Appendix: Complements on Algebraic Structures

This appendix provides a short recap / introduction to some of the basic notions of module theory used in this lecture. Tensor products of vector spaces and algebraic integers are also recapped.

Reference:

[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American Mathematical Society (AMS), 2010.

A Modules

Notation: Throughout this section we let $R = (R, +, \cdot)$ denote a unital associative ring.

Definition A.1 (Left R-module)

A left *R*-module is an ordered triple $(M, +, \cdot)$, where *M* is a set endowed with an internal composition law

$$\begin{array}{cccc} +: & M \times M & \longrightarrow & M \\ & & (m_1, m_2) & \mapsto & m_1 + m_2 \end{array}$$

and an external composition law (or scalar multiplication)

satisfying the following axioms:

(M1) (M, +) is an abelian group;

(M2) $(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$ for every $r_1, r_2 \in R$ and every $m \in M$;

(M3) $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$ for every $r \in R$ and every $m_1, m_2 \in M$;

(M4) $(rs) \cdot m = r \cdot (s \cdot m)$ for every $r, s \in R$ and every $m \in M$.

(M5) $1_R \cdot m = m$ for every $m \in M$.

Remark A.2

- (a) Note that in this definition both the addition in the ring R and in the module M are denoted with the same symbol. Similarly both the internal multiplication in the ring R and the external multiplication in the module M are denoted with the same symbol. This is standard practice and should not lead to confusion.
- (b) **Right** *R*-modules can be defined analogously using a *right* external composition law $\cdot : M \times R \longrightarrow R, (m, r) \mapsto m \cdot r.$
- (c) Unless otherwise stated, in this lecture we always work with left modules. Hence we simply write "*R*-module" to mean "left *R*-module", and as usual with algebraic structures, we simply denote *R*-modules by their underlying sets.
- (d) We often write rm instead of $r \cdot m$.

Example A.3

- (a) Modules over rings satisfy the same axioms as vector spaces over fields. Hence: vector spaces over a field K are K-modules, and conversely.
- (b) Abelian groups are Z-modules, and conversely.(Check it! What is the external composition law?)
- (b) If the ring R is commutative, then any right module can be made into a left module by setting r ⋅ m := m ⋅ r ∀ r ∈ R, ∀ m ∈ M, and conversely.
 (Check it! Where does the commutativity come into play?)

Definition A.4 (*R*-submodule)

An *R*-submodule of an *R*-module *M* is a subgroup $U \leq M$ such that $r \cdot u \in U \forall r \in R, \forall u \in U$.

Properties A.5 (Direct sum of R-submodules)

If U_1 , U_2 are *R*-submodules of an *R*-module *M*, then so is $U_1 + U_2 := \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}$. Such a sum $U_1 + U_2$ is called a **direct sum** if $U_1 \cap U_2 = \{0\}$ and in this case we write $U_1 \oplus U_2$.

Definition A.6 (Morphisms)

A (homo)morphism of *R*-modules (or an *R*-linear map, or an *R*-homomorphism) is a map of *R*-modules $\varphi : M \longrightarrow N$ such that:

(i)
$$\varphi(m_1 + m_2) = \varphi(m_1) + \varphi(m_2) \ \forall \ m_1, m_2 \in M$$
; and

(ii)
$$\varphi(r \cdot m) = r \cdot \varphi(m) \ \forall \ r \in R, \ \forall \ m \in M.$$

A bijective morphism of *R*-modules is called an **isomorphism** (or an *R*-**isomorphism**), and we write $M \cong N$ if there exists an *R*-isomorphism between *M* and *N*.

A morphism from an *R*-module to itself is called an **endomorphism** and a bijective endomorphism is called an **automorphism**.

Properties A.7

If $\varphi: M \longrightarrow N$ is a morphism of *R*-modules, then the kernel

$$\ker(\varphi) := \{ m \in \mathcal{M} \mid \varphi(m) = 0_N \}$$

of φ is an *R*-submodule of *M* and the image

$$\operatorname{Im}(\varphi) := \varphi(M) = \{\varphi(m) \mid m \in M\}$$

of φ is an *R*-submodule of *N*. If M = N and φ is invertible, then the inverse is the usual set-theoretic *inverse map* φ^{-1} and is also an *R*-homomorphism.

Notation A.8

Given *R*-modules *M* and *N*, we set $\text{Hom}_R(M, N) := \{\varphi : M \longrightarrow N \mid \varphi \text{ is an } R\text{-homomorphism}\}$. This is an abelian group for the pointwise addition of maps:

$$\begin{array}{ccc} +: & \operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(M, N) & \longrightarrow & \operatorname{Hom}_{R}(M, N) \\ & (\varphi, \psi) & \mapsto & \varphi + \psi : M \longrightarrow N, \, m \mapsto \varphi(m) + \psi(m) . \end{array}$$

In case N = M, we write $\text{End}_R(M) := \text{Hom}_R(M, M)$ for the set of endomorphisms of M. This is a ring for the pointwise addition of maps and the usual composition of maps.

