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Foreword

This text constitutes a faithful transcript of the lecture Cohomology of Groups held at the TU Kaiser-
slautern during the Summer Semester 2021 (14 Weeks, 4SWS).

Together with the necessary theoretical foundations the main aims of this lecture are to:
e provide students with a modern approach to group theory;
e learn about homological algebra and a specific cohomology theory;

e consistently work with universal properties and get acquainted with the language of category
theory;

e establish connections between the cohomology of groups and the theory of central extensions of
groups as developed by Schur at the beginning of the 1900’s.

We assume as pre-requisites bachelor-level algebra courses dealing with linear algebra and elemen-
tary group theory, such as the standard lectures Grundlagen der Mathematik, Algebraische Strukturen,
Einfiihrung in die Algebra, and Kommutative Algebra at the TU Kaiserslautern. In order to complement
these pre-requisites, the first chapter will deal formally with more advanced background material on
group theory, namely semi-direct products and presentation of groups, while the second chapter will
provide a short introduction to the theory of modules, where we will emphasise in particular definitions
using universal properties but omit proofs.

| am grateful to Prof. Jacques Thévenaz who provided me with his lecture "Groupes & Cohomologie"
(14 weeks, 2SWS) hold at the EPFL in the Autumn Semester 2011, which | used as a basis for the
development of this text, and | am grateful to Rafaél Gugliellmetti who provided me with the .tex files
of his lecture notes from 2011.

Finally, | am also grateful to the students who mention typos in the preliminary versions of these notes.
Further comments, corrections and suggestions are of course more than welcome.

Kaiserslautern, 4th April 2021



Chapter 1. Background Material: Group Theory

The aim of this chapter is to introduce formally two constructions of the theory of groups: semi-direct
products and presentations of groups. Later on in the lecture we will relate semi-direct products with
a Tst and a Znd cohomology group. Presentations describe groups by generators and relations in a
concise way, they will be useful when considering concrete groups, for instance in examples and in the
study of the Schur multiplier.

References:

[Hum96] J. F. HUMPHREYS, A course in group theory, Oxford Science Publications, The Clarendon
Press, Oxford University Press, New York, 1996.

[Joh90]  D. L. JoHNsoN, Presentations of groups, London Mathematical Society Student Texts, vol. 15,
Cambridge University Press, Cambridge, 1990.

1 Semi-direct Products

The semi-direct product is a construction of the theory of groups, which allows us to build new groups
from old ones. It is a natural generalisation of the direct product.

Definition 1.1 (Semi-direct product)

A group G is said to be the (internal or inner) semi-direct product of a normal subgroup N < G by
a subgroup H < G if the following conditions hold:

(@) G =NH;
(b) Nm H={1}.
Notation: G = N x H.
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Example 1
(1) A direct product Gy x G, of two groups is the semi-direct product of N := Gy x {1} by
H:= {1} x G.

(2) G = S3 is the semi-direct product of N = {(123))<S3 and H={(12))<Ss.
Since N = (3 and H = (,, we see that a semi-direct product of an abelian subgroup by an
abelian subgroup need not be abelian.

(3) More generally G = S, (n = 3) is a semi-direct product of N = A, <9S, by H = G = {(1 2)).

Remark 1.2
(@) If G is a semi-direct product of N by H, then the 2nd Isomorphism Theorem yields
G/N=HN/N=H/HAN=H/{1} ~H
and this gives rise to a short exact sequence
1—N—G—H—1.
Hence a semi-direct product of N by H is a special case of an extension of N by H.

(b) In a semi-direct product G = N x H of N by H, the subgroup H acts by conjugation on N,
namely Vh e H,

6hb: N — N
n —  hnh™!

is an automorphism of N. In addition Oy = 6} o Oy for every h, h’ € H, so that we have a
group homomorphism

6: H — Aut(N)
h — 6.

Proposition 1.3
With the above notation, N, H and 6 are sufficient to reconstruct the group law on G.

Proof:
Step 1. Each g € G can be written in a unique way as g = nh where ne N, he H.

Condition (a) of the definition proves the existence of such expressions, whereas Condition (b) shows that
if g=nh=n'h" with n,n” e N, h,h’ € H, then

n~'n"=h(h) TeNnH={1},

hence n = n’ and h = h'.
Step 2. Group law. Let g1 = n1hy, g2 = nyhy € G with ny,n; € N, hy, h, € H as above. Then

g1g2 = n1h1n2h2 =1 h1n2(/’l171 h1)h2 = [n19h1(n2)] . [/’l1h2]
—
9/11(n2) .
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With the construction of the group law in the latter proof in mind, we now consider the problem of
constructing an "external" (or outer) semi-direct product of groups.

Proposition-Definition 1.4

Let N and H be two arbitrary groups, and let 6 : H — Aut(N), h — 6}, be a group homomorphism.
Define G := N x H as a set. Then the binary operation

GxG — G
((n1,m), (n2,h2)) = (n1,m) - (02, h2) := (n16h,(n2), h1h2)
defines a group law on G, the neutral element of which is 16 = (1n,14) and the inverse of

(n,h)ye Nx His (n,h)™" = (6,-1(n~"), h~"). The group (G, -) is then said to be the external (or
outer) semi-direct product of N by H with respect to 6, and we write G = N xg H.
Furthermore, G is an internal semi-direct product of Ngp:= N x {1} @ N by Hp := {1} x H >~ H.

Proof: Exercise 2. [ |

Example 2

Here are a few examples of very intuitive semi-direct products of groups, which you have very prob-
ably already encountered in other lectures, without knowing that they were semi-direct products:

(1) If H acts trivially on N (i.e. 8, = ldy Yh e H), then N xg H= N x H.

(2) Let G, ={g) and C, =<{h) (m, n € Z=1) be finite cyclic groups.
Assume moreover that k € Z is such that k” =1 (mod m) and set

6: C, — Aut(Cy)

hi > (9/7)1’
where 6 : G — Cp, g — gk. Then
n n— n— 2 n
(64)"(9) = (64)" (") = (8n)"*(g") = ... =¢"" =7¢g
since o(g) = m and k" =1 (mod m). Thus (6;)" = Id¢c, and 6 is a group homomorphism. It

follows that under these hypotheses there exists a semi-direct product of C;, by C, w.r.t. to 6.

Particular case: m > 1, n = 2 and k = —1 yield the dihedral group D, of order 2m with

generators g (of order m) and h (of order 2) and the relation ),(g) = hgh™' = g~ .

(3) See also the groups in Exercise 1, Exercise 3, and Exercise 5.

2 Presentations of Groups

Idea: describe a group using a set of generators and a set of relations between these generators, which
are sufficient to characterise the group up to isomorphism.
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To

Examples: (1) C, ={g)={g|g"=1) 1 generator: g
1 relation: g™ =1
(2) Doy = G, xg G (see Ex. 2(2)) 2 generators: g, h
3 relations: g" = 1,h? = ’I,hgh_1 =g~
(3) 2=z 1 generator: 1z
no relation (v~ "free group")

1

begin with we examine free groups and generators.

Definition 2.1 (Free group | Universal property of free groups)

Pr

Let X be a set. A free group of basis X (or free group on X) is a group F containing X as a
subset and satisfying the following universal property. For any group G and for any (set-theoretic)
map f : X — G, there exists a unique group homomorphism f : F — G such that f|x = foi = f,
where i : X «— F denotes the canonical inclusion of X in F. In other words, f is sucht that the
following diagram commutes:

Moreover, ts called the rank of F.

oposition 2.2

If F exists, then F is the unique free group of basis X up to a unique isomorphism.

Proof: Assume F’ is another free group of basis X.

Let i : X — F be the canonical inclusion of X in F and let i/ : X < F’ be the canonical inclusion of X
in F'.
X «—— F’ By the universal property of Definition 2.1, there exists:

S| . . = . 5.
,’\[ W e - a unique group homomorphism i/ : F — F’ s.t. i’ = i’ o (; and
P _ . . T P
P a unique group homomorphism i: F/ — F st. i =io .
i - . .
X ‘—: F Then (ioi")|x = i, but obviously we also have Idg |x = i. Therefore, by uniqueness,
,i e 2> we have io i = Idr.
F :’/ iol’
A similar argument gtelds i’ o1 = Ide, hence F and F’ are isomorphic, up to a unique isomorphism,
namely i with inverse . ]

Proposition 2.3

If F is a free group of basis X, then X generates F.

Proof: Let H := (X) be the subgroup of F generated by X, and let j; := X — H denote the canonical

inclusion of X in H. By the universal property of Definition 2.1, there exists a unique group homomorphism
Jjr such that jyoi= jy:
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Therefore, letting k : H < F denote the canonical inclusion of H in F, we have the following commutative
diagram:

Thus by uniqueness « 0174 = Idr and it follows that
F =1Im(ldr) = Im(x o jiy) = Im(jiy) € H,
so F = H. The claim follows. ]

Theorem 2.4

For any set X, there exists a free group F with basis X.

Proof: Set X := {x, | « € I} where | is a set in bijection with X, set Y := {y, | @ € I} in bijection with X
but disjoint from X, ie. X nY =, and let Z:= X U Y.
Furthermore, set E := | J”_, Z", where Z° := {( )} (i.e. a singleton), Z':= 27, Z2%:=Z x Z, ...
Then E becomes a monoid for the concatenation of sequences, that is

(z1,ovzn)- (2, zh) = (21, 20 24, 2))

ezn ezm ezZn+m

The law - is clearly associative by definition, and the neutral element is the empty sequence ( ) e Z°.
Define the following Elementary Operations on the elements of E:

Type (1): add in a sequence (z1,...,2,) two consecutive elements x4, y, and obtain
(Z1, -, Zk Xa Yoo Zk4 10 - - - Zn)

Type (1bis): add in a sequence (z1,...,z,) two consecutive elements y,, x, and obtain
(21:« o Zmi Yar Xar Zm41s - - - :Zn)

Type (2): remove from a sequence (z1,...,z,) two consecutive elements x,, y, and obtain
(21: cee ,Zr:)\ga: galzr+3, cee rzn)

Type (2bis): remove from a sequence (z1,...,2,) two consecutive elements y,, x, and obtain
(217 <oy Zsy gariarzs-&-?n ce !Zn)

Now define an equivalence relation ~ on E as follows:

two sequences in E are equivalent :<= the 2nd sequence can be obtain from the 1st

sequence through a succession of Elementary
Operations of type (1), (1bis), (2) and (2bis).

It is indeed easily checked that this relation is:

— reflexive: simply use an empty sequence of Elementary Operations;

— symmetric: since each Elementary Operation is invertible;

— transitive: since 2 consecutive sequences of Elementary Operations is again a sequence of Elementary

Operations.

Now set F := E/ ~, and write [z, ..., z,] for the equivalence class of (z,..., zp)in F=E/~.

Claim 1: The above monoid law on E induces a monoid law on F.

The induced law on F is: [z1,....z,] - [Z},....zh] = [z1, .- zn, 2y, ..., 2]
It is well-defined: if (z1,...,2,) ~ (t1,..., &) and (#,...,2,) ~ (t;,..., t]), then
(z1,...,z0) (24, z) = (21, zn, 24, 2Z))
~(t,....te,24,...,2,) via Elementary Operations on the 1st part
~(t,...,tx, 8, ..., 1) via Elementary Operations on the 2nd part
=(t,..., th) - (8, ..., t)

The associativity is clear, and the neutral element is [( )]. The claim follows.
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Claim 2: F endowed with the monoid law defined in Claim 1 is a group.
Inverses: the inverse of [z1,...,2z,] € F is the equivalence of the sequence class obtained from
(z1,...,2,) by reversing the order and replacing each x, with y, and each y, with x,. (Obvious
by definition of ~.)

Claim 3: F is a free group on X.
Let G be a group and f : X —> G be a map. Set f(y,) := f(x4)~" for every y, € Y and define

f: E — G
(z1,...,z0) —  f(=zr) -+ - f(zy).
Thus, if (z1,...,2,) ~ (t4, ..., t), then ?(21, ceyZp) = ?(h, ..., t) by definition of f on Y. Hence
f induces a map
f F — G
(z1,....z0] = (1) -+ - f(zn),

By construction f is a monoid homomorphism, therfore so is f, but since F and G are groups, f is
in fact a group homomorphism. Hence we have a commutative diagram

X —15a
1£ C?,'Z
Fo

where i : X — F, x — [x] is the canonical inclusion.

