$\chi_1(1)$	$\chi_2(1)$	$\chi_{3}(1)$	$\chi_4(1)$	$\chi_{5}(1)$	$\chi_6(1)$
1	2	4	5	6	%
1	2	3	3	8)
1	2	3	3	7	8
1	2	4	7	7	7
1	3	3	6	7	8

(4) In order to eliminate the last-but-one possibility, we apply [Exercise 21(b), Sheet 6] saying that a simple group cannot have an irreducible character of degree 2. Hence

$$\chi_1(1)=1 \; , \; \chi_2(1)=3 \; , \; \chi_3(1)=3 \; , \; \chi_4(1)=6 \; , \; \chi_5(1)=7 \; , \; \chi_6(1)=8 \; .$$

Exercise 16.8 (Exercise 22, Sheet 6)

Let G be a finite group of odd order and, as usual, let r denote the number of conjugacy classes of G. Use character theory to prove that

$$r \equiv |G| \pmod{16}$$
.

[Hint: Label the set Irr(G) of irreducible characters taking dual characters into account. Use the divisibility property of Corollary 16.7]

17 The Centre of a Character

Definition 17.1 (Centre of a character)

The **centre** of a character χ of G is $Z(\chi) := \{g \in G \mid |\chi(g)| = \chi(1)\}.$

Note: Recall that in contrast, $\chi(g) = \chi(1) \Leftrightarrow g \in \ker(\chi)$.

Example 9

Recall from Example 5 that the character table of $G = S_3$ is

Hence $Z(\chi_1) = Z(\chi_2) = G$ and $Z(\chi_3) = \{ Id \}.$

Lemma 17.2

If $\rho:G\longrightarrow \mathrm{GL}(V)$ is a $\mathbb C$ -representation with character χ and $g\in G$, then:

$$|\chi(g)| = \chi(1) \iff \rho(g) \in \mathbb{C}^{\times} \operatorname{Id}_{V}.$$

In other words $Z(\chi) = \rho^{-1}(\mathbb{C}^{\times} \operatorname{Id}_{V}).$

Proof: Let $n:=\chi(1)$. Recall that we can find a $\mathbb C$ -basis B of V such that $(\rho(g))_B$ is a diagonal matrix with diagonal entries $\varepsilon_1, \ldots, \varepsilon_n$ which are o(g)-th roots of unity. Hence $\varepsilon_1, \ldots, \varepsilon_n$ are the eigenvalues of $\rho(q)$. Applying the Cauchy-Schwartz inequality to the vectors $v:=(\varepsilon_1,\ldots,\varepsilon_n)$ and $w:=(1,\ldots,1)$ in \mathbb{C}^n yields

$$|\chi(q)| = |\varepsilon_1 + \ldots + \varepsilon_n| = |\langle v, w \rangle| \le ||v|| \cdot ||w|| = \sqrt{n} \sqrt{n} = n = \chi(1)$$

and equality implies that v and w are \mathbb{C} -linearly dependent so that $\varepsilon_1 = \ldots = \varepsilon_n =: \varepsilon$. Therefore $\rho(g) \in \mathbb{C}^{\times} \operatorname{Id}_{V}$. Conversely, if $\rho(g) \in \mathbb{C}^{\times} \operatorname{Id}_{V}$, then there exists $\lambda \in \mathbb{C}^{\times}$ such that $\rho(g) = \lambda \operatorname{Id}_{V}$. Therefore the eigenvalues of $\rho(g)$ are all equal to λ , i.e. $\lambda = \varepsilon_1 = \ldots = \varepsilon_n$ and therefore

$$|\chi(q)| = |n\lambda| = n|\lambda| = n \cdot 1 = n$$
.

Proposition 17.3

Let χ be a character of G. Then:

- (a) $Z(\chi) \leq G$; (b) $\ker(\chi) \leq Z(\chi)$ and $Z(\chi)/\ker(\chi)$ is a cyclic group; (c) if χ is irreducible, then $Z(\chi)/\ker(\chi) = Z(G/\ker(\chi))$.

Proof: Let $\rho: G \longrightarrow GL(V)$ be a \mathbb{C} -representation affording χ and set $n := \chi(1)$.

(a) Clearly $\mathbb{C}^{\times} \operatorname{Id}_{V} \leq Z(\operatorname{GL}(V))$ and hence $\mathbb{C}^{\times} \operatorname{Id}_{V} \subseteq \operatorname{GL}(V)$. Therefore, by Lemma 17.2,

$$Z(\chi) = \rho^{-1}(\mathbb{C}^{\times} \operatorname{Id}_{V}) \leq G$$

as the pre-image under a group homomorphism of a normal subgroup.

