Exercise 8.2 (*Exercise 11, Sheet 3***)**

Find a C-basis of $Cl(G)$ and deduce that $\dim_{\mathbb{C}} Cl(G) = |C(G)|$.

Proposition 8.3

The binary operation

$$
\langle , \rangle_G: \mathcal{F}(G, \mathbb{C}) \times \mathcal{F}(G, \mathbb{C}) \longrightarrow \mathbb{C}
$$

\n
$$
(f_1, f_2) \longrightarrow \langle f_1, f_2 \rangle_G := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}
$$

is a scalar product on $\mathcal{F}(G,\mathbb{C})$.

Proof: It is straightforward to check that \langle , \rangle_G is sesquilinear and Hermitian (Exercise 11, Sheet 3); it is positive definite because for every $f \in \mathcal{F}(G,\mathbb{C})$,

$$
\langle f, f \rangle = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{f(g)} = \frac{1}{|G|} \sum_{g \in G} \underbrace{|f(g)|^2}_{\in \mathbb{R}_{\geq 0}} \geq 0
$$

and moreover $\langle f, f \rangle = 0$ if and only if $f = 0$.

Remark 8.4

Obviously, the scalar product \langle , \rangle_G restricts to a scalar product on $Cl(G)$. Moreover, if f_2 is a character of *G*, then by Property 7.4(d) we can write

$$
\langle f_1, f_2 \rangle_G = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)} = \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1}).
$$

The next theorem is the third key result of this lecture. It tells us that the irreducible characters of a finite group form an orthonormal system in $Cl(G)$ with respect to the scalar product \langle , \rangle_G .

Theorem 8.5 (*1st Orthogonality Relations***)**

If $\rho_V : G \longrightarrow GL(V)$ and $\rho_W : G \longrightarrow GL(W)$ are two irreducible C-representations with characters χ_V and χ_W respectively, then

$$
\langle \chi_V, \chi_W \rangle_G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \chi_W(g^{-1}) = \begin{cases} 1 & \text{if } \rho_V \sim \rho_W, \\ 0 & \text{if } \rho_V \not\sim \rho_W. \end{cases}
$$

Proof: Choose ordered C-bases $E := (e_1, \ldots, e_n)$ and $F := (f_1, \ldots, f_m)$ of *V* and *W* respectively. Then for each $g \in G$ write $Q(g) := (\rho_V(g))_E$ and $P(g) := (\rho_W(g))_F$. If $\rho_V \nsim \rho_W$ compute

$$
\langle \chi_V, \chi_W \rangle_G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \chi_W(g^{-1}) = \frac{1}{|G|} \sum_{g \in G} \text{Tr} \left(Q(g) \right) \text{Tr} \left(P(g^{-1}) \right)
$$

$$
= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{i=1}^n Q(g)_{ii} \right) \left(\sum_{j=1}^m P(g^{-1})_{jj} \right)
$$

$$
= \sum_{i=1}^n \sum_{j=1}^m \frac{1}{|G|} \sum_{g \in G} Q(g)_{ii} P(g^{-1})_{jj} = 0
$$

$$
= 0 \text{ by (a) of Schur's Relations}
$$

П

and similarly if $W = V$, then $P = Q$ and

$$
\langle \chi_V, \chi_V \rangle_G = \sum_{i=1}^n \sum_{j=1}^m \underbrace{\frac{1}{|G|} \sum_{g \in G} Q(g)_{ii} Q(g^{-1})_{jj}}_{=\frac{1}{n} \delta_{ij} \delta_{ij} \text{ by (b) of Schur's Relations}} = \sum_{i=1}^n \frac{1}{n} = 1.
$$

9 Consequences of the 1st Orthogonality Relations

In this section we use the 1st Orthogonality Relations in order to deduce a series of fundamental properties of the (irreducible) characters of finite groups.

Corollary 9.1 (*Linear independence***)**

The irreducible characters of *G* are **C**-linearly independent.

Proof: Assume $\sum_{i=1}^{s} \lambda_i \chi_i = 0$, where χ_1, \ldots, χ_s are pairwise distinct irreducible characters of *G*, $\lambda_1, \ldots, \lambda_s \in \mathbb{R}$ \mathbb{C} and $s \in \mathbb{Z}_{>0}$. Then the 1st Orthogonality Relations yield

$$
0=\langle \sum_{i=1}^s \lambda_i \chi_i, \chi_j \rangle_G=\sum_{i=1}^s \lambda_i \underbrace{\langle \chi_i, \chi_j \rangle_G}_{=\delta_{ij}}=\lambda_j
$$

for each $1 \leq j \leq s$. The claim follows.

