Exercise 8.2 (Exercise 11, Sheet 3)

Find a \mathbb{C} -basis of $\mathcal{C}l(G)$ and deduce that $\dim_{\mathbb{C}} \mathcal{C}l(G) = |\mathcal{C}(G)|$.

Proposition 8.3

The binary operation

$$\begin{array}{cccc} \langle \,,\,\rangle_G \colon & \mathcal{F}(G,\mathbb{C}) \times \mathcal{F}(G,\mathbb{C}) & \longrightarrow & \mathbb{C} \\ & & (f_1,f_2) & \mapsto & \langle f_1,f_2 \rangle_G := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)} \end{array}$$

is a scalar product on $\mathcal{F}(G, \mathbb{C})$.

Proof: It is straightforward to check that \langle , \rangle_G is sesquilinear and Hermitian (Exercise 11, Sheet 3); it is positive definite because for every $f \in \mathcal{F}(G, \mathbb{C})$,

$$\langle f, f \rangle = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{f(g)} = \frac{1}{|G|} \sum_{g \in G} \frac{|f(g)|^2}{|G|} \ge 0$$

and moreover $\langle f, f \rangle = 0$ if and only if f = 0.

Remark 8.4

Obviously, the scalar product \langle , \rangle_G restricts to a scalar product on Cl(G). Moreover, if f_2 is a character of G, then by Property 7.4(d) we can write

$$\langle f_1, f_2 \rangle_G = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)} = \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1})$$

The next theorem is the third key result of this lecture. It tells us that the irreducible characters of a finite group form an orthonormal system in Cl(G) with respect to the scalar product \langle , \rangle_{G} .

Theorem 8.5 (1st Orthogonality Relations)

If $\rho_V : G \longrightarrow GL(V)$ and $\rho_W : G \longrightarrow GL(W)$ are two irreducible \mathbb{C} -representations with characters χ_V and χ_W respectively, then

$$\langle \chi_V, \chi_W \rangle_G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \chi_W(g^{-1}) = \begin{cases} 1 & \text{if } \rho_V \sim \rho_W, \\ 0 & \text{if } \rho_V \neq \rho_W. \end{cases}$$

Proof: Choose ordered \mathbb{C} -bases $E := (e_1, \ldots, e_n)$ and $F := (f_1, \ldots, f_m)$ of V and W respectively. Then for each $g \in G$ write $Q(g) := (\rho_V(g))_E$ and $P(g) := (\rho_W(g))_F$. If $\rho_V \not\sim \rho_W$ compute

$$\langle \chi_{V}, \chi_{W} \rangle_{G} = \frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \chi_{W}(g^{-1}) = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr} \left(Q(g) \right) \operatorname{Tr} \left(P(g^{-1}) \right)$$

$$= \frac{1}{|G|} \sum_{g \in G} \left(\sum_{i=1}^{n} Q(g)_{ii} \right) \left(\sum_{j=1}^{m} P(g^{-1})_{jj} \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \underbrace{\frac{1}{|G|} \sum_{g \in G} Q(g)_{ii} P(g^{-1})_{jj}}_{0 \text{ by } (i) \text{ of } G \text{ by } (p \text{ Pluting})} = 0$$

=0 by (a) of Schur's Relations

and similarly if W = V, then P = Q and

$$\langle \chi_V, \chi_V \rangle_G = \sum_{i=1}^n \sum_{j=1}^m \underbrace{\frac{1}{|G|} \sum_{g \in G} Q(g)_{ii} Q(g^{-1})_{jj}}_{=\frac{1}{n} \delta_{ij} \delta_{ij} \text{ by (b) of Schur's Relations}} = \sum_{i=1}^n \frac{1}{n} = 1.$$

9 Consequences of the 1st Orthogonality Relations

In this section we use the 1st Orthogonality Relations in order to deduce a series of fundamental properties of the (irreducible) characters of finite groups.

Corollary 9.1 (Linear independence)

The irreducible characters of G are \mathbb{C} -linearly independent.