=N

Finally, notice that the definition of  is forced if we want f to be a group homorphism, hence we

have uniqueness of f, and the universal property of Definition 2.1 is satisfied. u

Notation and Terminology

Pr

- To lighten notation, we identify [x,] € F with x4, hence [y,] with x;', and [z,..., z,] with
z1---zp in F.

- A sequence (z1,...,2,) € E with each letter z; (1 < i < n) equal to an element x,, € X or
Xg ! is called a word in the generators {x, | a € /}. Each word defines an element of F via:
(z1,...,25) ¥ z1---z, € F. By abuse of language, we then often also call z1 ---z, € F a word.

- Two words are called equivalent :<= they define the same element of F.
- (z1,...,20) € Zy € E (n € Zxy), then n is called the length of the word (z1, ..., z,).

- A word is said to be reduced if it has minimal length amongst all the words which are equivalent
to this word.

oposition 2.5

Every group G is isomorphic to a factor group of a free group.

Proof: Let S := {g, € G | a € I} be a set of generators for G (in the worst case, take | = G). Let

X :={xo | a € I} be a set in bijection with S, and let F be the free group on X. Let i : X < F denote
the canonical inclusion.
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f
X o /,%WG By the universal property of free groups the map f : X — G, x, — ¢gq4
ij a‘f/’i/ induces a unique group homomorphism f : F — G such that foi = f.

-

F- G Clearly fis surjective since the generators of G are all Im(?). Therefore

can.proji 7
/
/

F/ker(f)

/At the 1st Isomorphism Theorem yields G =~ F/ker(f).

We can now consider relations between the generators of groups:

Notation and Terminology

Let S := {gs € G | a € I} be a set of generators for the group G, let X := {xq | @ € I} be in
bijection with S, and let F be the free group on X.

~

By the previous proof, G = F/N, where N := ker(f) (go <> Xa := XoN via the homomorphism ).

Any word (z1, ..., z,) in the x,'s which defines an element of F in N is mapped in G to an expression
of the form

Z1-zp=1¢, where z; := image of z; in G under the canonical homomorphism.
In this case, the word (z1,...,2z,) is called a relation in the group G for the set of generators S.

Now let R := {rg | B € J} be a set of generators of N as normal subgroup of F (this means that N
is generated by the set of all conjugates of R). Such a set R is called a set of defining relations
of G with respect to S.

Then the ordered pair (X, R) is called a presentation of G, and we write

G ={X|R)={{Xa}ael | {r}pes) -

The group G is said to be finitely presented if it admits a presentation G = (X | R), where both
|X],|R| < oo. In this case, by abuse of notation, we shall write presentations under the form

G=, ... x| Fi=1,....lg =1
or even under the simplified form

G=a,oxx ln=1....nr=1).

Example 3
The cyclic group C, = {1,q,..., g"~ "} of order n € Z~1 generated by S := {g}. In this case, we
have:
X ={x}
R = {x"}
F=(0=(Co,)

f: Cyp — C,,x — g has a kernel generated by x"” as a normal subgroup.

Then G, = {{x} [ {x"D.

However, by abuse of notation, we one rather writes C, = {(x | x" = 1).
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Proposition 2.6 (Universal property of presentations)

Let G be a group generated by S = {s, | a € I}, isomorphic to a quotient of a free group F on
X = {xq | @ € I} in bijection with S. Let R := {rg | B € J} be a set of relations in G.
Then G admits the presentation (X, R), ie. G = (X | R), if and only if G satisfies the following

universal property:
h

X —— H  For every group H, and for every set-theoretic map h : X — H such that
j C?/i h(rg) = 14 V rg € R, there exists a unique group homomorphism h : G — H
- dlh such that hoj = h, where j: X — G, x4 — Sq, and h is the unique extension

G of h to the free group F on X given by Definition 2.1.

Proof: '=" Suppose that G = (X | R). Therefore G =~ F/N, where N is generated by R as normal
subgroup. Thus the condition h(rg) = 144 V¥ rg € R implies that N < ker(h), since

st

h(zrgz™") = h(z) h(rg) h(z)™" =14 Vrige R, VzeF.

—

=1y

Therefore, by the universal property of the quotient, h induces a unique group homomorphism
h:G=F/N— H such that hox = h, where 7 : F — F/N is the quotient morphism. Now, if
i : X — F denotes the canonical inclusion, then j = woi, and as a consequence we have hoj = h.

<" Conversely, assume that G satisfies the universal property of the statement (iLe. relatively to
X, F,R). Set N := R for the normal closure of R. Then we have two group homomorphisms:

: F/N — G

Xo g Sa

induced by h:F—G (by the universal property of the quotient), and
y: G — F/N

Sa = Xa

given by the universal property of the assumption. Then clearly ¢ o )(sq) = @(X5) = sq for each
a € 1, so that ¢ o ¢y = Idg and similarly o ¢ = Idr/n, hence G = F/N and the claim follows. ]

Example 4 (The dihedral groups)

Consider the finite dihedral group Dy, of order 2m with 2 < m < o0, that is, the isometry group of
the reqgular m-gone. We can assume that D, is generated by

2
r:= rotation of angle % and s:= symmetry through the origin in R? .

Then {r) = Gy, {s) = G, and we have seen that Dy, = {r) x {s) with three obvious relations

rm=1,s>=1and srs~' = r~1.
Claim: D;, admits the presentation {(r,s | r" = 1,s2=1,srs 1 = r_1>.
In order to prove the Claim, we let F be the free group on X := {x,y}, R := {x",y?, yxy~'x},

N < F be the normal subgroup generated by R, and G := F/N so that
G=&T|x"=173>=1,7x5 'x=1).
By the universal property of presentations the map

h: {x,y} — Doy

X — T

y s



Lecture Notes: Cohomology of Groups SS 2021 15

induces a group homomorphism

h: G — Dy
X — r
7 - s

because
h(x™) = h(x)" =" =1p,,,
) =

h(y?) = h(y)* = s* =1p,,
h(yxy™"x) = h(y)h(x)h(y)"h(x) = srs"'r =1p,, .

Clearly h is surjective since Dy, = {r,s). In order to prove that h is injective, we prove that G is a

group of order at most 2m. Recall that each element of G is an expression in X, 7, X', 7', hence

actually an expression in X, 7, since X' = "' and g~ = 7. Moreover, gxg~' = X~ implies

X = X '7, hence we are left with expressions of the form
X P with0<ae<m—-1and0<b<1.

Thus we have |G| < 2m, and it follows that h is an isomorphism.

Notice that if we remove the relation r” = 1, we can also formally define an infinite dihedral group
Dy, via the following presentation

Dy :={r,s|s*>=1,srs ' =r7 1.

Theorem 2.7

Let G be a group generated by two distinct elements, s and ¢, both of order 2. Then G = D;,,
where 2 < m < o is the order of st in G, and

G={(s,t|s>=1,t2=1,(st)" =1).

(Here m = oo simply means "no relation")

Proof: The theorem can be proved through the following steps. Set r := st and let m be the order of r. Set
H:={ry~C,and C:={s) = GC.

1. Prove that m =2 and srs—' = r—".
2. Prove that G = H x C = Ds,,.
1

3. By Step 2. and Example 4, G admits the presentation {r,s | r™ = 1,s> = 1,srs™" = 1).
Apply the universal property of presentations twice to prove that G also admits the presentation
(s,t]s>=1,t2=1,(st)" = 1)

See Exercise 8. [ |

Remark 2.8

The presentation of Dy, (2 < m < o) is the standard presentation of the dihedral group of order
2m seen as a Coxeter group (the Coxeter group associated to the graph l2(m)).
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3

Exercises for Chapter 1

Exercise 1

Let K be a field.

(@) Prove that
GL,(K) = SLa(K) x {diag(,1,...,1) e GL,(K) | Ae K},

where diag(A, 1, ..., 1) is the diagonal matrix with (ordered) diagonal entries A, 1,...,1. De-
scribe the action.

(b) Let

ok

B:= {( ) € GLn(K)} (= upper triangular matrices),
0 %
1%

U:= {( > € GL,,(K)} (= upper unitriangular matrices),
0 1
M0

T .= {( ) € GL,,(K)} (= diagonal matrices).
0 A

Prove that B is a semi-direct product of U by T, thatis, B= U x T. Describe the action.

Exercise 2

Let N and H be two arbitrary groups, and let 6 : H — Aut(N), h — 6, be a group homomorphism.
Set G := N x H as a set. Prove that:

(@) The binary operation

GxG — G
((n1,h1),(n2,h2)) [ (n1,h1) . (nz,hz) = (n19h1(n2),h1h2)

defines a group law on G. The neutral element is 16 = (1n, 1) and the inverse of (n, h) €
N x His (n,h)~" = (6,-1(n~ "), h7").

(b) The group G is an internal semi-direct product of Np := N x{1} ~ Nby Hp := {1} xH =~ H.

Ex

ercise 3

(@) Prove that Dg = V4 x (,, where V4 is the Klein-four group. Describe the action of C; on V4.
(b) Prove that &4 =~ V4 x &3. Deduce that a Sylow 2-subgroup of &4 is isomorphic to Ds.
(c) Construct all semi-direct products of C3 by C3 up to isomorphism.

(d) Identify the group described in Example 1.2(2) when m =7, n = 3 and k = 2. (Hint. Is it an

abelian group?)
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Exercise 4

Let N xg H be an external semi-direct product of a group N by a group H with respect to
0:H — Aut(N), h — 6. Assume moreover that H acts on N by inner automorphisms of N,
that is, for every h € H and every n € N, we have

On(n) = @(h)ng(h)™"
where ¢ : H — N is a group homomorphism. Prove that

NxgH=NxH.

Exercise 5

Let Aff(R") denote the group of affine transformations of R”, i.e. the group generated by the
translations and the invertible linear transformations of R”. Prove that

Aff(R") = R" x g GL,(R),

where 0 : GL,(R) — Aut(R") is the automorphism induced by the natural action of GL,(R) on R".

Exercise 6

(@) Let X and Y be two sets with the same cardinality. Prove that Fx = Fy.
[Notice that the converse holds as well. You can try to find a proof too, but arguments are more involved.]

(b) Prove that in a free group, every equivalence class of words contains a unique reduced word.

(c) How many reduced words of length ¢ > 1 are there in a free group of rank re Z.o ?

Exercise 7

Let G = {x,y|x* = y?> = (xy)?). Prove that G is a finite group, determine its order and identify
this group up to isomorphism.
[Hint. Draw the Cayley graph of G. Consider Z(G) and G/Z(G).]

Exercise 8

Prove Theorem 2.7 through the following steps. Set r := st and let m be the order of r. Set
H:={r)=C, and C:={s) = .

1. Prove that m > 2 and srs™' = r— ",

2. Prove that G = H x C = Dy,.

3. By 2. and Example 4, G admits the presentation (r,s | r" = 1,5 = 1,srs™' = 1). Apply
the universal property of presentations twice to prove that G also admits the presentation
(s,t]s?>=1,t2=1,(st)" = 1.




Chapter 2. Background Material: Module Theory

The aim of this chapter is to recall the basics of the theory of modules, which we will use throughout.
We review elementary constructions such as quotients, direct sum, direct products, exact sequences,
free/projective/injective modules and tensor products, where we emphasise the approach via universal
properties. Particularly important for the forthcoming homological algebra and cohomology of groups
are the notions of free and projective modules and the snake lemma.

Notation: throughout this chapter we let R and S denote rings, and, unless otherwise specified, all
rings are assumed to be unital and associative.

Most results are stated without proof, as they have been / will be studied in the B.Sc. lecture Commu-
tative Algebra. As further reference we recommend for example:

Reference:
[Rot10] J. J. RoTmMAN, Advanced modern algebra. 2nd ed., Providence, RI: American Mathematical
Society (AMS), 2010.

4 Modules, Submodules, Morphisms

Definition 4.1 (Left R-module, right R-module, (R, S)-bimodule)

(@) A left R-module is an ordered triple (M, +,-), where (M, +) is an abelian group and
-t Rx M — M,(r,m) — r-mis a binary operation such that the map
A R — End(M)
r - Mr)=AM—Mm-—r-m

is a ring homomorphism. The operation - is called a scalar multiplication or an external
composition law.

(b) A right R-module is defined analogously using a scalar multiplication - : M x R — M,
(m,r) — m-r on the right-hand side.

(c) An (R, S)-bimodule is an abelian group (M, +) which is both a left R-module and a right
S-module, and which satisfies the axiom

I r-(m-s)y=(r-m)-s VreRVseS,VmeM.

18
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Convention: Unless otherwise stated, in this lecture we always work with left modules. When no
confusion is to be made, we will simply write "R-module" to mean "left R-module", denote R-modules
by their underlying sets and write rm instead of r - m. Definitions for right modules and bimodules are
similar to those for left modules, hence in the sequel we omit them.