Corollary 9.2 (*Finiteness***)**

There are at most $|C(G)|$ irreducible characters of G. In particular, there are only a finite number of them.

Proof: By Corollary 9.1 the irreducible characters of *G* are *C*-linearly independent. By Lemma 7.7 irrreducible characters are elements of the C-vector space $Cl(G)$. Therefore there exists at most dim_C $Cl(G)$ = $|C(G)| < \infty$ of them.

Corollary 9.3 (*Multiplicities***)**

Let $\rho_V : G \longrightarrow GL(V)$ be a C-representation and let $\rho_V = \rho_{V_1} \oplus \cdots \oplus \rho_{V_s}$ be a decomposition of ρ_V into irreducible subrepresentations. Then the following assertions hold.

- (a) If $\rho_W : G \longrightarrow \mathop{\rm GL}\nolimits(W)$ is an irreducible C-representation of *G*, then the multiplicity of ρ_W in $\rho_{V_1} \oplus \cdots \oplus \rho_{V_s}$ is equal to $\langle \chi_V, \chi_W \rangle_G.$
- (b) This multiplicity is independent of the choice of the chosen decomposition of ρ_V into irreducible subrepresentations.

Proof : (a) We may assume that we have chosen the labelling such that

$$
\rho_V = \rho_{V_1} \oplus \cdots \oplus \rho_{V_l} \oplus \rho_{V_{l+1}} \oplus \cdots \oplus \rho_{V_s},
$$

П

where $\rho_{V_i} \sim \rho_W \ \forall \ 1 \leq i \leq l$ and $\rho_{V_i} \not\sim \rho_W \ \forall \ l + 1 \leq j \leq s$. Thus $\chi_{V_i} = \chi_W \ \forall \ 1 \leq i \leq l$ by Lemma 7.3. Therefore the 1st Orthogonality Relations yield

$$
\langle \chi_V, \chi_W \rangle_G = \sum_{i=1}^l \langle \chi_{V_i}, \chi_W \rangle_G + \sum_{j=l+1}^s \langle \chi_{V_j}, \chi_W \rangle_G = \sum_{i=1}^l \underbrace{\langle \chi_W, \chi_W \rangle_G}_{=1} + \sum_{j=l+1}^s \underbrace{\langle \chi_{V_j}, \chi_W \rangle_G}_{=0} = l.
$$

(b) Obvious, since $\langle \chi_V, \chi_W \rangle_G$ depends only on V and W, but not on the chosen decomposition.

We can now prove that the converse of Lemma 7.3 holds.

Corollary 9.4 (*Equality of characters***)**

Let $\rho_V : G \longrightarrow GL(V)$ and $\rho_W : G \longrightarrow GL(W)$ be C-representations with characters χ_V and χ_W respectively. Then:

$$
\chi_V = \chi_W \quad \Leftrightarrow \quad \rho_V \sim \rho_W.
$$

Proof: " \Leftarrow ": The sufficient condition is the statement of Lemma 7.3.

" \Rightarrow ": To prove the necessary condition decompose ρ_V and ρ_W into direct sums of irreducible subrepresentations

$$
\rho_V = \underbrace{\rho_{V_{1,1}} \oplus \cdots \oplus \rho_{V_{1,m_1}}}_{\text{all } \sim \rho_{V_1}} \oplus \cdots \oplus \underbrace{\rho_{V_{s,1}} \oplus \cdots \oplus \rho_{V_{s,m_s}}}_{\text{all } \sim \rho_{V_s}},
$$
\n
$$
\rho_W = \underbrace{\rho_{W_{1,1}} \oplus \cdots \oplus \rho_{W_{1,p_1}}}_{\text{all } \sim \rho_{V_1}} \oplus \cdots \oplus \underbrace{\rho_{W_{s,1}} \oplus \cdots \oplus \rho_{W_{s,p_s}}}_{\text{all } \sim \rho_{V_s}},
$$

where m_i , $p_i \geqslant 0$ for all $1 \leqslant i \leqslant s$ and the ρ_{V_i} 's are pairwise non-equivalent irreducible \mathbb{C} representations of *G*. (Some of the m_i , p_i 's may be zero!) Now, as we assume that $\chi_V = \chi_{W}$, for each $1 \leq i \leq s$ Corollary 9.3 yields

$$
m_i = \langle \chi_V, \chi_{V_i} \rangle_G = \langle \chi_W, \chi_{V_i} \rangle_G = p_i,
$$

hence $\rho_V \sim \rho_W$.

