Chapter 3. Characters of Finite Groups

We now introduce the concept of a *character* of a finite group. These are functions $\chi: G \longrightarrow \mathbb{C}$, obtained from the representations of the group G by taking traces. Characters have many remarkable properties, and they are the fundamental tools for performing computations in representation theory. They encode a lot of information about the group itself and about its representations in a more compact and efficient manner.

Notation: throughout this chapter, unless otherwise specified, we let:

- · *G* denote a finite group;
- \cdot $K:=\mathbb{C}$ be the field of complex numbers; and
- · V denote a \mathbb{C} -vector space such that $\dim_{\mathbb{C}}(V) < \infty$.

In general, unless otherwise stated, all groups considered are assumed to be finite and all \mathbb{C} -vector spaces / modules over the group algebra considered are assumed to be finite-dimensional.

7 Characters

Definition 7.1 (*Character, linear character*)

Let $\rho_V: G \longrightarrow \operatorname{GL}(V)$ be a \mathbb{C} -representation. The character of ρ_V is the function

$$\begin{array}{cccc} \chi_V\colon & G & \longrightarrow & \mathbb{C} \\ & g & \mapsto & \chi_V(g) := \operatorname{Tr}\left(\rho_V(g)\right) \ . \end{array}$$

We also say that ρ_V (or the $\mathbb{C}G$ -module V) **affords** the character χ_V . If the degree of ρ_V is one, then χ_V is called a **linear** character.

Remark 7.2

- (a) Again, we allow ourselves to transport terminology from representations to characters. For example, if ρ_V is irreducible (faithful,...), then the character χ_V is also called **irreducible** (faithful,...).
 - With this terminology, it makes sense to let Irr(G) denote the set of irreducible characters of G
- (b) Recall that in $linear\ algebra$ (see GDM) the trace of a linear endomorphism φ may be con-

cretely computed by taking the trace of the matrix of φ in a chosen basis of the vector space, and this is independent of the choice of the basis.

Thus to compute characters: choose an ordered basis B of V and obtain $\forall q \in G$:

$$\chi_V(g) = \operatorname{Tr}\left(
ho_V(g)\right) = \operatorname{Tr}\left(\left(
ho_V(g)
ight)_B\right)$$

(c) For a matrix representation $R: G \longrightarrow GL_n(\mathbb{C})$, the character of R is then

$$\chi_R : G \longrightarrow \mathbb{C}$$
 $g \mapsto \chi_R(g) := \operatorname{Tr}(R(g))$.

Example 3

The character of the trivial representation of G is the function $1_G: G \longrightarrow \mathbb{C}$, $g \mapsto 1$ and is called the trivial character of *G*.

Lemma 7.3

Equivalent representations have the same character.

Proof: If $\rho_V: G \longrightarrow \operatorname{GL}(V)$ and $\rho_W: G \longrightarrow \operatorname{GL}(W)$ are two $\mathbb C$ -representations, and $\alpha: V \longrightarrow W$ is an isomorphism of representations, then

$$\rho_W(g) = \alpha \circ \rho_V(g) \circ \alpha^{-1} \quad \forall \ g \in G.$$

Now, by the properties of the trace (GDM) for two \mathbb{C} -endomorphisms β , γ of V we have $\text{Tr}(\beta \circ \gamma) =$ $Tr(\gamma \circ \beta)$, hence for every $g \in G$ we have

$$\chi_W(g) = \operatorname{Tr}\left(\rho_W(g)\right) = \operatorname{Tr}\left(\alpha \circ \rho_V(g) \circ \alpha^{-1}\right) = \operatorname{Tr}\left(\rho_V(g) \circ \underbrace{\alpha^{-1} \circ \alpha}_{=\operatorname{Id}_V}\right) = \operatorname{Tr}\left(\rho_V(g)\right) = \chi_V(g) \ .$$

Properties 7.4 (*Elementary properties*)

Let $\rho_V: G \longrightarrow \operatorname{GL}(V)$ be a \mathbb{C} -representation and let $g \in G$. Then the following assertions hold:

- (a) $\chi_V(1_G) = \dim_{\mathbb{C}} V$; (b) $\chi_V(g) = \varepsilon_1 + \ldots + \varepsilon_n$, where $\varepsilon_1, \ldots, \varepsilon_n$ are o(g)-th roots of unity in \mathbb{C} and $n = \dim_{\mathbb{C}} V$; (c) $|\chi_V(g)| \leq \chi_V(1_G)$; (d) $\chi_V(g^{-1}) = \overline{\chi_V(g)}$; (e) if $\rho_V = \rho_{V_1} \oplus \rho_{V_2}$ is the direct sum of two subrepresentations, then $\chi_V = \chi_{V_1} + \chi_{V_2}$.