Definition 4.2 (R-submodule)
An R-submodule of an R-module M is a subgroup U < M such that r-ue UV reR, Y uel.

Definition 4.3 (Morphisms)

A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map of R-
modules ¢ : M — N such that:

(i) ¢ is a group homomorphism; and
(i) @(r-m)=r-@(m)¥YreR, Y meM.
Furthermore:

- An injective (resp. surjective) morphism of R-modules is sometimes called a monomorphism
(resp. an epimorphism) and we often denote it with a hook arrow "—" (resp. a two-head
arrow "—").

- A bijective morphism of R-modules is called an isomorphism (or an R-isomorphism), and we
write M =~ N if there exists an R-isomorphism between M and N.

- A morphism from an R-module to itself is called an endomorphism and a bijective endomor-
phism is called an automorphism .

Notation: We let Ab denote the category of abelian groups, we let gfMod denote the category of left R-
modules (with R-homomorphisms as morphisms), we let Modr denote the category of right R-modules
(with R-homomorphisms as morphisms), and we let gfMods denote the category of (R, S)-bimodules
(with (R, S)-homomorphisms as morphisms).

Example 5

(a) Definition 4.1(a) is equivalent to requiring that (M, +, -) satisfies the following axioms:
(M1) (M, +) is an abelian group;
(M2) (r1 4+ r2)-m=ry-m+ ry-m for each ry,r, € R and each m e M;
(M3) r-(m1 4+ my)=r-mq+r-myforeach re R and all my, m, € M,

(M4) (rs)-m =r-(s-m) for each r,s € R and all m e M.
(M5) 1gr - m = m for each m e M.

In other words, modules over rings satisfy the same axioms as vector spaces over fields. Hence:

Vector spaces over a field K are K-modules, and conversely.

(b) Abelian groups are Z-modules, and conversely.
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(c) If the ring R is commutative, then any right module can be made into a left module, and
conversely.

(d) If ¢ : M — N is a morphism of R-modules, then the kernel
ker(¢@) :=={me M| @(m) = 0n}

of ¢ is an R-submodule of M and the image

Im(¢) := ¢(M) = {¢(m) [ m e M}

of ¢ is an R-submodule of N.
If M = N and ¢ is invertible, then the inverse is the usual set-theoretic inverse map ¢~ and
is also an R-homomorphism.

(e) Change of the base ring. If ¢ : S — R is a ring homomorphism, then every R-module M
can be endowed with the structure of an S-module with external composition law given by

SxM — M
(s,m) +— s-m:=¢@(s)-m.

Notation 4.4
Given R-modules M and N, we set Homg(M, N) := {¢ : M — N | ¢ is an R-homomorphism}.
This is an abelian group for the pointwise addition of maps:
+: Homg(M,N) x Homg(M,N) — Homg(M, N)
(9. ¢) = gt M— N,m— @(m)+¢(m).

In case N = M, we write Endg(M) := Homg(M, M) for the set of endomorphisms of M and
Autr(M) for the set of automorphisms of M, i.e. the set of invertible endomorphisms of M.

Lemma-Definition 4.5 (Quotients of modules)

Let U be an R-submodule of an R-module M. The quotient group M/U can be endowed with the
structure of an R-module in a natural way via the external composition law

RXM/U—)M/U
(r,m+U)|—>r-m+U

The canonical map 7 : M — M/U,m — m + U is R-linear and we call it the canonical (or
natural) homomorphism or the quotient homomorphism.

Definition 4.6 (Cokernel, coimage)

Let ¢ € Homg(M, N). The cokernel of ¢ is the quotient R-module coker(¢) := N/Im ¢, and the
coimage of ¢ is the quotient R-module M/ ker ¢.
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Theorem 4.7 (The universal property of the quotient and the isomorphism theorems)
Let M, N be R-modules.

(a) Universal property of the quotient. Let ¢ € Homg(M, N). If U is an R-submodule of M such
that U < ker(¢), then there exists a unique R-module homomorphism @ : M/U — N such
that @ o T = ¢, or in other words such that the following diagram commutes:

Concretely, @(m + U) = ¢(m) V. m+ U e M/U.
(b) 1st isomorphism theorem. With the notation of (a), if U = ker(¢), then
@ M/ker(p) — Im(¢)
is an isomorphism of R-modules.

(c) 2nd isomorphism theorem. If Uy, U are R-submodules of M, then so are Uy n U and Uy + Uy,
and there is an isomorphism of R-modules

(U1 + Uz)/Uz =~ U1/(U1 N Uz).

(d) 3rd isomorphism theorem. If U; < U, are R-submodules of M, then there is an isomorphism
of R-modules

(M/U1)/(U2/U1) = M/UZ'

(e) Correspondence theorem. If U is an R-submodule of M, then there is a bijection

{R-submodules X of M | U< X} «— {R-submodules of M/U}
X —  X/U
7~ (2) — 7.

5 Direct Products and Direct Sums

Let {M;}ic/ be a family of R-modules. Then the abelian group [ [,c; M;, that is the product of {M;}
seen as a family of abelian groups, becomes an R-module via the following external composition law:

R x 1—[ M,' — HMl
iel iel
(r, (miier) =— (r-mi) g,

Furthermore, for each j €/, we let 7; : [ |
the product to the module M;.

ies Mi — M, (m;)ie; — mj denotes the j-th projection from
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Proposition 5.1 (Universal property of the direct product)

If {¢;: L — M;}i; is a family of R-homomorphisms, then there exists a unique R-homomorphism
@ : L—> [y M; such that ;0 @ = ¢; for every j e I.

Thus,
Hompg (L, HMi> — H Homg (L, M;)
i€l iel
fr— (JT[ © f)iel

is an isomorphism of abelian groups.

Now let @,; M; be the subgroup of [ [,.;, M; consisting of the elements (m;);c; such that m; = 0 al-
most everywhere (i.e. m; = 0 exept for a finite subset of indices i € /). This subgroup is called the
direct sum of the family {M;}ic; and is in fact an R-submodule of the product. For each j € /, we let
nj : Mj — @,c; Mi, mj — denote the canonical injection of M; in the direct sum.

Proposition 5.2 (Universal property of the direct sum)

If {fi : M; —> L}i¢; is a family of R-homomorphisms, then there exists a unique R-homomorphism
¢ : @ Mi — L such that f o n; = f; for every j e /.

Thus,
Homg (@M[, L) — [[Homg (M L)
iel iel
fr— (f © m)iel

is an isomorphism of abelian groups.
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Remark 5.3
It is clear that if |/| < o0, then @, M = [ [;c; M.

The direct sum as defined above is often called an external direct sum. This relates as follows with the
usual notion of internal direct sum:

Definition 5.4 (Internal direct sums)

Let M be an R-module and Ny, N> be two R-submodules of M. We write M = Ny @ N if every
m € M can be written in a unique way as m = n1 + n2, where nq € Ni and ny € N,.

In fact M = Ny @ N, (internal direct sum) if and only if M = Ny + N, and Ni n Np = {0}.

Proposition 5.5
If N1, Ny and M are as above and M = N; @ N> then the homomorphism of R-modules

@: M — Ny x Nop = N1 @ N, (external direct sum)
m=ny+ny — (m,ny),

is an isomorphism of R-modules.

The above generalises to arbitrary internal direct sums M = @, N;.

6 Exact Sequences

Definition 6.1 (Exact sequence)

A sequence L > M ¥, N of R-modules and R-homomorphisms is said to be exact (at M) if
Im ¢ = ker ¢.

Remark 6.2 (Injectivity/surjectivity/short exact sequences)

(@) L s Mis injective <= 0 — L %5 M is exact at L.
(b) M Y Nis surjective <= M YN — 0is exact at N.

() 0 — L oMY N — 0 is exact (Le. at L, M and N) if and only if ¢ is injective, ¢ is
surjective and ¢ induces an isomorphism ¢ : M/Im ¢ — N.

Such a sequence is called a short exact sequence (s.e.s. in short).
(d) If ¢ € Homg(L, M) is an injective morphism, then there is a s.e.s.
0— L - M-I coker(p) — 0
where s is the canonical projection.
(d) If ¢ € Homr(M, N) is a surjective morphism, then there is a s.e.s.
0 — ker(p) —> M- N —0,

where i is the canonical inclusion.
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Proposition 6.3

Let Q be an R-module. Then the following holds:

(@) Homg(Q, —) : RMod — Ab is a left exact covariant functor. In other words, if

0—L-%M i> N — 0 is a s.e.s of R-modules, then the induced sequence

0 —— Homg(Q, L) —= Homg(0, M) —“~ Homg (0, N)

is an exact sequence of abelian groups. (Here ¢, := Homg(Q, ¢), that is ¢.(a) = ¢ o a and
similarly for ¢,.)

(b) Homg(—, Q) : RMod — Ab is a left exact contravariant functor. In other words, if

0—L-%Mm i> N — 0 is a s.e.s of R-modules, then the induced sequence

0 —— Homg(N, 0) —> Homr(M, Q) ~*~ Homg(L, O)

is an exact sequence of abelian groups. (Here ¢* := Homg(¢, Q), that is ¢*(a) = a o ¢ and
similarly for ¢*.)

Remark 6.4

Le

Notice that Homg(Q, —) and Homg(—, Q) are not right exact in general. See Exercise 12.

mma 6.5 (The snake lemma)

Suppose we are given the following commutative diagram of R-modules and R-module homomor-
phisms with exact rows:

[~ MY N 0
ool
0 o YN

Then the following hold:

(@) There exists an exact sequence

ker f — > ker g Y kerh —2~ coker f N coker g v coker h,

where ¢/, {/ are the morphisms induced by the universal property of the quotient, and 6(n) =
mo¢ ogo w~"(n) for every n e ker(h) (here m, : L —> coker(f) is the canonical
homomorphism). The map 9 is called the connecting homomorphism.

(b) If ¢ : L — M is injective, then @|ier : ker f — ker g is injective.

(c) f ¢/ : M' — N’ is surjective, then ¢/ : coker g — coker h is surjective.

Proof: (a) First, we check that 0 is well-defined. Let n € ker h and choose two preimages m1, m; € M of

n under . Hence my — m; € keryy = Im@. Thus, there exists [ € L such that my = ¢(l) + m;.
Then, we have

g(m) =goe(l)+g(ma) = ¢ of(l) + g(my).
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Since n € ker h, for i € {1,2} we have

W o g(m) = hoy(m) = h(n) =0,

so that g(m;) € ker ¢y’ = Im ¢'. Therefore, there exists l} € L’ such that ¢'(l}) = g(m;). It follows
that

g(mz) = ¢'(5) = @' o f(1) + ¢'(17).

Since ¢’ is injective, we obtain 5 = f({) + l}. Hence, [; and [, have the same image in coker f.
Therefore, 0 is well-defined.

We now want to check the exactness at ker h. Let m € kerg. Then g(m) = 0, so that o¢y(m) =0
and thus Im ¢|kerh c ker 0. Conversely, let m € ker 8. With the previous notation, this means that

5 =0, and thus [} = f(I) for some [ € L. We have
goo(l)=¢' o f(l) = ¢'(1y) = g(m).
Hence, m; — (1) € ker g. It remains to check that this element is sent to n by (. We get
Y(mi = (1)) = p(m) = o) = p(m) = n.

Hence Im g, , = kerd.

The fact that 0 is an R-homomorphism, and the exactness at the other points are checked in a
similar fashion.

(b) Is obvious.

(c) Is a a direct consequence of the universal property of the quotient. ]

Remark 6.6

The name of the lemma comes from the following diagram

0 0 0
ker f -t >kerg v >kerh%777w
\
I—* mM—Y N 0
F f 0 Y h
\
0 L - M - N’
\ ¢ ¥
!
k ~— —~cokerf ? > coker g v > coker h

0 0 0

If fact the snake lemma holds in any abelian category. In particular, it holds for the categories of
chain and cochain complexes, which we will study in Chapter 3.
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Lemma-Definition 6.7

Ases 00— L -2 M- N — 0 of R-modules is called split iff it satisfies the following
equivalent conditions:

(@) There exists an R-homomorphism ¢ : N — M such that ¢y o 0 = idy (0 is called a section

for ).

(b) There exists an R-homomorphism p : M — L such that po ¢ = id; (p is called a retraction
for ¢).

(c) The submodule Im ¢ = ker ¢ is a direct summand of M, that is there exists a submodule M’
of M such that M =Imep® M.