Lemma-Definition A.9 (Quotients of modules)

Let U be an R-submodule of an R-module M. The quotient group M/U can be endowed with the structure of an R-module in a natural way via the external composition law

$$R \times M/U \longrightarrow M/U$$

(r, m + U) \longmapsto r · m + U

The canonical map $\pi : M \longrightarrow M/U, m \mapsto m + U$ is *R*-linear and we call it the **canonical** (or **natural**) homomorphism.

Proof: Similar proof as for groups/rings/vector spaces/...

Theorem A.10 (The universal property of the quotient and the isomorphism theorems)

(a) Universal property of the quotient: Let $\varphi : M \longrightarrow N$ be a homomorphism of *R*-modules. If *U* is an *R*-submodule of *M* such that $U \subseteq \ker(\varphi)$, then there exists a unique *R*-module homomorphism $\overline{\varphi} : M/U \longrightarrow N$ such that $\overline{\varphi} \circ \pi = \varphi$, or in other words such that the following diagram commutes:

Concretely, $\overline{\varphi}(m + U) = \varphi(m) \forall m + U \in M/U$.

(b) **1st isomorphism theorem**: With the notation of (a), if $U = \text{ker}(\varphi)$, then

$$\overline{\varphi}: M/\ker(\varphi) \longrightarrow \operatorname{Im}(\varphi)$$

is an isomorphism of *R*-modules.

(c) **2nd isomorphism theorem**: If U_1 , U_2 are *R*-submodules of *M*, then so are $U_1 \cap U_2$ and $U_1 + U_2$, and there is an isomorphism of *R*-modules

$$(U_1 + U_2)/U_2 \cong U_1/(U_1 \cap U_2)$$
.

(d) **3rd isomorphism theorem**: If $U_1 \subseteq U_2$ are *R*-submodules of *M*, then there is an isomorphism of *R*-modules

$$(M/U_1)/(U_2/U_1) \cong M/U_2$$
.

(e) **Correspondence theorem**: If *U* is an *R*-submodule of *M*, then there is a bijection

 $\begin{array}{cccc} \{R\text{-submodules } X \text{ of } M \mid U \subseteq X\} & \longleftrightarrow & \{R\text{-submodules of } M/U\} \\ & X & \mapsto & X/U \\ & \pi^{-1}(Z) & \longleftrightarrow & Z \,. \end{array}$

Proof: Similar proof as for groups/rings/vector spaces/...

Definition A.11 (Irreducible/reducible/completely reducible module)

An *R*-module *M* is called:

- (a) simple (or irreducible) if it has exactly two submodules, namely the zero submodule 0 and itself;
- (b) **reducible** if it admits a non-zero proper submodule $0 \subsetneq U \subsetneq M$;
- (c) **semisimple** (or **completely reducible**) if it admits a direct sum decomposition into simple submodules.

Notice that the zero *R*-module 0 is neither reducible, nor irreducible, but it is completely reducible.

B Algebras

In this lecture we aim at studying modules over the group algebra, which are specific rings.

Definition B.1 (Algebra)

Let *R* be a commutative ring.

- (a) An *R*-algebra is an ordered quadruple $(A, +, \cdot, *)$ such that the following axioms hold:
 - (A1) $(A, +, \cdot)$ is a ring;
 - (A2) (A, +, *) is a left *R*-module; and
 - (A3) $r * (a \cdot b) = (r * a) \cdot b = a \cdot (r * b) \forall a, b \in A, \forall r \in R.$

- (b) A map $f : A \rightarrow B$ between two *R*-algebras is called an **algebra homomorphism** iff:
 - (i) *f* is a homomorphism of *R*-modules; and
 - (ii) *f* is a ring homomorphism.

Example 12

- (a) A commutative ring R itself is an R-algebra.
 [The internal composition law "." and the external composition law "*" coincide in this case.]
- (b) For each n ∈ Z≥1 the set M_n(R) of n × n-matrices with coefficients in a commutative ring R is an R-algebra for its usual R-module and ring structures.
 [Note: in particular R-algebras need not be commutative rings in general!]
- (c) Let K be a field. Then for each $n \in \mathbb{Z}_{\geq 1}$ the polynom ring $K[X_1, \ldots, X_n]$ is a K-algebra for its usual K-vector space and ring structure.
- (d) If K is a field and V a finite-dimensional K-vector space, then $End_{K}(V)$ is a K-algebra.
- (e) \mathbb{R} and \mathbb{C} are \mathbb{Q} -algebras, \mathbb{C} is an \mathbb{R} -algebra, ...
- (f) Rings are \mathbb{Z} -algebras.

Definition B.2 (Centre)

The **centre** of an *R*-algebra $(A, +, \cdot, *)$ is $Z(A) := \{a \in A \mid a \cdot b = b \cdot a \ \forall b \in A\}$.