheet 6])
If χ is an irreducible character of degree � then � divides |G : Z pχq|, and hence divides |G : Z pGq|.

This allows us to prove an important criterion, due to Burnside, for character values to be zero.

Theorem 17.6 (Burnside)

Let χ P IrrpGq and let C “ r�s be a conjugacy class of G such that gcdpχp1q� |C |q “ 1. Then
χp�q “ 0 or � P Z pχq.

Proof : As gcdpχp1q� |C |q “ 1, there exist �� � P Z such that �χp1q ` � |C | “ 1 Set α :“ χp�q
χp1q . Then

α “
χp�q

χp1q
¨ 1 “

χp�q

χp1q

`
�χp1q ` � |C |

˘
“ �χp�q ` � |C |χp�q

χp1q
“ �χp�q ` �ωχ pCq

is an algebraic integer because both χp�q and ωχ pCq are. Now, set � :“ |x�y| and let ζ� :“ � 2π�
� . As

χp�q is a sum of �-th roots of unity, certainly χp�q P Qpζ�q. Let � be the Galois group of the Galois
extension Q Ñ Qpζ�q. Then for each field automorphism σ P �, σpαq is also an algebraic integer because
α and σpαq are roots of the same monic integral polynomial. Hence β :“

±
σP� σpαq is also an algebaric

integer and because σpβq “ β for every σ P �, β is an element of the fixed field of �, namely β P Q
(Galois theory). Therefore β P Z.
If � P Z pχq, then there is nothing to do. Thus we may assume that � R Z pχq. Then |χp�q| ‰ χp1q, so
that by Property 7.4(c) we must have |χp�q| † χp1q and hence |α| † 1. Now, again by Property 7.4(b),
χp�q “ ε1 ` � � � ` ε� with � “ χp1q and ε1� � � � � ε� �-th roots of unity. Therefore, for each σ P �ztIdu,
we have σpχp�qq “ σpε1q ` � � � ` σpε�q with σpε1q� � � � � σpε�q �-th roots of unity, because ε1� � � � � ε�
are. It follows that

|σpχp�qq| “ |σpε1q ` � � � ` σpε�q| § |σpε1q| ` � � � ` |σpε�q| “ � “ χp1q

and hence
|σpαq| “

1
χp1q

|σpχp�qq| §
χp1q

χp1q
“ 1 �

Thus
|β| “ |

π

σP�
σpαq| “ |α|loomoon

†1

¨

π

σP�ztIdu
|σpαq|loomoon

§1

† 1 �

The only way an integer satisfies this inequality is β “ 0. Thus α “ 0 as well, which implies that
χp�q “ 0.

Corollary 17.7

In the situation of Theorem 17.6 if moreover χp1q ° 1 and C ‰ t1u, then either χp�q “ 0 or Z pχq

is a non-trivial normal subgroup of G. In particular, if G is non-abelian simple then it is always
the case that χp�q “ 0.

Proof : Indeed, if χp�q ‰ 0, then Theorem 17.6 implies that � P Z pχq, so Z pχq ‰ 1. Now, if G is non-abelian
simple, then Z pχq “ G. On the other hand, the fact that G is simple also tells us that kerpχq “ 1 (if it
were G, then χ would be reducible). Then it follows from Proposition 17.3 that

G “ Z pχq{ kerpχq “ Z pG{ kerpχqq “ Z pGq “ 1 �

A contradiction.



Skript zur Vorlesung: Charaktertheorie SS 2020 51

18 Burnside’s ����
-Theorem

Character theory has many possible applications to the to the structure of finite groups. We consider
in this section on of the most famous of these: the proof of Burnside’s ���� theorem.

Example 10

To begin with we consider two possible minor applications of character theory to finite groups. Both
are results of the Einfürung in die Algebra, for which you have already seen purely group-theoretic
proofs.

(a) G finite group such that |G| “ �2 for some prime number � ùñ G is abelian.

¨ Proof using character theory. By Corollary 16.7 we have χp1q | |G| for each χ P IrrpGq.
Thus

χp1q P t1� �� �2
u �

Therefore the class equation reads

�2
“ |G| “

ÿ

χPIrrpGq
χp1q

2
“ 1Gp1q

2
loomoon

“1

`

ÿ

χPIrrpGq
χ‰1G

χp1q
2 �

which implies that it is not possible that the degree of an irreducible character of G is
� or �2. In other words, all the irreducible characters of G are linear, and thus G is
abelian by Corollary 14.8.

(b) G is a non-trivial �-group ùñ G is soluble.