Example 6

The s.e.s. of Z-modules

0 z/22-*>z7p702/22 - 2~27/27 0

defined by ¢([1]) = ([1], [0]) and where 7 is the canonical projection into the cokernel of ¢ is split
but clearly the s.e.s.

0—=2/22-Y~7/472 "~27/27 0

defined by ¢([1]) = ([2]) and where 7 is the canonical projection onto the cokernel of ¢ is not
split as
Z/42 £ 2/22®2/2Z.

7 Free, Injective and Projective Modules

FREE MODULES

Definition 7.1 (Generating set | R-basis | free R-module)
Let M be an R-module and X < M be a subset.

(@) M is said to be generated by X if every element of M can be written as an R-linear combi-
nation Y} .y Acx, that is, with A, € R almost everywhere 0.

(b) X is an R-basis (or a basis) if X generates M and if every element of M can be written in a
unique way as an R-linear combination ),y A, X (ie. with A; € R almost everywhere 0).

(c) M is called free if it admits an R-basis.
Notation: In this case we write M = @ .y Rx = @,y R = RX.
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Remark 7.2

(c)

independent.

If R is a field, then every R-module is free. (R-vector spaces.)

Proposition 7.3 (Universal property of free modules)

@:P

Proof: If
@ has

Let P be a free R-module with basis X and let i :
R-module M and for every map (of sets) ¢ : X — M, there exists a unique morphism of R-modules

— M such that the following diagram commutes:
¢
X — M
o7
e
P

i

The morphism @ is called the extension by R-linearity of ¢.

P3>m =3y Ax (unique expression), then we set p(m) = > _y Ac@(x). It is then easy to check
the required properties.

Proposition 7.4 (Properties of free modules)

(a)
(b)

Proof:

(b)

Every R-module M is isomorphic to a quotient of a free R-module.

If P is a free R-module, then Homg (P, —) is an exact functor.

(@) Choose a set {x;}c/ of generators of M (take all elements of M if necessary). Then define
Q: @ R— M
iel
(ri)ier — Z rixi.
iel
It follows that M =~ (P, R) /ker<p-
We know that Hom(P, —) is left exact for any R-module P. It remains to prove thatif ¢ : M — N
is a surjective R-linear maps, then ¢, : Homg(P, M) — Homg(P,N) : B — ¢ (B) = Yo B is
also surjective. So let @ € Homg (P, N). We have the following situation:

Let {e;}ics be an R-basis of P. Each a(e;) € N is in the image of ¢, so that for each i € | there
exists m; € M such that ¢(m;) = a(e;). Hence, there is a map B: {e;}ies —> M, e; — m;. By the
universal property of free modules this induces an R-linear map B : P — M such that B(e;) = m;
Viel Thus )

o Blei) = p(mi) = a(e;),
so that (yoB and a coincide on the basis {e;}c;. By the uniqueness of B, we have a = (o = s, (B)

27

(a) When we write the sum ),y A, X, we always assume that the A are 0 almost everywhere.

(b) Let X be a generating set for M. Then, X is a basis of M if and only if X is R-linearly

X < P be the canonical inclusion. For every
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INJECTIVE MODULES

Proposition-Definition 7.5 (Injective module)

An R-module / is called injective iff it satisfies the following equivalent conditions:

(@) The functor Homg(—, /) is exact.

(b) If @ € Homg(L, M) is injective, then ¢* : Homg(M, ) — Homg(L, /) is surjective (hence,
any R-linear map a : L —> [ can be lifted to an R-linear map B: M — [, i.e, Bo @ = a).

(c) If n: 1 —> M is an injective R-homomorphism, then n splits, i.e., there exists p : M — |
such that pon = Id,.

Remark 7.6

Note that Condition (b) is particularly interesting when L € M is an R-submodule and ¢ is the
canonical inclusion.

PROJECTIVE MODULES

Proposition-Definition 7.7 (Projective module)

An R-module P is called projective iff it satisfies the following equivalent conditions:

(@) The functor Homg(P, —) is exact.

(b) If ¢ € Homg(M, N) is a surjective morphism of R-modules, then the morphism of abelian
groups . : Homg (P, M) — Homg(P, N) is surjective.

(c) If m: M — P is a surjective R-homomorphism, then s splits, i.e., there exists 0 : P — M
such that ;to o = Idp.

(d) P is isomorphic to a direct summand of a free R-module.

Example 7

(@) If R = Z, then every submodule of a free Z-module is again free (main theorem on Z-modules).

(b) Let e be an idempotent in R, that is e> = e. Then, R =~ Re ® R(1 — e) and Re is projective
but not free if e # 0, 1.

(c) A product of modules {/;};c; is injective if and only if each /; is injective.

(d) A direct sum of modules {P;} is projective if and only if each P; is projective.
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8 Tensor Products

Definition 8.1 (Tensor product of R-modules)

Let M be a right R-module and let N be a left R-module. Let F be the free abelian group (= free
Z-module) with basis M x N. Let G be the subgroup of F generated by all the elements

(mqy +my,n)— (mq,n)— (my,n), Ymqy,myeM,¥neN,
(m,n1+ny)—(m,ny) —(m,nz), ¥YmeM,¥nq,nye N, and
(mr,n)— (m,rn), VYmeM,¥ne N,VreR.

The tensor product of M and N (balanced over R), is the abelian group M ®g N := F/G. The
class of (m,n) € F in M®g N is denoted by m ® n.

Remark 8.2

(@) MR N={m®n|meM,ne N)z.
(b) In M®g N, we have the relations

(m+m)@n=m®n+my®n, VYmiy,myeM,VneN,
m®(nm +n)=mn +mny, VYmeM,V¥ni,n,e N, and
mr@®n=m®rn, VYmeM,Vne N,VreR.

In particular, n®0=0=0®nYmeM,VneNand (—m)®@n=—-(m®n) =mK (—n)
VmeM,V neN.

Definition 8.3 (R-balanced map)

Let M and N be as above and let A be an abelian group. A map f : M x N — A is called
R-balanced if

f(my +my,n)=f(my,n)+f(mz,n), Vmq,myeM,¥neN,
f(m,ny +n2) =f(m,n1)+f(m,nz2), VYmeM,¥ni,nyeN,
f(mr,n) = f(m,rn), Vme M,Yne N,VreR.

Remark 8.4

P

-

The canonical map t : M x N — M®gr N, (m,n) — m ® n is R-balanced.

oposition 8.5 (Universal property of the tensor product)

Let M be a right R-module and let N be a left R-module. For every abelian group A and for
every R-balanced map f : M x N — A there exists a unique homomorphism of abelian groups
f:M®g N —> A such that the following diagram commutes:

MxN—— A

\L O ///
t g
=15

M®r N
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Proof: Let 1 : M x N — F denote the canonical inclusion, and let ;1 : F — F/G denote the canonical

Re

Pr

projection. By the universal property of the free Z-module, there exists a unique Z-linear map fF—A
such that fot = f. Since f is R-balanced, we have that G < ker(f). Therefore, the universal property of
the quotient yields the existence of a unique homomorphism of abelian groups f : F/G — A such that

fom=f:

MxN—" A

7 A
-

M®r N = F/q

Clearly t = w01, and hence fot =fomor=four="T. [ |

mark 8.6

(a) Let {M;}ic be a collection of right R-modules, M be a right R-module, N be a left R-module
and {N,}i; be a collection of left R-modules. Then, we have

(M) N=PDM;® N)

i€l i€l
jel jel
(b) For every R-module M, we have RQgr M = M via r® m — rm.
(c) If Pis a free left R-module with basis X, then M®gr P = @,y M.

(d) Let Q be a ring. Let M be a (Q, R)-bimodule and let N be an (R, S)-module. Then M®g N
can be endowed with the structure of a (Q, S)-bimodule via

gm®n)s=qgm®ns, VYqe Q,VseS,VmeM,V¥ne N.

(e) If R is commutative, then any R-module can be viewed as an (R, R)-bimodule. Then, in
particular, M ®r N becomes an R-module.

(f) Tensor product of morphisms: Let f : M — M’ be a morphism of right R-modules and
g : N — N’ be a morphism of left R-modules. Then, by the universal property of the
tensor product, there exists a unique Z-linear map f® g : M®r N — M’ ®r N’ such that

(f®g)(m®@n) = f(m)®g(n).

oposition 8.7 (Right exactness of the tensor product)

(@) Let N be a left R-module. Then —®gr N : Modr — Ab is a right exact covariant functor.

(b) Let M be a right R-module. Then M ®g — :rMod — Ab is a right exact covariant functor.
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Remark 8.8
The functors — ®r N and M ®gr — are not left exact in general.

Definition 8.9 (Flat module)
A left R-module N is called flat if the functor — ®r N : Modr — Ab is a left exact functor.

Proposition 8.10

Any projective R-module is flat.

Proof: To begin with, we note that a direct sum of modules is flat if and only if each module in the sum is
flat. Next, consider the free R-module P = @),y Rx. If

Y My — L My 0

0 M,
is a short exact sequence of right R-modules, then we obtain

0 —— M ®r (@XEXR) @;MZCQR (C—BXEXR) @})M:%@R (@XEXR) —0

F b |

(‘p)xeX (w)xeX
@XEX M1 @XEX MZ @XEX M3

lIe

0 0.

Since the original sequence is exact, so is the bottom sequence, and therefore so is the top sequence.
Hence, — ®gr P is exact when P is free.

Now, if N is a projective R-module, then N@® N’ = P’ for some free R-module P’ and for some R-
module N'. It follows that N is flat, by the initial remark. ]
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9 Exercises for Chapter 2

Exercise 9
Let M, N be R-modules. Prove that:

(a) Endr(M), endowed with the pointwise addition and the usual composition of maps, is a ring.

(b) If R is commutative then the abelian group Homg(M, N) is a left R-module.

Exercise 10

Prove:
(@) the universal property of the direct product.

(b) the universal property of the direct sum.

Exercise 11

Prove that if ¢ : M — N is an R-module homomorphism, then there is always an exact sequence
0 —> ker(gp) — M > N — coker(¢) — 0.
Compute the sequences associated with the following Z-homomorphisms:
i) Z Ny 4 multiplication by a prime p in Z;

(i) Z/15Z —>> Z/15Z, multiplication by 3.

Exercise 12

Let Q be an R-module and let0 — A !, B-% € —> 0 be a short exact sequence of R-modules.

(a) Find a counterexample in which the functor Homg(Q, —) does not preserve surjectivity, i.e
find a surjective R-homomorphism g : B — C such that the induced homomorphism
g« : Homg(Q, B) — Homg(Q, C) is not surjective.

(b) Prove that the induced sequence of abelian groups

0 — Homg(C, 0) —~— Homg(B, 0) —"~ Homg (A, Q)

is exact.
Find a counterexample of an injective R-homomorphism f : A — B such that the induced
homomorphism f* : Homg(B, Q) — Homg(A, Q) is not surjective.
Exercise 13
Let / and J be two-sided ideals of R and let M be a left R-module.

(a) Prove that there is an isomorphism of left R-modules R/l ®@r M =~ M/IM.
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(b)
(c)

Exercise

Prove that there is an R-isomorphism R/I®r R// =~ R/(I+ ).

Let m, n be positive integers and A be a torsion abelian group. Compute

Z/nZ®zZ/mZ, A®zQ, Q®zQ, Q/Z®zQ.

14 (Extension of scalars)

(a)

(b)

(d)

(e)

()

Let R and S be rings and let f : R — S be a ring homomorphism.

Extension of scalars: Prove that for every left R-module M, the tensor product S ®r M can
be endowed with a left S-module structure via x - (s®@ m) =xs®m, Vx,s€ S, me M.

Prove that the map t : M — SQ@r M : m — 1(m) =1® m is an R-homomorphism, for every
left R-module M.

Universal property of the extension of scalars: Prove that for every left S-module N and
for every R-homomorphism g : M — N (where N is seen as an R-module via restriction of
scalars), there exists a unique S-homomorphism g : S ®r M — N such that g ot = g, that
is such that the following diagram commutes:

M—2 N

\L o //)r
L Piee
)

S®r M

Prove that if M is a free left R-module with basis {e;}i/, then S ®r M is a free S-module
with basis {1 ® e;}ie/.

Assume R < S is an extension of commutative rings such that S is a free R-module of finite
rank n. Prove that S ®r M is R-isomorphic to a direct sum of n copies of M.

If S =~ R/l is a quotient of R by a two-sided ideal / and f : R — R/l is the quotient
morphism, recall that S®r M = R/I ®q M =~ M/IM and deduce that the map ¢ is not
necessarily injective.