(b) By the definitions of the kernel and of the centre of a character, we have $\ker(\chi) \subseteq Z(\chi)$. Therefore $\ker(\chi) \leq Z(\chi)$ by (a). If $g \in Z(\chi)$, then by Lemma 17.2 restriction to $Z(\chi)$ yields a group homomorphism

$$\rho|_{Z(\chi)}: Z(\chi) \longrightarrow \mathbb{C}^{\times} \operatorname{Id}_{V}$$

with kernel $\ker(\chi)$. Therefore, by the 1st ismomorphism theorem, $Z(\chi)/\ker(\chi)$ is isomorphic to a finite subgroup of \mathbb{C}^{\times} Id $_{V} \cong \mathbb{C}^{\times}$, hence is cyclic (C.f. e.g. EZT).

(c) By the arguments of (a) and (b) we have

$$Z(\chi)/\ker(\chi) \cong \rho(Z(\chi)) \leqslant Z(\rho(G))$$
.

Applying again the first isomorphism theorem we have $\rho(G) \cong G/\ker(\rho)$, hence

$$Z(\rho(G)) \cong Z(G/\ker(\rho)) = Z(G/\ker(\chi)).$$

Now let $\overline{q} = q \ker(\chi) \in Z(G/\ker(\chi))$. As χ is irreducible, $\rho(q) = \lambda \operatorname{Id}_V$ for some $\lambda \in \mathbb{C}^\times$ by Schur's Lemma. Thus $g \in Z(\chi)$ and it follows that

$$Z(G/\ker(\chi)) \leq Z(\chi)/\ker(\chi)$$
.

Exercise 17.4 (Exercise 23, Sheet 6)

Prove that if $\chi \in Irr(G)$, then $Z(G) \leq Z(\chi)$ and deduce that $\bigcap_{\chi \in Irr(G)} Z(\chi) = Z(G)$.

50

Remark 17.5 (See [Exercise 24, Sheet 6])

If χ is an irreducible character of degree n then n divides $|G:Z(\chi)|$, and hence divides |G:Z(G)|.

This allows us to prove an important criterion, due to Burnside, for character values to be zero.

Theorem 17.6 (Burnside)

Let $\chi \in Irr(G)$ and let C = [g] be a conjugacy class of G such that $gcd(\chi(1), |C|) = 1$. Then $\chi(g) = 0$ or $g \in Z(\chi)$.

Proof: As $gcd(\chi(1), |C|) = 1$, there exist $u, v \in \mathbb{Z}$ such that $u\chi(1) + v|C| = 1$ Set $\alpha := \frac{\chi(g)}{\chi(1)}$. Then

$$\alpha = \frac{\chi(g)}{\chi(1)} \cdot 1 = \frac{\chi(g)}{\chi(1)} \left(u\chi(1) + v|C| \right) = u\chi(g) + v\frac{|C|\chi(g)}{\chi(1)} = u\chi(g) + v\omega_{\chi}(C)$$

is an algebraic integer because both $\chi(g)$ and $\omega_{\chi}(C)$ are. Now, set $m:=|\langle g \rangle|$ and let $\zeta_m:=e^{\frac{2\pi i}{m}}$. As $\chi(g)$ is a sum of m-th roots of unity, certainly $\chi(g) \in \mathbb{Q}(\zeta_m)$. Let \mathcal{G} be the Galois group of the Galois extension $\mathbb{Q} \subseteq \mathbb{Q}(\zeta_m)$. Then for each field automorphism $\sigma \in \mathcal{G}$, $\sigma(\alpha)$ is also an algebraic integer because σ and $\sigma(\alpha)$ are roots of the same monic integral polynomial. Hence $\beta:=\prod_{\sigma \in \mathcal{G}} \sigma(\alpha)$ is also an algebraic integer and because $\sigma(\beta)=\beta$ for every $\sigma \in \mathcal{G}$, β is an element of the fixed field of \mathcal{G} , namely $\beta \in \mathbb{Q}$ (Galois theory). Therefore $\beta \in \mathbb{Z}$.