Corollary 9.5 (*Irreducibility criterion***)**

A C-representation $\rho_V : G \longrightarrow GL(V)$ is irreducible if and only if $\langle \chi_V, \chi_V \rangle_G = 1$.

Proof: " \Rightarrow ": holds by the 1st Orthogonality Relations.

" \Leftarrow ": As in the previous proof, write

$$
\rho_V = \underbrace{\rho_{V_{1,1}} \oplus \cdots \oplus \rho_{V_{1,m_1}}}_{\text{all } \sim \rho_{V_1}} \oplus \cdots \oplus \underbrace{\rho_{V_{s,1}} \oplus \cdots \oplus \rho_{V_{s,m_s}}}_{\text{all } \sim \rho_{V_s}}
$$

,

where $m_i \geqslant 1$ for all $1 \leqslant i \leqslant s$ and the ρ_V 's are pairwise non-equivalent irreducible \mathbb{C} -
representations of C. Then wing the essumption the essentilizearity of the scalar product and the representations of *G*. Then, using the assumption, the sesquilinearity of the scalar product and the 1st Orthogonality Relations, we obtain that

$$
1 = \langle \chi_V, \chi_V \rangle_G = \sum_{i=1}^s m_i^2 \langle \chi_{V_i}, \chi_{V_i} \rangle_G = \sum_{i=1}^s m_i^2.
$$

Hence, w.l.o.g. we may assume that $m_1 = 1$ and $m_i = 0 \forall 2 \leq i \leq s$, so that $\rho_V = \rho_{V_i}$ is irreducible.

П

Theorem 9.6

The set Irr(*G*) is an orthonormal C-basis (w.r.t. \langle , \rangle_G) of the C-vector space $Cl(G)$ of class functions on *G*.

Proof: We already know that $\text{Irr}(G)$ is a \mathbb{C} -linearly independent set and also that it forms an orthonormal system of $Cl(G)$ w.r.t. \langle , \rangle_G . Hence it remains to prove that $Irr(G)$ generates $Cl(G)$. So let $X := \langle Irr(G) \rangle_C$ be the \mathbb{C} -subspace of $Cl(G)$ generated by $\text{Irr}(G)$. It follows that

$$
Cl(G) = X \oplus X^{\perp}
$$

where X^{\perp} denotes the orthogonal of X with respect to the scalar product \langle , \rangle_G (see GDM). Thus it is enough to prove that $X^{\perp} = 0$. So let $f \in X^{\perp}$, set $\check{f} := \sum_{g \in G} \overline{f(g)}g \in \mathbb{C}G$ and we prove the following assertions:

(1) $\check{f} \in Z(\mathbb{C}G)$ (the centre of $\mathbb{C}G$): let $h \in G$ and compute

$$
h\check{f}h^{-1} = \sum_{g\in G} \overline{f(g)}hg \cdot h^{-1} \stackrel{s:=hgh^{-1}}{=} \sum_{s\in G} \underbrace{\overline{f(h^{-1}sh)}}_{=f(s)}s = \sum_{s\in G} \overline{f(s)}s = \check{f}.
$$

Hence $h\check{f} = \check{f}h$ and this equality extends by C-linearity to the whole of C*G*, so that $\check{f} \in Z(\mathbb{C}G)$.

(2) If *V* is a simple $\mathbb{C}G$ -module with character χ_V , then the external multiplication by \check{f} on *V* is scalar multiplication by $\frac{|G|}{\dim_\mathbb{C} V}\langle \chi_V, f \rangle_G \in \mathbb{C}$: first notice that the external multiplication by \tilde{f} on V , i.e. the map

$$
\check{f} \cdot - : V \longrightarrow V, v \mapsto \check{f} \cdot v
$$

is $\mathbb{C}G$ -linear. Indeed, for each $x \in \mathbb{C}G$ and each $v \in V$ we have

