
Chapter 2. The Group Algebra and Its Modules

We now introduce the concept of a KG-module, and show that this more modern approach is equivalent
to the concept of a K -representation of a given finite group G. Some of the material in the remainder
of these notes will be presented in terms of KG-modules. As we will soon see with our second funda-
mental result – Schur’s Lemma – there are several advantages to this approach to representation theory.

Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;

¨ K denote a field of arbitrary characteristic; and

¨ V denote a K -vector space such that dimK pV q † 8.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K -vector
spaces / modules over the group algebra considered are assumed to be finite-dimensional.

4 Modules over the Group Algebra
Lemma-Definition 4.1 (Group algebra)

The group ring KG is the ring whose elements are the K -linear combinations
∞

�PG λ�� with λ� P K ,
and addition and multiplication are given by

ÿ

�PG
λ�� `

ÿ

�PG
µ�� “

ÿ

�PG
pλ� ` µ�q� and

` ÿ

�PG
λ��

˘
¨
` ÿ

�PG
µ��

˘
“

ÿ

���PG
pλ�µ�q��

respectively. In fact KG is a K -vector space with basis G, hence a K -algebra. Thus we usually
call KG the group algebra of G over K rather than simply group ring.

Note: In Definition 4.1, the field K can be replaced with a commutative ring R . E.g. if R “ Z, then
ZG is called the integral group ring of G.

Proof : By definition KG is a K -vector space with basis G, and the multiplication in G is extended by
K -bilinearity to the given multiplication ¨ : KG ˆ KG ›Ñ KG. It is then straightforward to check that
KG bears both the structures of a ring and of a K -vector space. Finally, axiom (A3) of K -algebras (see
Appendix B) follows directly from the definition of the multiplication and the commutativity of K .
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Remark 4.2
Clearly 1KG “ 1G , dimK pKGq “ |G|, and KG is commutative if and only if G is an abelian group.

Proposition 4.3
(a) Any K -representation ρ : G ›Ñ GLpV q of G gives rise to a KG-module structure on V , where

the external composition law is defined by the map

¨ : KG ˆ V ›Ñ V
p
∞

�PG λ��� �q fiÑ p
∞

�PG λ��q ¨ � :“
∞

�PG λ�ρp�qp�q .

(b) Conversely, every KG-module pV � `� ¨q defines a K -representation

ρV : G ›Ñ GLpV q

� fiÑ ρV p�q : V ›Ñ V � � fiÑ ρV p�qp�q :“ � ¨ �

of the group G.

Proof : (a) Since V is a K -vectore space it is equipped with an internal addition ` such that pV � `q is an
abelian group. It is then straightforward to check that the given external composition law defined
above verifies the KG-module axioms.

(b) A KG-module is in particular a K -vector space for the scalar multiplication defined for all λ P K
and all � P V by

λ� :“ p λ 1Gloomoon
PKG

q ¨ � �

Moreover, it follows from the KG-module axioms that ρV p�q P GLpV q and also that

ρV p�1�2q “ ρV p�1q ˝ ρV p�2q

for all �1� �2 P G, hence ρV is a group homomorphism.
See [Exercise 7, Sheet 2] for the details (Hint: use the remark below!).

Remark 4.4
In fact in Proposition 4.3(a) checking the KG-module axioms is equivalent to checking that for all
�� � P G, λ P K and �� � P V :

(1) p��q ¨ � “ � ¨ p� ¨ �q;

(2) 1G ¨ � “ � ;

(4) � ¨ p� ` �q “ � ¨ � ` � ¨ � ;

(3) � ¨ pλ�q “ λp� ¨ �q “ pλ�q ¨ � ,
or in other words, that the binary operation

¨ : G ˆ V ›Ñ V
p�� �q fiÑ � ¨ � :“ ρp�qp�q

is a K -linear action of the group G on V . Indeed, the external multiplication of KG on V is just
the extension by K -linearity of the latter map. For this reason, sometimes, KG-modules are also
called G-vector spaces. See [Exercise 6, Sheet 2] for the details.
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Lemma 4.5
Two representations ρ1 : G ›Ñ GLpV1q and ρ2 : G ›Ñ GLpV2q are equivalent if and only if V1 – V2
as KG-modules.

Proof : If ρ1 „ ρ2 and α : V1 ›Ñ V2 is a K -isomorphism such that ρ2p�q “ α ˝ ρ1p�q ˝ α´1 for each � P G,
then by Proposition 4.3(a) for every � P V1 and every � P G we have

� ¨ αp�q “ ρ2p�qpαp�qq “ αpρ1p�qp�qq “ αp� ¨ �q �

Hence α is a KG-isomorphism.
Conversely, if α : V1 ›Ñ V2 is a KG-isomorphism, then certainly it is a K -homomorphism and for each
� P G and by Proposition 4.3(b) for each � P V2 we have

α ˝ ρ1p�q ˝ α´1
p�q “ αpρ1p�qpα´1

p�qq “ αp� ¨ α´1
p�qq “ � ¨ αpα´1

p�qq “ � ¨ � “ ρ2p�qp�q �

hence ρ2p�q “ α ˝ ρ1p�q ˝ α´1 for each � P G.

Remark 4.6 (Dictionary)
More generally, through Proposition 4.3, we may transport terminology and properties from KG-
modules to representations and conversely.

This lets us build the following dictionary:

R�������������� M������

K -representation of G –Ñ KG-module
degree –Ñ K -dimension
homomorphism of representations –Ñ homomorphism of KG-modules
subrepresentation / G-invariant subspace –Ñ KG-submodule
direct sum of representations ρV1

‘ ρV2
–Ñ direct sum of KG-modules V1 ‘ V2

irreducible representation –Ñ simple (“ irreducible) KG-module
the trivial representation –Ñ the trivial KG-module K
the regular representation of G –Ñ the regular KG-module KG
Corollary 3.6 to Maschke’s Theorem: –Ñ Corollary 3.6 to Maschke’s Theorem:
If charpK q - |G|, then every K -represen- If charpK q - |G|, then every KG-module
tation of G is completely reducible. is semisimple.

� � � � � �

Virtually, any result, we have seen in Chapter 1, can be reinterpreted using this translation table.
E.g. Property 2.4(c) tells us that the image and the kernel of homomorphisms of KG-modules are
KG-submodules, ...

In this lecture, we introduce the equivalence between representations and modules for the sake
of completeness. In the sequel we keep on stating results in terms of representations as much as
possible. However, we will use modules when we find them more fruitful. In contrast, the M.Sc.
Lecture Representation Theory will consistently use the module approach to representation theory.