Proof:

- (a) $\rho_V(1_G) = \operatorname{Id}_V$ because representations are group homomorphisms, hence $\chi_V(1_G) = \dim_{\mathbb{C}} V$.
- (b) This follows directly from the diagonalisation theorem (Theorem 6.2).
- (c) By (b) we have $\chi_V(q) = \varepsilon_1 + \ldots + \varepsilon_n$, where $\varepsilon_1, \ldots, \varepsilon_n$ are roots of unity in $\mathbb C$. Hence, applying the triangle inequality repeatedly, we obtain that

$$|\chi_V(g)| = |\varepsilon_1 + \ldots + \varepsilon_n| \leqslant \underbrace{|\varepsilon_1|}_{=1} + \ldots + \underbrace{|\varepsilon_n|}_{=1} = \dim_{\mathbb{C}} V \stackrel{\text{(a)}}{=} \chi_V(1_G).$$

25

(d) Again by the diagonalisation theorem, there exists an ordered \mathbb{C} -basis B of V and o(g)-th roots of unity $\varepsilon_1,\ldots,\varepsilon_n\in\mathbb{C}$ such that

$$(\rho_V(g))_B = \begin{bmatrix} \varepsilon_1 & 0 & \cdots & 0 \\ 0 & \varepsilon_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \varepsilon_n \end{bmatrix}.$$

Therefore

$$(\rho_{V}(g^{-1}))_{B} = \begin{bmatrix} \varepsilon_{1}^{-1} & 0 & \cdots & 0 \\ 0 & \varepsilon_{2}^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & \varepsilon_{n}^{-1} \end{bmatrix} = \begin{bmatrix} \overline{\varepsilon_{1}} & 0 & \cdots & 0 \\ 0 & \overline{\varepsilon_{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots &$$

and it follows that $\chi_V(g^{-1}) = \overline{\varepsilon_1} + \ldots + \overline{\varepsilon_n} = \overline{\varepsilon_1 + \ldots + \varepsilon_n} = \overline{\chi_V(g)}$.

(e) For i=1,2 let B_i be an ordered \mathbb{C} -basis of V_i and consider the \mathbb{C} -basis $B:=B_1\sqcup B_2$ of V. Then, by Remark 3.2 for every $g\in G$ we have

$$\left(
ho_V(g)
ight)_B = \left[egin{array}{c|c} \left(
ho_{W_1}(g)
ight)_{B_1} & 0 \ \hline & & \left(
ho_{W_2}(g)
ight)_{B_2} \end{array}
ight],$$

$$\text{hence } \chi_V(g) = \operatorname{Tr} \left(\rho_V(g) \right) = \operatorname{Tr} \left(\rho_{V_1}(g) \right) + \operatorname{Tr} \left(\rho_{V_2}(g) \right) = \chi_{V_1}(g) + \chi_{V_2}(g) \,.$$

Corollary 7.5

Any character is a sum of irreducible characters.

Proof: By Corollary 3.6 to Maschke's theorem, any \mathbb{C} -representation can be written as the direct sum of irreducible subrepresentations. Thus the claim follows from Properties 7.4(e).

Notation 7.6

Recall from group theory ($Einfürung\ in\ die\ Algebra$) that a group G acts on itself by conjugation via

$$G \times G \longrightarrow G$$

 $(g,x) \mapsto gxg^{-1} =: {}^{g}x.$

The orbits of this action are the *conjugacy classes* of G, we denote them by $[x] := \{gx \mid g \in G\}$, and we write $C(G) := \{[x] \mid x \in G\}$ for the set of all conjugacy classes of G.

The stabiliser of $x \in G$ is its *centraliser* $C_G(x) = \{g \in G \mid gx = x\}$ and the orbit-stabiliser theorem yields

$$|C_G(x)| = \frac{|G|}{|[x]|}.$$

Moreover, a function $f: G \longrightarrow \mathbb{C}$ which is constant on each conjugacy class of G, i.e. such that $f(qxq^{-1}) = f(x) \ \forall \ q, x \in G$, is called a **class function** (on G).

Lemma 7.7

Characters are class functions.