If $g \in Z(\chi)$, then there is nothing to do. Thus we may assume that $g \notin Z(\chi)$. Then $|\chi(g)| \neq \chi(1)$, so that by Property 7.4(c) we must have $|\chi(g)| < \chi(1)$ and hence $|\alpha| < 1$. Now, again by Property 7.4(b), $\chi(g) = \varepsilon_1 + \ldots + \varepsilon_n$ with $n = \chi(1)$ and $\varepsilon_1, \ldots, \varepsilon_n$ m-th roots of unity. Therefore, for each $\sigma \in \mathcal{G} \setminus \{\mathrm{Id}\}$, we have $\sigma(\chi(g)) = \sigma(\varepsilon_1) + \ldots + \sigma(\varepsilon_n)$ with $\sigma(\varepsilon_1), \ldots, \sigma(\varepsilon_n)$ m-th roots of unity, because $\varepsilon_1, \ldots, \varepsilon_n$ are. It follows that

$$|\sigma(\chi(g))| = |\sigma(\varepsilon_1) + \ldots + \sigma(\varepsilon_n)| \le |\sigma(\varepsilon_1)| + \ldots + |\sigma(\varepsilon_n)| = n = \chi(1)$$

and hence

$$|\sigma(\alpha)| = \frac{1}{\chi(1)} |\sigma(\chi(g))| \leqslant \frac{\chi(1)}{\chi(1)} = 1.$$

Thus

$$|\beta| = |\prod_{\sigma \in \mathcal{G}} \sigma(\alpha)| = \underbrace{\quad |\alpha| \quad \cdot \prod_{\sigma \in \mathcal{G} \setminus \{ld\}} \underbrace{\mid \sigma(\alpha) \mid}_{\leqslant 1}} < 1 \, .$$

The only way an integer satisfies this inequality is $\beta=0$. Thus $\alpha=0$ as well, which implies that $\chi(q)=0$.

Corollary 17.7

In the situation of Theorem 17.6 if moreover $\chi(1) > 1$ and $C \neq \{1\}$, then either $\chi(g) = 0$ or $Z(\chi)$ is a non-trivial normal subgroup of G. In particular, if G is non-abelian simple then it is always the case that $\chi(g) = 0$.

Proof: Indeed, if $\chi(g) \neq 0$, then Theorem 17.6 implies that $g \in Z(\chi)$, so $Z(\chi) \neq 1$. Now, if G is non-abelian simple, then $Z(\chi) = G$. On the other hand, the fact that G is simple also tells us that $\ker(\chi) = 1$ (if it were G, then χ would be reducible). Then it follows from Proposition 17.3 that

$$G = Z(\chi)/\ker(\chi) = Z(G/\ker(\chi)) = Z(G) = 1$$
.

A contradiction.

18 Burnside's $p^a q^b$ -Theorem

Character theory has many possible applications to the to the structure of finite groups. We consider in this section on of the most famous of these: the proof of Burnside's $p^a q^b$ theorem.

Example 10

To begin with we consider two possible minor applications of character theory to finite groups. Both are results of the *Einfürung in die Algebra*, for which you have already seen purely group-theoretic proofs.

- (a) G finite group such that $|G| = p^2$ for some prime number $p \implies G$ is abelian.
 - · **Proof using character theory**. By Corollary 16.7 we have $\chi(1) \mid |G|$ for each $\chi \in Irr(G)$. Thus

$$\chi(1) \in \{1, p, p^2\}$$
.

Therefore the class equation reads

$$p^{2} = |G| = \sum_{\chi \in Irr(G)} \chi(1)^{2} = \underbrace{\mathbf{1}_{G}(1)^{2}}_{=1} + \sum_{\substack{\chi \in Irr(G) \\ \chi \neq \mathbf{1}_{G}}} \chi(1)^{2},$$

which implies that it is not possible that the degree of an irreducible character of G is p or p^2 . In other words, all the irreducible characters of G are linear, and thus G is abelian by Corollary 14.8.

(b) G is a non-trivial p-group $\implies G$ is soluble.

[Recall from the $Einf \ddot{u}rung$ in die Algebra that a finite group G is **soluble** if it admits a chain of subgroups

$$1 = G_0 < G_1 < \ldots < G_s = G$$

such that for $1 \le i \le s$, $G_{i-1} \triangleleft G_i$ and G_i/G_{i-1} is cyclic of prime order. Moreover, we have the following very useful *solubility criterion*, sometimes coined "the sandwich principle": if $H \unlhd G$ is a normal subgroup, then the group G is soluble if and only if both G and G/H are soluble.]

• **Proof using character theory**. By induction on $|G| =: p^a$ ($a \in \mathbb{Z}_{>0}$). If |G| = p or $|G| = p^2$, then G is abelian (cyclic in the former case). Finite abelian groups are clearly soluble because they are products of cyclic groups of prime power order. Therefore, we may assume that $|G| \ge p^3$. As in (a) Corollary 16.7 implies that

$$\chi(1) \in \{1, p, p^2, \dots, p^a\}$$
 for each $\chi \in Irr(G)$.

Now, again the degree formula yields

$$p^a = |G| = 1 + \sum_{\substack{\chi \in Irr(G) \\ \chi \neq 1_G}} \chi(1)^2.$$

and for this equality to hold, there must be at least p linear characters of G (including the trivial character). Thus it follows from Corollary 14.8 that $G' \leq G$. Hence both G' and G/G' are soluble by the induction hypothesis $\Rightarrow G$ is soluble by the sandwich principle.