Chapter 3. Homological Algebra

The aim of this chapter is to introduce the fundamental results of homological algebra. Homological
algebra appeared in the 1800’s and is nowadays a very useful tool in several branches of mathematics,
such as algebraic topology, commutative algebra, algebraic geometry, and, of particular interest to us,
group theory.

Throughout this chapter R denotes a ring, and unless otherwise specified, all rings are assumed to be
unital and associative.

Reference:

[Rot09] J. J. RoTmMAN, An introduction to homological algebra. Second ed., Universitext, Springer, New
York, 2009.

[Wei94] C. A. WEIBEL, An introduction to homological algebra, Cambridge Studies in Advanced Math-
ematics, vol. 38, Cambridge University Press, Cambridge, 1994.

10 Chain and Cochain Complexes

Definition 10.1 (Chain complex)

(@) A chain complex (or simply a complex) of R-modules is a sequence
dn dn
(C.:do):<"'_) n+1_+1’Cn—> n1—’"'>
where for each n € Z, C, is an R-modules and d,, € Homg(C,, C,—1) satisfies d, od,11 = 0.
We often write simply C, instead of (C,, d.).
(b) The integer n is called the degree of the R-module C,.
(c) The R-homomorphisms d, (n € Z) are called the differential maps.

(d) A complex C, is called non-negative (resp. positive) if C, = 0 for all n € Z_g (resp. for all
ne Zg()).

To keep notation light we often write C, instead of (C,, d.) and simply d for all differential maps, so
the condition d,, o d,,41 = 0 can be written as d? = 0. If there is an integer N such that C, = 0 for all

34
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n < N, then we omit to write the zero modules and zero maps on the right-hand side of the complex:

dn+2 AN+
= Cny2 — Cngg — Oy

Similarly, if there is an integer N such that C, = 0 for all n > N, then we omit to write the zero
modules and zero maps on the left-hand side of the complex:

d dn-1
Cn —> Cn—1 —> Cnog —> -+

Definition 10.2 (Morphism of complexes)

A morphism of (chain) complexes (or a chain map) between two chain complexes (C,, d.) and
(D, d,), written @s : (Co,ds) —> (D., d,) or simply ¢, : Coc —> D,, is a familiy of R-homo-
morphisms ¢, : C;, — D, (n € Z) such that the diagram

dn+2 dn+1 d” dn—1
Cn+1 Cn Cn—1
(Pn+1i (Pnl (Pn—‘ll
d:1+2 d:1+1 d; d;,,‘|
Dn+1 Dn Dn—'l

commutes, i.e. such that ¢, od,q = d17+1 0 @p41 for each n e Z.

Notation. Chain complexes together with morphisms of chain complexes (and composition given by de-
greewise composition of the underlying R-morphisms) form a category, which we denote by Ch(gMaod).

Definition 10.3 (Subcomplex | quotient complex)

(a) A subcomplex C] of a chain complex (C,, d.) is a family of R-modules C, < C, (n € Z) such
that d,(C;) < C_, for every n e Z.
In this case, (C., d.) becomes a chain complex and we write C, — C, for the chain map given
by the canonical inclusion of C} into C, for each n € Z is a chain map.

(b) If C is a subcomplex of C,, then the quotient complex C,/C] is by the definition the familiy
of R-modules C,/C}, (n € Z) together with the differential maps d, : C,/C, — C,_1/C’_,
(n € Z) induced by the maps d, (n € Z) via the universal property of the quotient of R-
modules.
In this case, the map 7, : C, — C,/C. defined for each n € Z to be the canonical projection
7, : C;, —> C,/C), is a chain map and is called the quotient (chain) map.

Definition 10.4 (Kernel [ image | cokernel)
Let ¢ : (Co, de) —> (D, d,,) be a chain map. Then:

(a) the kernel ker ¢, of @, is the subcomplex ({ker ¢,}ncz, do) of Cs;

(b) the image Im ¢, of ¢, is the subcomplex ({Im @, }nez, d,) of D.;

(c) the cokernel of ¢, is the quotient complex coker ¢o := Do/ Im ¢, .



Lecture Notes: Cohomology of Groups SS 2021 36

With the notions of kernel and cokernel defined above, one can prove that Ch(gMod) is in fact an
abelian category.

Definition 10.5 (Cycles, boundaries, homology)

Let (C,, d.) be a chain complex of R-modules, and let n € Z.
(@) An n-cycle is an element of ker d, =: Z,(C,) =: Z,.

(b) An n-boundary is an element of Imd, 1 =: B,(C,) := B,,.

[Clearly, since d, o dp11 =0, we have B, € Z, < C,. |

(c) The n-th homology module (or simply group) of C, is H,(C,) := Z,/B, .

In fact, for each n € Z, H,(—) : Ch(rMod) — gMod is a covariant additive functor (Exercise Sheet 4),
which we define on morphisms as follows:

Lemma 10.6

Let o : Co —> D, be a morphism of chain complexes between (C,, d,) and (D,,d,). Then ¢,
induces an R-homomorphism

H, (@) : Hn(C,) —  H,(D.)
Zo+ Ba(G) = @n(za) + By(Ds)

for each n € Z. To simplify, this map is often denoted by ¢, instead of H,(¢.).

Proof: Fix n € Z, and let m, : Z,(C,) — Z,(C.)/B,(C,), resp. n), = Z,(Ds) — Z,(D.)/B,(D.), be the
quotient chain maps.
First, notice that ¢, (Z,(C,)) < Z,(D.) because if z € Z,, then d, o ¢,(z) = @,—1 0 dy(z) = 0. Hence,
we have ¢,(z) € Z,(D.).
Similarly, we have ¢, (B,(C.)) S B,(D.). Indeed, if b € B,(C,), then b = d,11(a) for some a € Cyy,
and because ¢, is a chain map we have @,(b) = @, o d,1(a) = d}, .4 © @ay1(a) € By(D,). Thus
B, (C,) < ker(7t), 0 ¢,) for each n € Z and herefore, by the universal property of the quotient, there exists
a unique R-homomorphism 5/, o ¢, such that the following diagram commutes:

$n T,

Z,(C) ——— Z,(Ds) —— Zn(DO)/B,,(D.)
n // - /ﬂ[ll/o(pn
Z,(G)/B,(C.)
Set H,(@.) := 7, o @, . The claim follows. |

It should be thought that the homology module H,(C,) measures the "non-exactness" of the sequence

dn+1 dn
Cn+14>Cn4>Cn—1 .
Moroever, the functors H,(—) (n € Z) are neither left exact, nor right exact in general. As a matter of
fact, using the Snake Lemma, we can use s.e.s. of complexes to produce so-called "long exact sequences"
of R-modules.
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Theorem 10.7 (Long exact sequence in homology)

Yo

Let 0, C—-D,
sequence

E. 0. be a s.e.s. of chain complexes. Then there is a long exact

O (G < Ho (D) < Ho(E) =2 Hy 1(C) <2 Hy 1 (DY) -2 .

where for each n € Z, 0, : Hy(E.) — Hp—1(C,) is an R-homomorphism, called connecting
homomorphism.

Note: Here 0, simply denotes the zero complex, that is the complex

consisting of zero modules and zero morphisms. We often write simply O instead of O,.
Proof: To simplify, we denote all differential maps of the three complexes C,, D., E. with the same letter d,
and we fix n € Z. First, we apply the “non-snake” part of the Snake Lemma to the commutative diagram

@n Yn

0 G, D, En 0
T
$Pn—1 %4
0—— Cn—1 — Dn—‘l En—‘l 0

and we obtain two exact sequences of R-homomorphisms

00— 7,(C) == 7,(D.) —2~ Z,(E.)

and
[ [
Co-1/imd, — Dn-1/imd, — En-1/Imd, — 0

Shifting indices in both sequences we obtain similar sequences in degrees n — 1, and n respectively.
Therefore, we have a commutative diagram with exact rows of the form

@n ¢
Colimdpr = Po/imdyy — = En/imdpyy —0

J/dT ldﬁ ldﬁ

OHZn—1(Co)% n—1(D.)g’ n—1(Eo)r

where d,, : Co/Imd, 1 — Z,—1(C,) is the unique R-homomorphism induced by the universal property
of the quotient by d,, : C, — C,—1 (as Imd, 11 < ker d, by definition of a chain complex), and similarly
for D, and E,. Therefore, the Snake Lemma yields the existence of the connecting homomorphisms

d, : kerd,(E,) — cokerd,(C,)
N———— —— ~— ——
:H,,(E.) :H”71(C.)

for each n € Z as well as the required long exact sequence:

L Ha(C) P Ha(Da) —2 Hy(Ea) =2 Hooy(C) =2 Hyy (D) 2.

=kerd, =kerd, =kerd, =cokerd, =cokerd, [ ]
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We now describe some important properties of chain maps and how they relate with the induced mor-
phisms in homology.

Definition 10.8 (Quasi-isomorphism)

A chain map ¢, : Co¢ —> D, is called a quasi-isomorphism if H,(¢,) is an isomorphism for all
nelZ.

Remark 10.9

(a) Bourbaki uses the nicer homologism instead of the somewhat misleading quasi-isomorphism.

(b) Warning: A quasi-isomorphism ¢, : Co — D, does not imply that the complexes C, and D,
are isomorphic as chain complexes. See Exercise Sheet 5 for a counter-example.

(c) In general complexes are not exact sequences, but if they are, then their homology vanishes,
so that there is a quasi-isomorphism from the zero complex. In fact, if C, is a chain complex
of R-modules, then the following assertions are equivalent:

(1) G, is exact (i.e. exact at C, for each n € Z);
(2) G, is acyclic, that is, H,(C,) =0 for all n € Z;

(3) the chain map 0, — G, is a quasi-isomorphism.

Definition 10.10 (Homotopic chain maps | homotopy equivalence)

Two chain maps @., e : (Co, ds) —> (D, d\,) are called (chain) homotopic if there exists a familiy
of R-homomorphisms {s, : C;, —> D;+1}nez such that

/
Pn — ¢n = dn+1 O0Sp+Sp—10 dn

for each n e Z.

dn+1 dn
S ) G
S n—%n -1 —
<Pn+‘|_4/n+1‘/ / L(P% J/(pn 1= Pn—1
D D D,_
n+1 d:1+1 n d n—1

In this case, we write @o ~ .
Moreover, a chain map ¢, : C¢ — D, is called a homotopy equivalence if there exists a chain
map g, : De —> C, such that 0, 0 g ~ idc, and @. 0 0, ~ idp,.

Note: One easily checks that ~ is an equivalence relation on the class of chain maps.

Proposition 10.11

If @e, Yo : C¢ —> D, are homotopic chain maps, then they induce the same morphisms in homology,
that is,
Hn(@s) = Hy(e) : Hy(Co) — Hp(De) Vin e Z.
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Proof: Fix n € Z and let z € Z,(C,). Then, with the notation of Definition 10.10, we have
((pn — (,Zjn)(z) = (df,“sn + sn_1dn)(z) =d} 150(2) +sp—1ds(2) € B,(D,).
—_— —
€B,(Ds) =0

Hence, for every z + B,(C,) € H,(C,), we have

(Hn(@e) = Hn(ta)) (z + By (Ce)) = (@0 — Yn)(2) + Bn(Ds) = 0+ By(D.) .
In other words, H,(¢p.) — H,(e) = 0 and it follows that H,(@.) = H, (). |

Remark 10.12 (Out of the scope of the lecture!)

Homotopy of complexes leads to considering the so-called homomotopy category of R-modules,

denoted Ho(gMod), which is very useful in algebraic topology or representation theory of finite
groups for example. It is defined as follows:

- The objects are the chain complexes, i.e. Ob Ho(rMod) = Ob Ch(zrMod).
- The morphisms are given bg HomHo(RMod)(C., D.) = HomCh(RMod)(C., D.)/~.

It is an additive category, but it is not abelian in general though. The isomorphisms in the homotopy
category are exactly the classes of the homotopy equivalences.

Dualising the concepts we have defined so far yields the so-called "cochain complexes' and the notion
of "cohomology".

Definition 10.13 (Cochain complex | cohomology)

(@) A cochain complex of R-modules is a sequence
(C.,d.) _ <"'—>Cn_1 g Cni)cn—i—'] _)> ’

where for each n € Z, C" is an R-module and d" € Homg(C", C”“) satisfies d" o d"~1 = 0.
To keep notation light, we often write C* instead of (C*, d*) and d instead of d".
(b) The elements of Z" := Z"(C*) := ker d" are called n-cocycles.