Proof: Assume $\sum_{i=1}^{s} \lambda_i \chi_i = 0$, where χ_1, \ldots, χ_s are pairwise distinct irreducible characters of $G, \lambda_1, \ldots, \lambda_s \in \mathbb{C}$ and $s \in \mathbb{Z}_{>0}$. Then the 1st Orthogonality Relations yield

$$0 = \langle \sum_{i=1}^{s} \lambda_{i} \chi_{i}, \chi_{j} \rangle_{G} = \sum_{i=1}^{s} \lambda_{i} \langle \chi_{i}, \chi_{j} \rangle_{G} = \lambda_{j}$$

for each $1 \le j \le s$. The claim follows.

Corollary 9.2 (Finiteness)

There are at most |C(G)| irreducible characters of G. In particular, there are only a finite number of them.

Proof: By Corollary 9.1 the irreducible characters of G are \mathbb{C} -linearly independent. By Lemma 7.7 irrreducible characters are elements of the \mathbb{C} -vector space $\mathcal{C}l(G)$. Therefore there exists at most dim_{$\mathbb{C}} <math>\mathcal{C}l(G) = |C(G)| < \infty$ of them.</sub>

Corollary 9.3 (Multiplicities)

Let $\rho_V : G \longrightarrow GL(V)$ be a \mathbb{C} -representation and let $\rho_V = \rho_{V_1} \oplus \cdots \oplus \rho_{V_s}$ be a decomposition of ρ_V into irreducible subrepresentations. Then the following assertions hold.

- (a) If $\rho_W : G \longrightarrow GL(W)$ is an irreducible \mathbb{C} -representation of G, then the multiplicity of ρ_W in $\rho_{V_1} \oplus \cdots \oplus \rho_{V_s}$ is equal to $\langle \chi_V, \chi_W \rangle_G$.
- (b) This multiplicity is independent of the choice of the chosen decomposition of ρ_V into irreducible subrepresentations.

Proof: (a) We may assume that we have chosen the labelling such that

$$ho_V=
ho_{V_1}\oplus\cdots\oplus
ho_{V_l}\oplus
ho_{V_{l+1}}\oplus\cdots\oplus
ho_{V_s}$$
 ,

where $\rho_{V_i} \sim \rho_W \forall 1 \leq i \leq l$ and $\rho_{V_j} \neq \rho_W \forall l+1 \leq j \leq s$. Thus $\chi_{V_i} = \chi_W \forall 1 \leq i \leq l$ by Lemma 7.3. Therefore the 1st Orthogonality Relations yield

$$\langle \chi_V, \chi_W \rangle_G = \sum_{i=1}^l \langle \chi_{V_i}, \chi_W \rangle_G + \sum_{j=l+1}^s \langle \chi_{V_j}, \chi_W \rangle_G = \sum_{i=1}^l \langle \chi_W, \chi_W \rangle_G + \sum_{j=l+1}^s \langle \chi_{V_j}, \chi_W \rangle_G = l.$$

(b) Obvious, since $\langle \chi_V, \chi_W \rangle_G$ depends only on V and W, but not on the chosen decomposition.

We can now prove that the converse of Lemma 7.3 holds.

Corollary 9.4 (Equality of characters)

Let $\rho_V : G \longrightarrow GL(V)$ and $\rho_W : G \longrightarrow GL(W)$ be \mathbb{C} -representations with characters χ_V and χ_W respectively. Then:

$$\chi_V = \chi_W \quad \Leftrightarrow \quad \rho_V \sim \rho_W.$$

Proof: "⇐": The sufficient condition is the statement of Lemma 7.3.

" \Rightarrow ": To prove the necessary condition decompose ρ_V and ρ_W into direct sums of irreducible subrepresentations

$$\rho_{V} = \underbrace{\rho_{V_{1,1}} \oplus \cdots \oplus \rho_{V_{1,m_{1}}}}_{\text{all } \sim \rho_{V_{1}}} \oplus \cdots \oplus \underbrace{\rho_{V_{s,1}} \oplus \cdots \oplus \rho_{V_{s,m_{s}}}}_{\text{all } \sim \rho_{V_{s}}},$$

$$\rho_{W} = \underbrace{\rho_{W_{1,1}} \oplus \cdots \oplus \rho_{W_{1,p_{1}}}}_{\text{all } \sim \rho_{V_{1}}} \oplus \cdots \oplus \underbrace{\rho_{W_{s,1}} \oplus \cdots \oplus \rho_{W_{s,p_{s}}}}_{\text{all } \sim \rho_{V_{s}}},$$

where $m_i, p_i \ge 0$ for all $1 \le i \le s$ and the ρ_{V_i} 's are pairwise non-equivalent irreducible \mathbb{C} -representations of G. (Some of the m_i, p_i 's may be zero!) Now, as we assume that $\chi_V = \chi_W$, for each $1 \le i \le s$ Corollary 9.3 yields

$$m_i = \langle \chi_V, \chi_{V_i}
angle_G = \langle \chi_W, \chi_{V_i}
angle_G = p_i$$
 ,

hence $\rho_V \sim \rho_W$.