Theorem 18.1 (Burnside)

Let G be a finite non-abelian simple group. If C is a conjugacy class of G such that $|C| = p^a$ with p prime and $a \in \mathbb{Z}_{\geq 0}$, then $C = \{1\}$.

Proof: Assume ab absurdo that $C \neq \{1\}$ and choose $g \in C$. In particular $g \neq 1$. Since G is non-abelian simple G = G' and it follows from Corollary 14.8 that the unique linear character of G is the trivial character. Hence for each $\chi \in \operatorname{Irr}(G) \setminus \{1_G\}$ we have either $p \mid \chi(1)$ or $\gcd(\chi(1), |C|) = 1$. Thus $\chi(g) = 0$ if $p \nmid \chi(1)$ and $\chi \neq 1_G$ by Corollary 17.7. Therefore the Second Orthogonality Relations read

$$0 = 1 + \sum_{\substack{\chi \in \operatorname{Irr}(G) \\ \chi \neq 1_G}} \underbrace{\chi(g)}_{\substack{g = 0 \text{ if} \\ p \nmid \chi(1)}} \underbrace{\overline{\chi(1)}}_{=\chi(1)} = 1 + \sum_{\substack{\chi \in \operatorname{Irr}(G) \\ p \mid \chi(1)}} \chi(g)\chi(1)$$

and dividing by p yields

$$\underbrace{\sum_{\substack{\chi \in \operatorname{Irr}(G) \\ p \mid \chi(1)}} \underbrace{\frac{\chi(1)}{p}}_{\in \mathbb{Z}} \underbrace{\chi(g)}_{\substack{\text{algebraic} \\ \text{integer}}} = -\frac{1}{p} \in \mathbb{Q} \backslash \mathbb{Z} \,.$$

This contradicts the fact that rational numbers which are algebraic integers are integers. It follows that g=1 is the only possibility and hence $C=\{1\}$.

As a consequence, we obtain Burnside's $p^a q^b$ theorem, which can be found in the literature under two different forms. The first version provides us with a "non-simplicity" criterion and the second version with a solubility criterion, which is extremely hard to prove by purely group theoretic methods.

Theorem 18.2 (Burnside's p^aq^b Theorem, "simple" version)

Let p,q be prime numbers and let $a,b\in\mathbb{Z}_{\geqslant 0}$ be integers such that $a+b\geqslant 2$. If G is a finite group of order p^aq^b , then G is not simple.

Proof: First assume that a=0 or b=0. Then G is a q-group with $q^2 \mid |G|$, resp. a p-group with $p^2 \mid |G|$. Therefore the centre of G is non-trivial (*Einfürung in die Algebra*), thus of non-trivial prime power order. Therefore there exists an element $g \in Z(G)$ of order q (resp. p) and $1 \neq \langle g \rangle \lhd G$ is a proper non-trivial normal subgroup. Hence G is not simple.

We may now assume that $a \neq 0 \neq b$. Let $Q \in \operatorname{Syl}_q(G)$ be a Sylow q-subgroup of G (i.e. $|Q| = q^b$). Again, as Q is a q-group, we have $Z(Q) \neq \{1\}$ and we can choose $g \in Z(Q) \setminus \{1\}$. Then

$$Q \leqslant C_G(q)$$

and therefore the Orbit-Stabiliser Theorem yields

$$|[q]| = |G: C_G(q)| = p^r$$

for some non-negative integer $r \le a$. If r = 0, then $p^r = 1$ and $G = C_G(g)$, so that $g \in Z(G)$. Hence $Z(G) \ne \{1\}$ and G is not simple by the same argument as above. If $p^r > 1$, then G cannot be simple by Theorem 18.1.

Theorem 18.3 (Burnside's $p^a q^b$ Theorem, "soluble" version)

Let p, q be prime numbers and $a, b \in \mathbb{Z}_{\geq 0}$. Then any finite group of order $p^a q^b$ is soluble.

Proof: Let G be a finite group of order $p^a q^b$. We proceed by induction on a + b.

 $a + b \in \{0, 1\} \implies G$ is either trivial or cyclic of prime order, hence clearly soluble.

 $\cdot \ a+b\geqslant 2 \implies G$ is not simple by the "simple" version of Burnside's p^aq^b theorem. Hence there exists a proper non-trivial normal subgroup H in G and both |H|, $|G/H| < p^aq^b$. Therefore both H and G/H are soluble by the induction hypothesis. Thus G is soluble by the sandwich principle.