(c) The elements of B" := B"(C*®) := Imd"~" are called n-coboundaries.

(d) The n-th cohomology module (or simply group) of C* is H"(C*) := Z,/B,.

Similarly to the case of chain complexes, we can define:

. Morphisms of cochain complexes (or simply cochain maps) ¢* : (C*, d*) — (D*, d*), or simply
¢* : C* —> D*, as being a familiy of R-homomorphisms ¢” : C" — D" (n € Z) such that
@"od" " =d"" o ¢" " for each n € Z, that is, such that the following diagram commutes:

Cn—1 dn71 C” d"n C”+1 dn+1

(pn—1 l (pnl (p”+1 i

(‘7'"72 an/l dnf‘l Dn an Dn+1 an+1
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- subcomplexes, quotient complexes;
- kernels, images, cokernels of morphisms of cochain complexes;
- for each n € Z, H"(—) on morphisms ¢* : C* — D* through
9" = H'(¢") : H'(C*) —> H"(D*), 2 + B'(D*) — ¢" () + B"(D*)
so that H,(—) : CoCh(rMod) — rMod is a covariant additive functor;
- quasi-isomorphisms, homotopic chain maps and homotopy equivalences.
Moreover,
- homotopic chain maps induce the same R-homomorphisms in cohomology; and

- cochain complexes together with morphisms of cochain complexes (and composition given by
degreewise composition of R-morphisms) form an abelian category, which we will denote by

CoCh(mMod).

Exercise: formulate these definitions in a formal way.

Theorem 10.14 (Long exact sequence in cohomology)

Let O° c—*-pe v E* 0° be a s.e.s. of cochain complexes. Then, for each n € Z,

there exists a connecting R-homomorphism 6" : H"(E*) — H"*1(C*) such that the sequence

n— * * n * *
L; H"(C*) A H"(D*) L) H"(E®) o Hn+1(C-) A H"H(D') L .

is an exact sequence of R-modules

Proof: Similar to the proof of the long exact sequence in homology (Theorem 10.7), i.e. follows from the
Snake Lemma. (Cochain complexes are just chain complexes with a reversed grading!) |

11 Projective Resolutions

Definition 11.1 (Projective resolution)
Let M be an R-module.

(@) A resolution of M is a non-negative chain complex of projective (respectively free) R-modules

(Pe,do) = (- P> P4 P )

which is exact at P, for every n = 1 and such that Hy(P.) = Py/Imd1 = M.

If the R-module P, is projective (resp. free) for each n > 0, then (P,, d,) is called a projective
resolution (respectively a free resolution) of M.

d3 d> d4

(b) Let € : Py — M denote the quotient homomorphism. Then the exact complex

d3 d> dq

P>

P Py—5M 0,
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is called the augmented complex or augmented resolution associated to (P., d.). For this

reason, (projective/free) resolutions of M are often denoted by P, . M.

Example 8
(a) The Z-module M = Z/nZ (n € Z~1) admits the projective resolution 0——=Z—">Z .

(b) If M is a projective R-module, then a projective resolution P, of M can be chosen such that
P, =0forall n > 1, Pp = M and with augmentation map is € = ld.

We now prove that projective resolutions do exist, and consider the question of how "unique" they are.

Proposition 11.2

Any R-module has a projective resolution. (It can even chosen to be free.)

Proof: Let M be an R-module. We use the fact that every R-module is a quotient of a free R-module
(Proposition 7.4). Thus there exists a free module Py together with a surjective R-linear map € : Py - M
such that M =~ Py/kere. Next, let P; be a free R-module together with a surjective R-linear map
di : Py — kere € Py such that P;/kerd; =~ kere:

Inductively, assuming that the R-homomorphism d,_¢ : P,_1 — P,_> has already been defined, then
there exists a free R-module P, and a surjective R-linear map d, : P, — kerd,—1 < P,_q with
P,/kerd, =~ kerd,_q. The claim follows. [ |

Theorem 11.3 (Lifting Theorem)
Let (P., ds) and (Q., d,,) be two non-negative chain complexes such that

1. P, is a projective R-module for every n = 0;
2. Q. is exact at Q, for every n =1 (L.e. H,(Q,) = 0 for every n = 1).

Let €: Py — Ho(P,) and €' : Qyp — Hp(Q,) be the quotient homomorphims.

If f: Ho(Ps) — Ho(Q.) is an R-homomorphism, then there exists a chain map ¢, : Po — Q,
inducing the given map f in degree-zero homology, that is such that Hy(¢@,) = f and foe = £ o ¢y.
Moreover, such a chain map ¢, is unique up to homotopy.

In the situation of the Theorem, it is said that ¢, lifts f.

Proof: Existence. Beacuse Py is projective and & is surjective, by definition (Def. 7.7), there exists an
R-linear map ¢ : Pp — Qp such that the following diagram commutes

S Py— s Hy(P.) = Po/ Im d

|
[ 3o O J{f
! v

Qo — = Ho(Q.) = Qo/Imd,
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thatis foe = € o¢y. But then, & oggodi = foegod; =0, sothat Im(gyody) < kere’ = Imd. Again

=0
by Definition 7.7, since P; is projective and d is surjective onto its image, there exists an R-linear map
@1 : Py — Q4 such that ¢y o dq = dq o

P, & Po

| W\
g1 | <P0l
v O

o} — Imd| = ker&’ —— Qp
1 tnc

The morphisms ¢, : P, — Q, are constructed similarly by induction on n. Hence the existence of a
chain map ¢. : P — Q. as required.

Uniqueness. For the uniqueness statement, suppose i, : Po — Q, also lifts the given morphism f. We
have to prove that ¢, ~ (s (or equivalently that ¢, — (s is homotopic to the zero chain map).

For each n > 0 set g, := ¢, — Y, so that g, : P —> Q, is becomes a chain map. In particular
00 = o — Yo = Ho(pe) — Ho(pe) = Ff—f =0. Thenwe let s_» : 0 —> Hyp(Q.) and s_1 : Hy(P.) — Qo
be the zero maps. Therefore, in degree zero, we have the following maps:

Py —5 Ho(Ps) ———=0

Qo = Ho(Q.)

where clearly 0 = s_ 00 + €' o s_1. This provides us with the starting point for the construction of a
homotopy s, : P, — Q,4+1 (n = 0) by induction on n. So let n > 0 and suppose s; : Pi — Q41 is
already constructed for each —2 < i < n—1 and satisfies d,; os; +s;_1 o d; = 0; for each i > —1, and
where we identify

P,1 = H()(P.), 071 = H()(Q.), P72 =0= sz, d() =g, d6 = 8/, d71 =0= dL1 .
Now, we check that the image of g, —s,_1 o d, is contained in kerd] = Imd_;:
dyo (0, —sp_10d,) =dyo0,—d,os,_10d,
=d,oag,— (0,1 —Sp_20d,_1)od,
= d;, 00, —0p—10 dn
=0,—10d, —0,—10d, =0,
where the last-nut-one equality holds because both g, is a chain map. Therefore, again by Definition 7.7,

since P, is projective and d;  , is surjective onto its image, there exists an R-linear map s, : P, — Q1
such that d), ., 05, = 0, —s,_10d,:

s, - — Pn Pn—‘l Pn—Z e
- Sn—1 Sp—2
, - 0,—Sp_10d, Un—1l Un—zl
%
Qn+1 & Qn a n—1 a_ Qn—Z

n+1

Hence we have ¢, — ¢, = 0, = df7+1 oS, + Sp—10d,, as required.

As a corollary, we obtain the required statement on the uniqueness of projective resolutions:
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Theorem 11.4 (Comparison Theorem)

Let P, M and O, M be two projective resolutions of an R-module M. Then P, and Q. are
homotopy equivalent. More precisely, there exist chain maps @s : Po — Q. and s : Qe — P,
lifting the identity on M and such that (s © @s ~ Idp, and @, o e ~ ldg,.

Proof: Consider the identity morphism Idy : M — M.

By the Lifting Theorem, there exists a chain map ¢, : Po — Q., unique up to homotopy, such that
Ho(@s) = ldy and ldyoe = € o ¢y Likewise, there exists a chain map ¢, : Qo —> P., unique up to
homotopy, such that Hy(¢.) = Idpy and ldy o’ = €0 .

dy

P, Py Po - M 0
Al Al Al
EIINEPS Il 13 O ol 130 O ldy| |ldy
Iy Iy Iy p
On 7 (07 7 Qo M 0

Now, ¢, © ¢, and Idp, are both chain maps that lift the identity map Id : Hy(P.) — Ho(P.). Therefore,
by the uniqueness statement in the Lifting Theorem, we have ¢, © @, ~ Idp,. Likewise, @, o tJs and Idgp,
are both chain maps that lift the identity map Idy : Ho(Qs) — Ho(Q.), therefore they are homotopic,
that is ¢, o e ~ Idog,. [ |

Another way to construct projective resolutions is given by the following Lemma, often called the Horse-
shoe Lemma, because it requires to fill in a horseshoe-shaped diagram:

Lemma 11.5 (Horseshoe Lemma)

Llet 0 — M —= M —M"—=0 be a short exact sequence of R-modules. Let P, 5 M be a

8//
resolution of M" and P — M" be a projective resolution of M".

P, Py
/ |
P Py

/| |

0 M M M" 0

Then, there exists a resolution P, —» M of M such that P, = P! @ P! for each n € Z>( and the s.es.

io Tle

0—-M-—->M-—-M'—0 lifts to a s.e.s. of chain complexes 0y — P, —> P, —> P/ —0,

!
&
where i, and m, are the canonical injection and projection. Moreover, if P, — M’ is a projective

&
resolution, then so is Py — M.

Proof: Exercise.
[Hint: Proceed by induction on n, and use the Snake Lemma.|
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|
Finally, we note that dual to the notion of a projective resolution is the notion of an injective resolution:

Definition 11.6 (Injective resolution)

Let M be an R-module. An injective resolution of M is a non-negative cochain complex of injective
R-modules

(/',d')Z(/O d /1 d! /2 d? )

which is exact at I for every n > 1 and such that H(/*) = ker d°/0 =~ M.

Notation: Letting t : M < [° denote the natural injection, we have a so-called augmented complex

Mt @ p_d'_p

associated to the injective resolution (/°*, d*), and this augmented complex is exact. Hence we will also
denote injective resolutions of M by M <> [°.

Remark 11.1

Similarly to projective resolutions, one can prove that an injective resolution always exists. There is
also a Lifting Theorem and a Comparison Theorem for injective resolutions, so that they are unique
up to homotopy (of cochain complexes).

12 Ext and Tor
We now introduce the Ext and Tor groups, which are cohomology and homology groups obtained from
applying Hom and tensor product functors to projective/injective resolutions. We will see later that Ext

groups can be used in group cohomology to classify abelian group extensions.

Definition 12.1 (Ext-groups)

Let M and N be two left R-modules and let P, 5 M be a projective resolution of M. For n € Z3,
the n-th Ext-group of M and N is

Exti(M, N) := H"(Homg(P., N)),

that is, the n-th cohomology group of the cochain complex Homg(P., N).

Recipe:
1. Choose a projective resolution P, of M.
2. Apply the left exact contravariant functor Homg(—, N) to the projective resolution

d; dq

Pe=(-- & P> P

Po)
to obtain a cochain complex

* * d*
3

d d
HomR(Po, N) —1 HomR(P1, /\/) s HomR(P3, /\/) e .
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of abelian groups (which is not exact in general).

3. Compute the cohomology of this new complex.

First of all, we have to check that the definition of the abelian groups Extix(M, N) is independent from
the choice of the projective resolution of M.

Proposition 12.2

If P, S M and Q, 5 M are two projective resolutions of M, then the groups H”( Homg(P., N))
and H”(HomR(Q., N)) are (canonically) isomorphic, via the homomorphisms induced by the chain
maps between P, and Q. given by the Comparison Theorem applied to the identity morphism Idy,.

Proof: By the Comparison Theorem, there exist chain maps @, : Pe — Q. and . : Qs —> P, lifting the
identity on M and such that s © s ~ Idp, and @, o s ~ Idg,.
Now, applying the functor Homg(—, N) yields morphisms of cochain complexes

¢* : Homg(Q., N) — Homg(P., N) and ¢*: Homg(P., N) — Homg(Q., N).