Proof: Let $\rho_V: G \longrightarrow \operatorname{GL}(V)$ be a \mathbb{C} -representation and let χ_V be its character. Again, because by the properties of the trace (GDM) $\operatorname{Tr}(\beta \circ \gamma) = \operatorname{Tr}(\gamma \circ \beta)$ for all \mathbb{C} -endomorphisms β, γ of V, it follows that for all $g, x \in G$ we have

$$\begin{split} \chi_V(gxg^{-1}) &= \operatorname{Tr}\left(\rho_V(gxg^{-1})\right) = \operatorname{Tr}\left(\rho_V(g)\rho_V(x)\rho_V(g)^{-1}\right) \\ &= \operatorname{Tr}\left(\rho_V(x)\underbrace{\rho_V(g)\rho_V(g)^{-1}}_{=\operatorname{Id}_V}\right) = \operatorname{Tr}\left(\rho_V(x)\right) = \chi_V(x) \,. \end{split}$$

Exercise 7.8 (Exercise 9, Sheet 3)

Let $\rho_V:G\longrightarrow \mathrm{GL}(V)$ be a $\mathbb C$ -representation and let χ_V be its character. Prove the following statements.

- (a) If $g \in G$ is conjugate to g^{-1} , then $\chi_V(g) \in \mathbb{R}$.
- (b) If $g \in G$ is an element of order 2, then $\chi_V(g) \in \mathbb{Z}$ and $\chi_V(g) \equiv \chi_V(1) \pmod{2}$.

Exercise 7.9 (The dual representation / the dual character [Exercise 10, Sheet 3])

Let $\rho_V : G \longrightarrow \operatorname{GL}(V)$ be a \mathbb{C} -representation.

- (a) Prove that:
 - (i) the dual space $V^* := \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ is endowed with the structure of a $\mathbb{C}G$ -module via

$$\begin{array}{ccc} G \times V^* & \longrightarrow & V^* \\ (g, f) & \mapsto & g.f \end{array}$$

where $(q.f)(v) := f(q^{-1}v) \ \forall \ v \in V;$

- (ii) the character of the associated \mathbb{C} -representation ρ_{V^*} is then $\chi_{V^*}=\overline{\chi_V}$; and
- (iii) if ρ_V decomposes as a direct sum $\rho_{V_1}\oplus\rho_{V_2}$ of two subrepresentations, then $\rho_{V^*}=\rho_{V^*}\oplus\rho_{V^*}$.
- (b) Determine the duals of the 3 irreducible representations of S_3 given in Example 2(d).

8 Orthogonality of Characters

We are now going to make use of results from the linear algebra (GDM) on the \mathbb{C} -vector space of \mathbb{C} -valued functions on G in order to develop further fundamental properties of characters.

Notation 8.1

We let $\mathcal{F}(G,\mathbb{C}):=\{f:G\longrightarrow\mathbb{C}\mid f \text{ function}\}$ denote the \mathbb{C} -vector space of \mathbb{C} -valued functions on G. Clearly $\dim_{\mathbb{C}}\mathcal{F}(G,\mathbb{C})=|G|$ because $\{\delta_g:G\longrightarrow\mathbb{C},h\mapsto\delta_{gh}\mid g\in G\}$ is a \mathbb{C} -basis (see GDM). Set $\mathcal{C}l(G):=\{f\in\mathcal{F}(G,\mathbb{C})\mid f \text{ is a class function}\}$. This is clearly a \mathbb{C} -subspace of $\mathcal{F}(G,\mathbb{C})$, called the **space of class functions on** G.

27

Exercise 8.2 (Exercise 11, Sheet 3)

Find a \mathbb{C} -basis of $\mathcal{C}l(G)$ and deduce that $\dim_{\mathbb{C}}\mathcal{C}l(G)=|C(G)|$.

Proposition 8.3

The binary operation

$$\langle , \rangle_G \colon \quad \mathcal{F}(G, \mathbb{C}) \times \mathcal{F}(G, \mathbb{C}) \quad \longrightarrow \quad \mathbb{C}$$

$$(f_1, f_2) \qquad \mapsto \quad \langle f_1, f_2 \rangle_G := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$$

is a scalar product on $\mathcal{F}(G,\mathbb{C})$.

Proof: It is straightforward to check that $\langle \, , \, \rangle_G$ is sesquilinear and Hermitian (Exercise 11, Sheet 3); it is positive definite because for every $f \in \mathcal{F}(G,\mathbb{C})$,

$$\langle f, f \rangle = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{f(g)} = \frac{1}{|G|} \sum_{g \in G} |\underbrace{f(g)}|^2 \ge 0$$

and moreover $\langle f, f \rangle = 0$ if and only if f = 0.

Remark 8.4

Obviously, the scalar product \langle , \rangle_G restricts to a scalar product on $\mathcal{C}l(G)$. Moreover, if f_2 is a character of G, then by Property 7.4(d) we can write

$$\langle f_1, f_2 \rangle_G = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)} = \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1}).$$