$$
\check{f} \cdot (x \cdot v) = (\check{f}x) \cdot v = (x\check{f}) \cdot v = x \cdot (\check{f} \cdot v)
$$

because $\check{f} \in Z(\mathbb{C}G)$. Therefore, by Schur's Lemma, there exists a scalar $\lambda \in \mathbb{C}$ such that $\check{f} \cdot - = \lambda \, \text{Id}_V$. Moreover,

$$
\lambda = \frac{1}{n} \operatorname{Tr}(\lambda \operatorname{Id}_V) = \frac{1}{n} \operatorname{Tr}(\check{f} \cdot -) = \frac{1}{n} \sum_{g \in G} \overline{f(g)} \underbrace{\operatorname{Tr}(\operatorname{mult. by } g \text{ on } V)}_{= \chi_V(g)} = \frac{1}{n} \sum_{g \in G} \overline{f(g)} \chi_V(g) = \frac{|G|}{n} \langle \chi_V, f \rangle_G.
$$

(3) If *V* is a simple $\mathbb{C}G$ -module with character χ_V , then the external multiplication by \check{f} on *V* is zero: indeed, $\langle \chi_V, f \rangle_G = 0$ because $f \in X^\perp$ and the claim follows from (2).

(4) $f = 0$: indeed, as the external multiplication by \tilde{f} is zero on every simple $\mathbb{C}G$ -module, it is zero on every **C***G*-module, because any **C***G*-module can be decomposed as the direct sum of simple submodules by the Corollary to Maschke's Theorem. In particular, the external multiplication by ˘*f* is zero on **C***G*. Hence

$$
0 = \check{f} \cdot 1_{\mathbb{C}G} = \check{f} = \sum_{g \in G} \overline{f(g)}g
$$

and we obtain that $\overline{f(g)} = 0$ for each $g \in G$ because *G* is a $\mathbb C$ -basis of $\mathbb C G$. But then $f(g) = 0$ for each $q \in G$ and it follows that $f = 0$.

Corollary 9.7

The number of pairwise non-equivalent irreducible characters of *G* is equal to the number of conjugacy classes of *G*. In other words,

$$
|\operatorname{Irr}(G)|=|C(G)|.
$$

Proof: By Theorem 9.6 the set $\text{Irr}(G)$ is a C-basis of the space $Cl(G)$ of class functions on *G*. Hence

 $|\text{Irr}(G)| = \dim_{\mathbb{C}} \mathcal{C}l(G) = |C(G)|$

where the second equality holds by Exercise 8.2.

Corollary 9.8

Let $f \in Cl(G)$. Then the following assertions hold:

(a) $f = \sum_{\chi \in \text{Irr}(G)} \langle f, \chi \rangle_G \chi$; (b) $\langle f, f \rangle_G = \sum_{\chi \in \text{Irr}(G)} \langle f, \chi \rangle_G^2$; (c) *f* is a character $\iff \langle f, \chi \rangle_G \in \mathbb{Z}_{\geqslant 0} \ \ \forall \ \chi \in \text{Irr}(G)$; and (d) $f \in \text{Irr}(G) \iff f$ is a character and $\langle f, f \rangle_G = 1$.

Proof: (a)+(b) hold for any orthonormal basis with respect to a given scalar product (GDM).

- (c) ' \Rightarrow ': If *f* is a character, then by Corollary 9.3 the complex number $\langle f, \chi_i \rangle_G$ is the multiplicity of χ_i as a constituent of *f*, hence a non-negative integer.
	- ' \Leftarrow ': If for each $\chi \in \text{Irr}(G)$, $\langle f, \chi \rangle_G =: m_\chi \in \mathbb{Z}_{\geq 0}$, then *f* is the character of the representation

$$
\rho := \bigoplus_{\chi \in \text{Irr}(G)} \bigoplus_{j=1}^{m_{\chi}} \rho(\chi)
$$

where $\rho(\chi)$ is a C-representation affording the character χ .

(d) The necessary condition is given by the 1st Orthogonality Relations. The sufficient condition follows from (b) and (c).

Exercise 9.9 (*Exercise 12, Sheet 3***)**

Let *V* be a \mathbb{C} *G*-module (finite dimensional) with character χ_V . Consider the \mathbb{C} -subspace V^G := $\{v \in V \mid g \cdot v = v \; \forall \; g \in G\}$. Prove that

$$
\dim_{\mathbb{C}} V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)
$$

- 1. considering the scalar product of χ ^V with the trivial character 1_{*G*};
- 2. seeing V^G as the image of the projector $\pi: V \twoheadrightarrow V, v \mapsto \frac{1}{|G|}$ $\sum_{g \in G} g \cdot v$.