Since @, oty ~ Idg, and o0, ~ Idp,, it follows that ¢* o * ~ Idyome(p,,N) @nd Y 0 @™ ~ Idyomg(0.,N)-
But then, passing to cohomology, ¢* induces a group homomorphism

@* : H"(Homg(Q., N)) — H"(Homg(P., N))

(see Exercise 1, Exercise Sheet 5). Since ¢, is unique up to homotopy, so is ¢*, and hence ¢* is
unique because homotopic chain maps induce the same morphisms in cohomology. Likewise, there is a
unique homomorphism * : H"(Homg(P., N)) — H"(Homg(Q., N)) of abelian groups induced by
Y, . Finally, ¢* o * ~ Id and ¢* o ¢* ~ Id imply that @* o y* = Id and * o ¢* = Id. Therefore, ¢*
and (* are canonically defined isomorphisms. ]

Proposition 12.3 (Properties of Extgp(—, —))
Let M, My, My and N, N1, N; be R-modules and let n € Z-( be an integer. The following holds:

(a) Ext%(M, N) = Homg(M, N).

(b) Any morphism of R-modules a : M; — M, induces a group homomorphism
a* : Extp(My, N) — Extip(My, N).

(c) Any morphism of R-modules B : Ny — N, induces a group homomorphism
Bi : Extp(M, Ni) — Extip(M, Na) .

(d) If P is a projective R-module, then Extx(P, N) =0 for all n > 1.

(e) If I is an injective R-module, then Extp(M, ) = 0 for all n = 1.

Proof: (a) Let P, 5 Mbea projective resolution of M. Applying the left exact functor Homg(—, N) to
the resolution P, yields the cochain complex

* * d¥

d d
Homg(Py, N) —— Homp(Py, N) —=—= Homp(Py, N) —— - - - .
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Therefore,
Ext%(M, N) = H°(Homg(P., N)) = ker d3/0 = ker d .

Now, the tail - -2 Py —5 M — 0 of the augmented complex P, 5 M is an exact sequence
of R-modules, so that the induced sequence

d*
0 — Homg(M, N) —=> Homg(Py, N) — = ..

is exact at Homg(M, N) and at Homg(Py, N) and it follows that
Ext%(M, N) = ker d¥ = Im ¥ = Homg(M, N)
because £* is injective.

(b) Let P, 5 M be a projective resolution of M; and P, 5 M, be a projective resolution of M,. The
Lifting Theorem implies that « lifts to a chain map ¢, : P, —> P.. Then, ¢, induces a morphism
of cochain complexes ¢* : Homg(P,, N) — Homg(P,, N) and then ¢* induces a morphism in
cohomology

@* : Exth(Ma, N) — Exth(My, N) .
Thus, we set a* := @*.
(c) Let P, 5 M be a projective resolution of M. Then, there is a morphism of cochain complexes

B* : Homg(P., Ny) — Homg(P,, N>) induced by B, which, in turn, induces a homomorphism of
abelian groups By in cohomology.

(d) Since P is projective, we may choose --- —=0—=0—= P as a projective resolution of P (i.e.
Py := P, P, = 0 for any n > 1), augmented by the identity morphism Idp : P — P. Then the
induced cochain complex is

0 0

Homg (P, N) 0 0 s

so that clearly Extg(P,N) =0if n > 1.

(e) Let P, 5 Mbe a projective resolution of M. Since / is injective, the functor Homg(—, /) is exact.
Therefore the induced cochain complex

dyf d¥ d¥
Homg (P, I) ——= Homg(P;, ) —— Homg(P,, ) —— - --

is exact in degree n > 1 and its cohomology is zero. The claim follows. ]

Remark 12.4

Th

Using the proposition one can prove that for every n € Zsg, Exti(—,N) : RMod — Ab is a
contravariant additive functor, and Extg(M, —) : RMod — Ab is a covariant additive functor.

eorem 12.5 (Long exact sequences of Ext-groups)

Let M, N be R-modules.

® Y

(@) Anys.es. 0 N
abelian groups

N> N3 0 of R-modules induces a long exact sequence of

0 — Exth(M, Np) 25 Exth(M, Na) 25 Exth(M, Ns) —%> Exth(M, Ni) — ...

- ExtB(M, Ny) 25 Exth (M, Na) 25 Exti(M, Ns) ~2 Exts (M, Np) — ... .
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(b) Any s.es. 0— M — %My

abelian groups

M; 0 of R-modules induces a long exact sequence of

%
0 — ExtQ(Ms, N) 2= Exth (Mo, N) <> Ext&(Mr, N) —2= Exth(Ms, N) —— ...

k n
= Exth (M3, N) 25 Exth (Mo, N) 25 Exth(My, N) ~ Extt (M5, N) — ... .

Proof: (a) Let P, be a projective resolution of M. Then there is an induced short exact sequence of cochain
complexes

0 —> Homg(P., Ni) —% > Homg(P., Ny) —-—> Homg(P., N3) —> 0

because each module P, is projective. Indeed, at each degree n € Z this sequence is

0 ——= Homg(Py, Ni) —2 Homg(Py, No) —2 Homg (P, N3) — 0

obtained by applying the functor Homg(P,, —), which is exact as P, is projective. It is then easily
checked that this gives a s.e.s. of cochain complexes, that is that the induced differential maps
commute with the induced homomorphisms ¢,. Thus, applying Theorem 10.14 yields the required
long exact sequence in cohomology.

(b) Let P, be a projective resolution of M; and let Q. be a projective resolution of M;. By the
Horseshoe Lemma (Lemma 11.5), there exists a projective resolution R, of M, and a short exact
sequence of chain complexes

0 P. R. Q. 0,

lifting the initial s.e.s. of R-modules. Since Q, is projective for each n > 0, the sequences

0 Py R, Qn 0

are split exact for each n = 0. Therefore applying Homg(—, N) yields a split exact s.es.
0——=Homg(Q,, N)——=Homg(R,, N)——=Homg(P,, N)——=0
for each for each n > 0. It follows that there is a s.e.s. of cochain complexes
0 —— Homg(Q., N) —— Homg(R., N) —— Homg(P,, N) ——=0.

The associated long exact sequence in cohomology (Theorem 10.14) is the required long exact
sequence. ]

The above results show that the Ext groups “measure” and "repair" the non-exactness of the functors
Homg(M, —) and Homg(—, N).

The next result is called “dimension-shifting” in the literature (however, it would be more appropriate
to call it “degree-shifting”); it provides us with a method to compute Ext-groups by induction.
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Remark 12.6 (Dimension shifting)

Let N be an R-module and consider a s.e.s.

B

0 [—*~P M 0

of R-modules, where is P projective (if M is given, take e.g. P free mapping onto M, with kernel L).
Then Exti(P, N) = 0 for all n > 1 and applying the long exact sequence of Ext-groups yields at
each degree n > 1 an exact sequence of the form

n *
0~ Exti(L, N) —2= Ext (M, N) -2 0,

where the connecting homomorphism 0" is therefore forced to be an isomorphism:
Extht' (M, N) = Extx(L, N).

Note that the same method applies to the second variable with a short exact sequence whose middle
term is injective.

A consequence of the dimension shifting argument is that it allows us to deal with direct sums and
products of modules in each variable of the Ext-groups. For this we need the following lemma:

Lemma 12.7

Consider the following commutative diagram of R-modules with exact rows:

Ao A B 0

|

/ /!
B<PB¢/B 0

Then there exists a morphism h € Homg(A”, B”) such that ho B =y o g. Moreover, if f and g are
isomorphisms, then so is h.

Proof: See Exercise 28. [ ]

Proposition 12.8 (Ext and direct sums)

(a) Let {M;}ic/ be a family of R-modules and let N be an R-module. Then

Extk ((-D M;, /\/> ~ H Extag(M;, N) ¥n=>=0.

i€l i€l

(b) Let M be an R-module and let {N;}; be a family of R-modules. Then

Exth (A/I, 11 /\/i> > [ JEXtR(M,N;) ¥n>0.

il il
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(a) Case n = 0. By Proposition 12.3(a) and the universal property of the direct sum (Proposi-

Proof:
tion 5.2), we have
Ext% (@ M, /\/) ~ Homg (@ M;, /\/) > [ [Homp(M;, N) = [ [ ExtR(M;, N).
iel iel i€l iel
Now, suppose that n > 1 and choose for each i € | a s.e.s. of R-modules
0 L P; M; 0,

where P; is projective (e.g. choose P; free with quotient isomorphic to M; and kernel L;). These
sequences induce a s.es.
M; —0.

0—— (‘Bie/ P —— (‘Biel

Li — @ies

Pi, N)

Case n > 1: We proceed by induction on n.
First, for n=1, using a long exact sequence of Ext-groups, we obtain a commutative diagram
iel

HomR(@[el P, N) - HomR(@iel L, N) LO' Eth?(@iel M;, N) - EXt}? (@

!
[Tie Homg(Pi, N) —= T, Homg(L;, N) —= [T, Extp(M;, N) —= [T, Extp(P:, N)

with the following properties:
the morphisms of the bottom row are induced componentwise;

- both rows are exact; and
the two vertical isomorphisms are given by the case n = 0.

Since P; is projective for every i € /, so is @, P;, thus Proposition 12.3 yields

D P, /\/) ~0x~ H Exth(Pi, N) .

iel

Exth (

iel

Therefore Lemma 28 yields
Extl <@ M;, N) ~ [ [Extp(Mi, N) .
iel

iel
Now assume that n > 2 and assume that the claim holds for the (n — 1)-st Ext-groups, that is
Exty (@ L, N) > [ [Ext (L N) -
iel iel

Then, applying the Dimension Shifting argument yields

Ext (@ L;, /\/) >~ Extp <@ M;, /\/) ,
iel iel
and
Exth (L, N) = Exth(M;, N) Viel,
so that
[TExty " (Lo N) = [ [ Exta(M., N) .
i€l icl
Hence the required isomorphism
Extr <@ M, N) = H Extp(M;, N) .
i€l icl
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To
M

(b) Similar to (a): proceed by induction and apply a dimension shift. (In this case, we use s.e.s!s with
injective middle terms.) |

end this chapter, we introduce the Tor-groups, which “measure” the non-exactness of the functors
®r — and — ®r N.

Definition 12.9 (Tor-groups)

Let M be a right R-module and N be a left R-module. Let P, be a projective resolution of N. For
n € Zxg, the n-th Tor-group of M and N is

TorR(M, N) := H,(M ®g P.),

that is, the n-th homology group of the chain complex M &g P..

Proposition 12.10

Let M, My, Ma, M3 be right R-modules and let N, N1, N2, N3 be left R-modules and let n € Z-.
(@) The group Tor (M, N) is independant of the choice of the projective resolution of N.
(b) Torf(M,N) =~ M®g N.
(c) Tor®(—, N) : RMod — Ab is an additive covariant functor.
(d) Tor®(M, =) : RMod — Ab is an additive covariant functor.
(e) TorR(My @ My, N) = TorR (M, N) @ TorR (My, N).
(f) TorR(M, Ny @ N2) = TorR(M, Ny) @ TorR (M, Ny).

(g) If either M or N is flat (so in particular if either M or N is projective), then Tor®(M, N) =0
forall n > 1.

B

(h) Any s.es. 0 My —2=M, Ms 0 of right R-modules induces a long exact se-
quence
Oy
--*>T0r5+1(M3,N)*>T0r (Mh, N) —25= Tor® (My, N) —25= Tor® (M3, N) —2- ..
a®ld Id
c——>Torf (M5, N) My ®@r N —2N My @ NP2 Ay @p N 0
of abelian groups.
(i) Anys.es. 0 N1 —2=N5 F N3 0 of left R-modules induces a long exact sequence
~~*>Torn+1(/\/l /\/3)*>Tor (M, N1)*>Tor (M, Nz)HTor (M, N3) ——
.. *>Torf(/\/l, N3) M Rr Nj ldu @ MRr N> v B M ®r N3 0

of abelian groups.

The proof of the above results are in essence similar to the proofs given for the Ext-groups.
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13 Exercises for Chapter 3

Exercise 15

Verify that for each n € Z,
H,(—) : Ch(kMod) — rMod and H"(—): CoCh(rMod) — rMod

are covariant functors.

Exercise 16

(@) Let p be a prime number and consider the following chain complexes of Z-modules:
0zl z7z 505
5 052%7505 ..
5052225 Z/4Z >0 -

> 0-2/32352/6Z -0 -
Compute the homology modules of each complex.

(b) Consider the following morphism of chain complexes of abelian groups:

0 7z =7 0. 7z =.7 0.7 *? 7 0
N S O
0 0 0 0 0 Z/pZ —=0

Compute the homology of both the horizontal chain complexes and prove that each map induced
in homology by the vertical maps is an isomorphism.