Corollary 9.5 (Irreducibility criterion)

A C-representation $\rho_V : G \longrightarrow GL(V)$ is irreducible if and only if $\langle \chi_V, \chi_V \rangle_G = 1$.

Proof: " \Rightarrow ": holds by the 1st Orthogonality Relations.

" \Leftarrow ": As in the previous proof, write

$$\rho_{V} = \underbrace{\rho_{V_{1,1}} \oplus \cdots \oplus \rho_{V_{1,m_{1}}}}_{\text{all } \sim \rho_{V_{1}}} \oplus \cdots \oplus \underbrace{\rho_{V_{s,1}} \oplus \cdots \oplus \rho_{V_{s,m_{s}}}}_{\text{all } \sim \rho_{V_{s}}}$$

where $m_i \ge 1$ for all $1 \le i \le s$ and the ρ_{V_i} 's are pairwise non-equivalent irreducible \mathbb{C} -representations of G. Then, using the assumption, the sesquilinearity of the scalar product and the 1st Orthogonality Relations, we obtain that

$$1 = \langle \chi_V, \chi_V \rangle_G = \sum_{i=1}^s m_i^2 \langle \chi_{V_i}, \chi_{V_i} \rangle_G = \sum_{i=1}^s m_i^2.$$

Hence, w.l.o.g. we may assume that $m_1 = 1$ and $m_i = 0 \forall 2 \le i \le s$, so that $\rho_V = \rho_{V_1}$ is irreducible.

Theorem 9.6

The set Irr(G) is an orthonormal \mathbb{C} -basis (w.r.t. \langle , \rangle_G) of the \mathbb{C} -vector space $\mathcal{Cl}(G)$ of class functions on G.

Proof: We already know that Irr(G) is a \mathbb{C} -linearly independent set and also that it forms an orthonormal system of $\mathcal{C}l(G)$ w.r.t. \langle , \rangle_G . Hence it remains to prove that Irr(G) generates $\mathcal{C}l(G)$. So let $X := \langle Irr(G) \rangle_{\mathbb{C}}$ be the \mathbb{C} -subspace of $\mathcal{C}l(G)$ generated by Irr(G). It follows that

$$\mathcal{C}l(G) = X \oplus X^{\perp}$$

where X^{\perp} denotes the orthogonal of X with respect to the scalar product \langle , \rangle_G (see GDM). Thus it is enough to prove that $X^{\perp} = 0$. So let $f \in X^{\perp}$, set $\check{f} := \sum_{g \in G} \overline{f(g)}g \in \mathbb{C}G$ and we prove the following assertions:

(1) $\check{f} \in Z(\mathbb{C}G)$ (the centre of $\mathbb{C}G$): let $h \in G$ and compute

$$h\check{f}h^{-1} = \sum_{g \in G} \overline{f(g)}hg \cdot h^{-1} \stackrel{s := hgh^{-1}}{=} \sum_{s \in G} \overline{f(h^{-1}sh)}s = \sum_{s \in G} \overline{f(s)}s = \check{f}.$$

Hence $h\check{f} = \check{f}h$ and this equality extends by \mathbb{C} -linearity to the whole of $\mathbb{C}G$, so that $\check{f} \in Z(\mathbb{C}G)$.