10 The Regular Character

Recall from Example 1(d) that a finite *G*-set *X* induces a *permutation representation*

$$
\rho_X: \begin{array}{ccc} G & \longrightarrow & GL(V) \\ g & \mapsto & \rho_X(g) : V \longrightarrow V, e_x \mapsto e_{g \cdot x} \end{array}
$$

where *V* is a *C*-vector space with basis $\{e_x \mid x \in X\}$ (i.e. indexed by the set *X*). Given $g \in G$ write $Fix_X(q) := \{x \in X \mid q \cdot x = x\}$ for the set of fixed points of *q* on *X*.

Proposition 10.1 (*Character of a permutation representation***)**

Let *X* be a *G*-set and let χ_X denote the character of the associated permutation representation ρ_X . Then

$$
\chi_X(g) = |\operatorname{Fix}_X(g)| \qquad \forall \ g \in G.
$$

Proof: Let $g \in G$. The diagonal entries of the matrix of $\rho_X(g)$ expressed in the basis $B := \{e_x \mid x \in X\}$ are:

$$
((\rho_X(g))_B)_{xx} = \begin{cases} 1 & \text{if } g \cdot x = x \\ 0 & \text{if } g \cdot x \neq x \end{cases} \qquad \forall x \in X.
$$

Hence taking traces, we get $\chi_X(g) = \sum_{x \in X}$ $\overline{'}$ $\rho_X(g)$ *B* $\overline{ }$ \sum_{xx} = $|Fix_X(g)|$.

For the action of *G* on itself by left multiplication, by Example 1(d), $\rho_X = \rho_{reg}$ is the regular representation of *G*. In this case, we obtain the values of the *regular character*.

Corollary 10.2 (*The regular character***)**

Let *χ*reg denote the character of the regular representation *ρ*reg of *G*. Then

$$
\chi_{\text{reg}}(g) = \begin{cases} |G| & \text{if } g = 1_G, \\ 0 & \text{otherwise.} \end{cases}
$$

Proof: This follows immediately from Proposition 10.1 since $Fix_G(1_G) = G$ and $Fix_G(g) = \emptyset$ for every $q \in G \backslash \{1_G\}.$

Theorem 10.3 (*Decomposition of the regular representation***)**

The multiplicity of an irreducible \mathbb{C} -representation of *G* as a constituent of ρ_{req} equals its degree. In other words,

$$
\chi_{\text{reg}} = \sum_{\chi \in \text{Irr}(G)} \chi(1) \chi.
$$

Proof: By Corollary 9.3 we have $\chi_{\text{reg}} = \sum_{\chi \in \text{Irr}(G)} \langle \chi_{\text{reg}} , \chi \rangle_G \chi$, where for each $\chi \in \text{Irr}(G)$,

$$
\langle \chi_{\text{reg}} , \chi \rangle_G = \frac{1}{|G|} \sum_{g \in G} \underbrace{\chi_{\text{reg}}(g)}_{\text{big }G_{\text{big}}|G|} \overline{\chi(g)} = \frac{|G|}{|G|} \chi(1) = \chi(1) .
$$

The claim follows.

 \blacksquare

Remark 10.4

In particular, the theorem tells us that each irreducible **C**-representation (considered up to equivalence) occurs with multiplicity at least one in a decomposition of the regular representation into irreducible subrepresentations.

Corollary 10.5 (*Degree formula***)**

The order of the group *G* is given in terms of its irreducible character by the formula

$$
|G|=\sum_{\chi\in\text{Irr}(G)}\chi(1)^2.
$$

Proof: Evaluating the regular character at $1 \in G$ yields

$$
|G| = \chi_{\text{reg}}(1) = \sum_{\chi \in \text{Irr}(G)} \chi(1)\chi(1) = \sum_{\chi \in \text{Irr}(G)} \chi(1)^2.
$$

Exercise 10.6 (*Exercise 13(b), Sheet 4***)**

Use the degree formula to give a second proof of Proposition 6.1. In other words, prove that if *G* is a finite abelian group, then

 $Irr(G) = \{$ linear characters of *G* $}$.