Example 16

E.g. the tensor product of two 2×2 -matrices is of the form

$$
\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]\otimes\left[\begin{array}{cc}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ccc}ae & af & be & bf \\ag & ah & bg & bh \\ce & cf & de & df \\cg & ch & dg & dh\end{array}\right]\in M_4(K).
$$

Lemma-Definition C.4 (*Tensor product of K-endomorphisms***)**

If $f_1 : V \longrightarrow V$ and $f_2 : W \longrightarrow W$ are two endomorphisms of finite-dimensional *K*-vector spaces *V* and *W*, then the **tensor product** of f_1 and f_2 is the *K*-endomorphism $f_1 \otimes f_2$ of $V \otimes_K W$ defined by

> $f_1 \otimes f_2$: $V \otimes_K W \longrightarrow V \otimes_K W$ $v \otimes w \longrightarrow (t_1 \otimes t_2)(v \otimes w) := t_1(v) \otimes t_2(w)$.

Furthermore, $Tr(f_1 \otimes f_2) = Tr(f_1) Tr(f_2)$.

Proof: It is straightforward to check that $f_1 \otimes f_2$ is *K*-linear. Moreover, choosing ordered bases $B_V =$ $\{v_1, \ldots, v_n\}$ and $B_W = \{w_1, \ldots, w_m\}$ of *V* and *W* respectively, it is straightforward from the definitions to check that the matrix of $f_1 \otimes f_2$ w.r.t. the ordered basis $B_{V \otimes_K W} = \{v_i \otimes w_j \mid 1 \leq i \leq n, 1 \leq j \leq m\}$ is the Kronecker product of the matrices of f_1 w.r.t. B_V and of f_2 w.r.t. to B_W . The trace formula follows.

D Integrality and Algebraic Integers

We recall/introduce here some notions of the *Commutative Algebra* lecture on integrality of ring elements. However, we are essentially interested in the field of complex numbers and its subring **Z**.

Definition D.1 (*integral element, algebraic integer***)**

Let *A* be a subring of a commutative ring *B*.

- (a) An element $b \in B$ is said to be **integral** over *A* if *b* is a root of monic polynomial $f \in A[X]$, that is $f(b) = 0$ and *f* is a polynomial of the form $X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ with $a_{n-1},...,a_0 \in A$. If all the elements of *B* are integral over *A*, then we say that *B* is **integral** over *A*.
- (b) If $A = \mathbb{Z}$ and $B = \mathbb{C}$, an element $b \in \mathbb{C}$ integral over \mathbb{Z} is called an **algebraic integer**.

Theorem D.2

Let $A \subseteq B$ be a subring of a commutative ring and let $b \in B$. TFAE:

- (a) *b* is integral over *A*;
- (b) the ring $A[b]$ is finitely generated as an A -module;
- (c) there exists a subring *S* of *B* containing *A* and *b* which is finitely generated as an *A*-module.

Recall that $A[b]$ denotes the subring of B generated by A and b .

Proof :

- (a) \Rightarrow (b): Let $a_0, \ldots, a_{n-1} \in A$ such that $b^n + a_{n-1}b^{n-1} + \ldots + a_1b + a_0 = 0$ (*). We prove that *A*[b] is generated as an *A*-module by 1, b, ..., b^{n-1} , i.e. $A[b] = A + Ab + ... + Ab^{n-1}$. Therefore it suffices to prove that $b^k \in A + Ab + \ldots + Ab^{n-1} =: C$ for every $k \geq n$. We proceed by induction on k:
	- \cdot If $k = n$, then (*) yields $b^n = -a_{n-1}b^{n-1} \ldots a_1b a_0 \in C$.
	- \cdot If $k > n$, then we may assume that $b^n, \ldots, b^{k-1} \in C$ by the induction hypothesis. Hence multiplying $(*)$ by b^{k-n} yields

$$
b^k = -a_{n-1}b^{k-1} - \ldots - a_1b^{k-n+1} - a_0b^{k-n} \in C
$$

because $a_{n-1},...,a_0, b^{k-1},...,b^{k-n} \in C$.

 $(b) \Rightarrow (c):$ Set $S := A[b]$.

(c) \Rightarrow (a): By assumption $A[b] \subseteq S = Ax_1 + ... + Ax_n$, where $x_1, ..., x_n \in B$, $n \in \mathbb{Z}_{>0}$. Thus for each $1 \leq i \leq n$ we have $bx_i = \sum_{j=1}^n a_{ij}x_j$ for certain $a_{ij} \in A$. Set $x := (x_1, \ldots, x_n)^\text{Tr}$ and consider the $n \times n$ -matrix $M := bl_n - (a_{ij})_{ij} \in M_n(S)$. Hence

$$
Mx = 0 \qquad \Rightarrow \quad \text{adj}(M)Mx = 0,
$$

where $adj(M)$ is the adjugate matrix of M (i.e. the transpose of its cofactor matrix). By the properties of the determinant (GDM), we have

$$
adj(M)M = det(M)I_n,
$$

Hence $\det(M)x_i = 0$ for each $1 \leq i \leq n$, and so $\det(M)s = 0$ for every $s \in S$. As $1 \in S$ this gives us det $(M) = 0$. It now follows from the definition of M that *b* is a root of the monic polynomial $det(X \cdot I_n - (a_{ij})_{ij}) \in A[X]$, thus integral over *A*.

Corollary D.3

Let $A \subseteq B$ be a subring of a commutative ring. Then $\{b \in B \mid b \text{ integral over } A\}$ is a subring of *B*.

Proof: We need to prove that if $b, c \in B$ are integral over A, then so are $b + c$ and $b \cdot c$. By Theorem D.2(b) and its proof both $A[b] = A + Ab + ... + Ab^{n-1}$ and $A[c] = A + Ac + ... + Ac^{m-1}$ for some $n, m \in \mathbb{Z}_{>0}$. Thus $S := A[b, c]$ is finitely generated as an *A*-module by $\{b^c c^j \mid 0 \leqslant i \leqslant n, 0 \leqslant j \leqslant m\}$. Theorem D.2(c) now yields that $b + c$ and $b \cdot c$ are integral over *A* because they belong to *S*.

Example 17

All the elements of the ring $\mathbb{Z}[i]$ of Gaussian intergers are integral over \mathbb{Z} , hence algebraic integers, since *i* is a root of $X^2 + 1 \in \mathbb{Z}[X]$.

Lemma D.4

If $b \in \mathbb{Q}$ is integral over \mathbb{Z} , then $b \in \mathbb{Z}$.

Proof: We may write $b = \frac{c}{d}$, where *c* and *d* are coprime integers and $d \ge 1$. By the hypothesis there exist $a_0, \ldots, a_{n-1} \in \mathbb{Z}$ such that

$$
\frac{c^n}{d^n} + a_{n-1}\frac{c^{n-1}}{d^{n-1}} + \ldots + a_1\frac{c}{d} + a_0 = 0,
$$

hence

$$
cn + \underbrace{da_{n-1}c^{n-1} + \ldots + d^{n-1}a_1 + d^n a_0}_{\text{divisible by }d} = 0.
$$

Thus $d \mid c^n$. As $gcd(c, d) = 1$ and $d \ge 1$ this is only possible if $d = 1$, and we deduce that $b \in \mathbb{Z}$.

Clearly, the aforementionnend lemma can be generalised to integral domains (=Integritätsring) and their field of fractions.

П