(2) If V is a simple $\mathbb{C}G$ -module with character χ_V , then the external multiplication by \check{f} on V is scalar multiplication by $\frac{|G|}{\dim_{\mathbb{C}} V} \langle \chi_V, f \rangle_G \in \mathbb{C}$: first notice that the external multiplication by \check{f} on V, i.e. the map

$$\check{f} \cdot - : V \longrightarrow V, v \mapsto \check{f} \cdot v$$

is $\mathbb{C}G$ -linear. Indeed, for each $x \in \mathbb{C}G$ and each $v \in V$ we have

$$\check{f} \cdot (x \cdot v) = (\check{f}x) \cdot v = (x\check{f}) \cdot v = x \cdot (\check{f} \cdot v)$$

because $\check{f} \in Z(\mathbb{C}G)$. Therefore, by Schur's Lemma, there exists a scalar $\lambda \in \mathbb{C}$ such that $\check{f} \cdot - = \lambda \operatorname{Id}_V$. Moreover,

$$\lambda = \frac{1}{n} \operatorname{Tr}(\lambda \operatorname{Id}_V) = \frac{1}{n} \operatorname{Tr}(\check{f} \cdot -) = \frac{1}{n} \sum_{g \in G} \overline{f(g)} \underbrace{\operatorname{Tr}\left(\operatorname{mult. by} g \text{ on } V\right)}_{=\chi_V(g)} = \frac{1}{n} \sum_{g \in G} \overline{f(g)} \chi_V(g) = \frac{|G|}{n} \langle \chi_V, f \rangle_G.$$

(3) If V is a simple $\mathbb{C}G$ -module with character χ_V , then the external multiplication by \check{f} on V is zero: indeed, $\langle \chi_V, f \rangle_G = 0$ because $f \in X^{\perp}$ and the claim follows from (2).

(4) f = 0: indeed, as the external multiplication by \check{f} is zero on every simple $\mathbb{C}G$ -module, it is zero on every $\mathbb{C}G$ -module, because any $\mathbb{C}G$ -module can be decomposed as the direct sum of simple submodules by the Corollary to Maschke's Theorem. In particular, the external multiplication by \check{f} is zero on $\mathbb{C}G$. Hence

$$0 = \check{f} \cdot 1_{\mathbb{C}G} = \check{f} = \sum_{g \in G} \overline{f(g)}g$$

and we obtain that $\overline{f(g)} = 0$ for each $g \in G$ because G is a C-basis of CG. But then f(g) = 0 for each $g \in G$ and it follows that f = 0.

Corollary 9.7

The number of pairwise non-equivalent irreducible characters of G is equal to the number of conjugacy classes of G. In other words,

$$|\operatorname{Irr}(G)| = |C(G)|.$$

Proof: By Theorem 9.6 the set Irr(G) is a \mathbb{C} -basis of the space $\mathcal{Cl}(G)$ of class functions on G. Hence

 $|\operatorname{Irr}(G)| = \dim_{\mathbb{C}} \mathcal{C}l(G) = |\mathcal{C}(G)|$

where the second equality holds by Exercise 8.2.

Corollary 9.8

Let $f \in Cl(G)$. Then the following assertions hold:

- (a) $f = \sum_{\chi \in Irr(G)} \langle f, \chi \rangle_G \chi;$ (b) $\langle f, f \rangle_G = \sum_{\chi \in Irr(G)} \langle f, \chi \rangle_G^2;$ (c) f is a character $\iff \langle f, \chi \rangle_G \in \mathbb{Z}_{\geq 0} \quad \forall \ \chi \in Irr(G);$ and (d) $f \in Irr(G) \iff f$ is a character and $\langle f, f \rangle_G = 1.$

Proof: (a)+(b) hold for any orthonormal basis with respect to a given scalar product (GDM).

- (c) ' \Rightarrow ': If f is a character, then by Corollary 9.3 the complex number $\langle f, \chi_i \rangle_G$ is the multiplicity of χ_i as a constituent of *f*, hence a non-negative integer.
 - '⇐': If for each $\chi \in Irr(G)$, $\langle f, \chi \rangle_G =: m_{\chi} \in \mathbb{Z}_{\geq 0}$, then f is the character of the representation

$$\rho := \bigoplus_{\chi \in \mathsf{Irr}(G)} \bigoplus_{j=1}^{m_{\chi}} \rho(\chi)$$

where $\rho(\chi)$ is a \mathbb{C} -representation affording the character χ .

(d) The necessary condition is given by the 1st Orthogonality Relations. The sufficient condition follows from (b) and (c).

Exercise 9.9 (Exercise 12, Sheet 3)

Let V be a $\mathbb{C}G$ -module (finite dimensional) with character χ_V . Consider the \mathbb{C} -subspace $V^G :=$ $\{v \in V \mid g \cdot v = v \ \forall g \in G\}$. Prove that

$$\dim_{\mathbb{C}} V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)$$

- 1. considering the scalar product of χ_V with the trivial character $\mathbf{1}_G$;
- 2. seeing V^G as the image of the projector $\pi: V \twoheadrightarrow V$, $v \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot v$.