[Recall from the Einfürung in die Algebra that a finite group G is soluble if it admits a chain
of subgroups

1 “ G0 † G1 † � � � † G� “ G
such that for 1 § � § �, G�´1CG� and G�{G�´1 is cyclic of prime order. Moreover, we have the
following very useful solubility criterion, sometimes coined "the sandwich principle": if H EG
is a normal subgroup, then the group G is soluble if and only if both G and G{H are soluble.]

¨ Proof using character theory. By induction on |G| “: �� (� P Z°0). If |G| “ � or
|G| “ �2, then G is abelian (cyclic in the former case). Finite abelian groups are clearly
soluble because they are products of cyclic groups of prime power order.
Therefore, we may assume that |G| • �3. As in (a) Corollary 16.7 implies that

χp1q P t1� �� �2� � � � � ��
u for each χ P IrrpGq �

Now, again the degree formula yields

��
“ |G| “ 1 `

ÿ

χPIrrpGq
χ‰1G

χp1q
2 �

and for this equality to hold, there must be at least � linear characters of G (including
the trivial character). Thus it follows from Corollary 14.8 that G1

¨ G. Hence both
G1 and G{G1 are soluble by the induction hypothesis ñ G is soluble by the sandwich
principle.
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Theorem 18.1 (Burnside)

Let G be a finite non-abelian simple group. If C is a conjugacy class of G such that |C | “ �� with
� prime and � P Z•0, then C “ t1u.

Proof : Assume ab absurdo that C ‰ t1u and choose � P C . In particular � ‰ 1. Since G is non-abelian
simple G “ G1 and it follows from Corollary 14.8 that the unique linear character of G is the trivial
character. Hence for each χ P IrrpGqzt1Gu we have either � | χp1q or gcdpχp1q� |C |q “ 1. Thus χp�q “ 0
if � - χp1q and χ ‰ 1G by Corollary 17.7. Therefore the Second Orthogonality Relations read

0 “ 1 `

ÿ

χPIrrpGq
χ‰1G

χp�qloomoon
“0 if

�-χp1q

χp1qloomoon
“χp1q

“ 1 `

ÿ

χPIrrpGq
�|χp1q

χp�qχp1q

and dividing by � yields
ÿ

χPIrrpGq
�|χp1q

χp1q

�loomoon
PZ

χp�qloomoon
algebraic
integerlooooooooooomooooooooooon

algebraic integer

“ ´
1
� P QzZ �

This contradicts the fact that rational numbers which are algebraic integers are integers. It follows that
� “ 1 is the only possibility and hence C “ t1u.

As a consequence, we obtain Burnside’s ���� theorem, which can be found in the literature under two
different forms. The first version provides us with a "non-simplicity" criterion and the second version
with a solubility criterion, which is extremely hard to prove by purely group theoretic methods.

Theorem 18.2 (Burnside’s ���� Theorem, "simple" version)

Let �� � be prime numbers and let �� � P Z•0 be integers such that � ` � • 2. If G is a finite group
of order ����, then G is not simple.

Proof : First assume that � “ 0 or � “ 0. Then G is a �-group with �2
| |G|, resp. a �-group with �2

| |G|.
Therefore the centre of G is non-trivial (Einfürung in die Algebra), thus of non-trivial prime power order.
Therefore there exists an element � P Z pGq of order � (resp. �) and 1 ‰ x�y C G is a proper non-trivial
normal subgroup. Hence G is not simple.
We may now assume that � ‰ 0 ‰ �. Let Q P Syl�pGq be a Sylow �-subgroup of G (i.e. |Q| “ ��).
Again, as Q is a �-group, we have Z pQq ‰ t1u and we can choose � P Z pQqzt1u. Then

Q § CGp�q

and therefore the Orbit-Stabiliser Theorem yields

|r�s| “ |G : CGp�q| “ ��

for some non-negative integer � § �. If � “ 0, then ��
“ 1 and G “ CGp�q, so that � P Z pGq. Hence

Z pGq ‰ t1u and G is not simple by the same argument as above. If ��
° 1, then G cannot be simple by

Theorem 18.1.

Theorem 18.3 (Burnside’s ���� Theorem, "soluble" version)

Let �� � be prime numbers and �� � P Z•0. Then any finite group of order ���� is soluble.

Proof : Let G be a finite group of order ����. We proceed by induction on � ` �.

¨ � ` � P t0� 1u ùñ G is either trivial or cyclic of prime order, hence clearly soluble.
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¨ � ` � • 2 ùñ G is not simple by the "simple" version of Burnside’s ���� theorem. Hence there
exists a proper non-trivial normal subgroup H in G and both |H|� |G{H| † ����. Therefore both H
and G{H are soluble by the induction hypothesis. Thus G is soluble by the sandwich principle.