10 The Regular Character

Recall from Example 1(d) that a finite G-set X induces a permutation representation

$$\begin{array}{cccc} \rho_{\chi} \colon & G & \longrightarrow & \operatorname{GL}(V) \\ & g & \mapsto & \rho_{\chi}(g) \colon V \longrightarrow V, e_{\chi} \mapsto e_{g \cdot \chi} \end{array}$$

where *V* is a \mathbb{C} -vector space with basis $\{e_x \mid x \in X\}$ (i.e. indexed by the set *X*). Given $g \in G$ write $Fix_X(g) := \{x \in X \mid g \cdot x = x\}$ for the set of fixed points of *g* on *X*.

Proposition 10.1 (Character of a permutation representation)

Let X be a G-set and let χ_{χ} denote the character of the associated permutation representation ρ_{χ} . Then

$$\chi_{\chi}(g) = |\operatorname{Fix}_{\chi}(g)| \quad \forall g \in G.$$

Proof: Let $g \in G$. The diagonal entries of the matrix of $\rho_X(g)$ expressed in the basis $B := \{e_x \mid x \in X\}$ are:

$$\left(\left(\rho_X(g)\right)_B\right)_{xx} = \begin{cases} 1 & \text{if } g \cdot x = x \\ 0 & \text{if } g \cdot x \neq x \end{cases} \quad \forall x \in X.$$

Hence taking traces, we get $\chi_{\chi}(g) = \sum_{x \in X} \left(\left(\rho_{\chi}(g) \right)_{B} \right)_{xx} = |\operatorname{Fix}_{\chi}(g)|.$

For the action of G on itself by left multiplication, by Example 1(d), $\rho_{\chi} = \rho_{reg}$ is the regular representation of G. In this case, we obtain the values of the *regular character*.

Corollary 10.2 (The regular character)

Let $\chi_{\rm reg}$ denote the character of the regular representation $ho_{\rm reg}$ of G. Then

$$\chi_{\rm reg}(g) = \begin{cases} |G| & \text{if } g = 1_G, \\ 0 & \text{otherwise.} \end{cases}$$

Proof: This follows immediately from Proposition 10.1 since $Fix_G(1_G) = G$ and $Fix_G(g) = \emptyset$ for every $g \in G \setminus \{1_G\}$.

Theorem 10.3 (Decomposition of the regular representation)

The multiplicity of an irreducible \mathbb{C} -representation of G as a constituent of ρ_{reg} equals its degree. In other words,

$$\chi_{\operatorname{reg}} = \sum_{\chi \in \operatorname{Irr}(G)} \chi(1) \chi$$

Proof: By Corollary 9.3 we have $\chi_{\text{reg}} = \sum_{\chi \in \text{Irr}(G)} \langle \chi_{\text{reg}}, \chi \rangle_G \chi$, where for each $\chi \in \text{Irr}(G)$,

$$\langle \chi_{\text{reg}}, \chi \rangle_G = \frac{1}{|G|} \sum_{g \in G} \underbrace{\chi_{\text{reg}}(g)}_{\substack{=\delta_{1g}|G|\\\text{by Cor. 10.2}}} \overline{\chi(g)} = \frac{|G|}{|G|} \chi(1) = \chi(1).$$

The claim follows.

Remark 10.4

In particular, the theorem tells us that each irreducible \mathbb{C} -representation (considered up to equivalence) occurs with multiplicity at least one in a decomposition of the regular representation into irreducible subrepresentations.

Corollary 10.5 (Degree formula)

The order of the group G is given in terms of its irreducible character by the formula

$$|G| = \sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^2.$$

Proof: Evaluating the regular character at $1 \in G$ yields

$$|G| = \chi_{\operatorname{reg}}(1) = \sum_{\chi \in \operatorname{Irr}(G)} \chi(1)\chi(1) = \sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^2.$$

Exercise 10.6 (Exercise 13(b), Sheet 4)

Use the degree formula to give a second proof of Proposition 6.1. In other words, prove that if G is a finite abelian group, then

 $Irr(G) = \{ linear characters of G \}.$