Exercise 17
Let C, be a chain complex of R-modules. Prove that TFAE:

(@) G, is exact, i.e. exact at C, for each n € Z;
(b) G, is acyclic, ie. H,(C,) =0 for all n € Z;

(c) the chain map 0, — C, is a quasi-isomorphism.

Exercise 18

(@) Let 0 — A, — B, — C, — 0, be a s.e.s. of chain complexes. Prove that if two of the
three complexes A,, B., C, are exact, then so is the third.

(b) Let @o be a morphism of chain complexes. Prove that if ker(¢.) and coker(¢p,.) are acyclic,
then ¢, is a quasi-isomorphism.
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Exercise 19

Let K be a field and let C, be a complex of K-vector spaces which is bounded below and above,
i.e. assume C, = 0 for every index m greater than N € Z-¢ or less than 0. Prove that

N

N
3 (1) dimg Gy = 3 (—1)" dimy Hy(Ca).
n=0 n=0

This number is called the Euler-Poincaré characteristic of the complex C,.

Definition. A chain complex C, of R-modules is called split exact if it is exact and if moreover for each
neZz Z, = 2Z,(C,) is a direct summand of G,, ie. C, = Z, ® U, for some R-module U,.

Example 9

Let (C,.,ds) be a chain complex of R-modules.
(@) With the notation of the definition, prove that:

(i) If C, is split exact, d, induces an isomorphism U, = Z,_; for all n € Z.

(ii) The inverse of the isomorphism of (a) induces an R-homomorphism s, : C,,_1 — C, such
that ker(s,) = U,—1 and Im(s,) = U,.

(iit) C. is split exact if and only if Idc, is homotopic to the zero chain map.

(b) Prove that (C,,d,) is split exact if and only if C, is exact and there are R-homomorphisms
sp: Gy — Chaq such that dpyqspdpiq = dpy.

(HINT: For the sufficient condition, prove ker(sd) < Im(ds) (where we omit the indices for clarity).)

(c) For R € {Z,Z/4Z} prove that the following complex of R-modules is acyclic but not split

exact:
. 57/47 2 7/42 5 7/47 % ...

Exercise 20

Formulate the following definitions formally:
- of a subcomplex and of a quotient complex of cochain complexes;
- of kernels, images, and cokernels of morphisms of cochain complexes;

- of a quasi-isomorphisms, homotopic chain maps and homotopy equivalences.

Exercise 21

Consider the two non-negative chain complexes of Z-modules
Poi=(0—0-—Z%27) and Q,:=(0—2/22%222% 7/27)
where the rightmost module is assumed to be in degree zero. Let

f: H()(P.) = Z/4Z - H()(Q.) = Z/ZZ
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be the unique non-zero Z-linear map.
(@) Find all possible chain maps ¢, : P« — Q, lifting f.

(b) Construct homotopies between the different liftings of part (a).

Exercise 22

Prove the Horseshoe Lemma.

Exercise 23

(a) State a Lifting Theorem for injective modules, and give a sketch of proof.

(b) State a Comparison Theorem for injective resolutions, and give a sketch of proof.
Exercise 24

Let M, M',M" and N be R-modules, let « : M — M’ and B : M’ — M” be R-linear maps,
and let o* : Extp(M', N) — Exti(M, N) and B* : Exta(M”, N) — Extx(M’, N) be the induced
Z-linear maps. Prove that (Bo a)* = a* o B*.

Exercise 25
(a) Prove that if Exth(M, N) = 0, then any s.es. 0 — N — X — M — 0 of R-modules
splits.

(b) Let P be an R-module. Prove that the following assertions are equivalent:

(i) P is projective;
(it) Extg(P, N) =0 for every n =1 and each R-module N; and
(i) Ext(P, N) = 0 for each R-module N.

Exercise 26

Let A be a Z-module and let p be a positive prime number. Prove that:

) Tor?(A, Z/pZ) is the homology of the complex 0 — A PiA—0;
b) Tor§ (A, Z/pZ) = A/pA,

Tor{(A, Z/pZ) = A, :=f{aeAlp-a=0},

Tor%(A,Z/pZ) = =2

) Ext5(Z/pZ, A) is the cohomology of the complex 0 — A 2> A — 0;

) Ext%(Z/pZ, A) = Homz(Z/pZ, A) ~ Ap,

)
( ) =

Exth(Z/pZ, A) = A/pA,
(Z )

ExtZ(Z/pZ,A) =0 if n = 2.
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Ex

Ex

Ex

ercise 27
Let K be a field and let A := K[t]/(t?). Write K for the trivial A-module.

(@) Find a projective resolution of K. (Hint: use multiplication by 7 := t + (#), the class of t in the quotient.)

(b) Prove that
My itn=0,

Ext’(K, M) =
KAK M) {/w,ﬁ/vl ifn>1,

where My = {me M|t-m = 0}.
ercise 28

Consider the following commutative diagram of R-modules with exact rows:

A—op P

|

/ /1
B<PB¢;B 0

A" 0

Prove that there exists a morphism h € Homg(A”, B”) such that ho B = ¢ o g. Moreover, if f and
g are isomorphisms, then so is h.

ercise 29 (Generalised Dimension Shifting)

Ex

Ex

(a) Let M and N be R-modules. Let (P., d.) be a projective resolution of M and set K; := ker d;
for each i € Z>¢. Then for every n € Z>;, we have

Exth(M, N) = Exth (Ko, N) = ... = Ext(K,_3, N) = Exth(K,_2, N).

(b) State and prove a similar result for the Tor-groups.
ercise 30
Let M be a right R-module and let N be a left R-module.

(@) Define torf(/\/l, N) using a projective resolution of M and applying — ®g N.
(b) Prove that torf(M, N) = Tor? (M, N) using dimension shifting.

ercise 31
Let M, N be R-modules.

(a) Define extx(M, N) using an injective resolution of N and applying Homg(M, —).
(b) Prove that extpg(M, 1) =0, Y n =1, if | is an injective R-module.

(c) Prove that extp(M, N) = Extix(M, N) using dimension shifting.




Chapter 4. Cohomology of Groups

Throughout this chapter we assume that we are given a group G and consider modules over the group
algebra KG of G over a commutative ring K. The main aim of this chapter is to introduce the cohomol-
ogy groups of G and describe concrete projective resolutions which shall allow use to compute them in
some cases.

Notation for the chapter. Throughout this chapter we let (G,-) (in multiplicative notation) denote a
group and (K, +, ) denote an (associative and unital). commutative ring.
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14 Modules over the Group Algebra

Lemma-Definition 14.1 (Group algebra)

If G is a group and K is a commutative ring, we may form the group ring KG whose elements are
the formal linear combinations dec Agg (A4 € K), and addition and multiplication are given by

Z Agg + Z Hgg = Z(Ag + 1g)g  and (Z Ag9) - (Z pph) = Z (Agkin)gh .
geG geG geG geG heG g,heG

Thus KG is a K-algebra, which as a K-module is free with basis G. Hence we usually call KG the
group algebra of G over K rather than simply group ring.

Proof: By definition KG is a free K-module with basis G, and the multiplication in G is extended by K-
bilinearity to the multiplication KG x KG — KG. It is then straightforward to check that this makes
KG into a K-algebra. ]

55



Lecture Notes: Cohomology of Groups SS 2021 56

Remark 14.2

- the K-rank of KG is |G

Clearly:

ke =1k -1¢ =1q;

’

KG is commutative if and only if G is an abelian group.

In this lecture, we will mainly work with the following commutative rings: K = Z the ring of integers,
and fields.

Remark 14.3

(a)

KG-modules and K-representations:
If K is a field, then specifying a KG-module V is the same thing as specifying a K-vector
space V together with a K-linear action of G on V/, i.e. a group homomorphism

G —> Autk(V) =: GL(V),

or in other words a linear representation of G over K.

Similarly, if K = Z, then specifying a ZG-module M is the same thing as specifying a
Z-module M together with a Z-linear action of G on M, i.e. a group homomorphism

G — Autz(M)
also called an integral representation of G .

Left and right KG-modules:

Since G is a group, the map KG — KG such that g — g~ for each g € G is an anti-
automorphism. It follows that any left KG-module M may be regarded as a right KG-module
via the right G-action m - g := g~ "m. Thus the sidedness of KG-modules is not usually an
issue.

The trivial KG-module:
The commutative ring K itself can be seen as a KG-module via the G-action

- Gx K—K
(9. 4) —g-A:=2

extended by K-linearity to the whole of KG. This module is called the trivial KG-module.
An arbitrary KG-module A on which G acts trivially is also called a trivial KG-module.

Tensor products of KG-modules balanced over K:
If M and N are two left KG-modules, then the tensor product M ®x N of M and N balanced
over K can be made into a KG-module via the diagonal action of G, i.e.

g-(m®n) :=gm®gn Vge G,YmeM,VneN.
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(e) Morphisms of KG-modules:
If M and N are two KG-modules, then the abelian group Homg (M, N) can be made into a
KG-module via the conjugation action of G, Le.

(g-f)(m):=g-f(g~"-m) Vge G,YmeM.

(f) The augmentation map and the augmentation ideal:
The map

£:KG— K, Y Agg > > A
geG geG

is a surjective K-algebra homomorphism, called augmentation homomorphism (or map). Its
kernel ker(g) =: /G is an ideal and it is called the augmentation ideal of KG. Clearly,

KG/IG =~ K

as K-algebras.

Notice that € is hence also a homomorphism of KG-modules, so that we can also see /G as
a KG-submodule of KG.

Lemma 14.4

The following assertions hold.
(@) The augmentation ideal /G is a free K-module with K-basis {g — 1| g € G\{1}}.

(b) If X is a set of generators for the group G, then /G is generated as a KG-module by the set
{x—1|xeX}.

(c) If M is a KG-module, then IG-M={g-m—m|ge G, me M.

(d) There is an isomorphism of abelian groups (/G/(/G)?, +) = (Gap, -), where Ggp := G/[G, G]
denotes the abelianisation of G.

Proof: (a) First of all, the set S:={g — 1| g € G\{1}} is clearly contained in ker € by definition of ¢.
The set S is K-linearly independent since

0= Z Aglg —1) (4 € K)

geG\{1}
= Z Agg — 2 Ag
geCG\{1} geG\{1¢}

implies that A; = 0 for every g € G\{1}, because G is K-linearly independent in KG.
To prove that S spans /G as a K-module, let dec Agg (Ag € K) be an element of /G = kere.

Hence
0= C(Z Agg) = Z Ag
geC geG
and it follows that

DiAgg=DAgg=0=> dg— Y Ag= D Alg—1)= > Alg—1).

geG geG geG geG geC geG\{1}



Lecture Notes: Cohomology of Groups SS 2021 58

(b) Clearly, for every elements g1, g2 € G we have:

9192—1=g1(g2— 1)+ (g1 —1) and g7'—1=—g7"(g1 1)

Therefore {g — 1| g€ G\{1}} = {{x — 1| x € X} kg, which implies that
IG={{g—1]geCG\{(1Hhrkc{{x—1|xeXPkcc IG

and hence equality holds.
(c) Follows from (a).
(d) Exercise 33. n

Definition 14.5 (G-fixed points and G-cofixed points)
Let M be a KG-module.

(a) The G-fixed points of M are by definition M := {meM|g-m=mVge G}.
(b) The G-cofixed points of M are by definition Mg := M/(1G - M).

Remark 14.6
If M and N are KG-modules, then the following assertions holds:

(@) MY is the largest KG-submodule of M on which G acts trivially;
(b) Mg is the largest quotient of M on which G acts trivially;

(c) Homg (M, N)¢ = Homgg (M, N);

(d) M®k N)g = M®kcg N.

See Exercise 32.

15 (Co)homology of Groups

We can eventually define the homology and cohomology groups of a given group G.

Definition 15.1 (Homology and cohomology of a group)
Let A be a KG-module and let n € Z>p. Define:

(@) H,(G,A) := Tork¢(K, A), the n-th homology group of G with coefficients in A;

(b) H"(G, A) := Extis(K,A), the n-th cohomology group of G with coefficients in A.

Remark 15.2

A priori the definition of the homology and cohomology groups H,(G,A) and H"(G, A) seem to
depend on the base ring K, but in fact it is not the case. Indeed, it can be proven that there are
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group isomorphisms
TorkC(K, A) = Tor?6(Z,A)  and  Extio(K,A) =~ Ext3(Z,A)

for each n € Z>¢ and every KG-module A, which can also be seen as a ZG-module via the unique
ring homomorphism Z — K (mapping 1z to 1x). See Exercise 34.

In view of the above remark, from now on, unless otherwise stated, we specify the ring K to Z.

Proposition 15.3 (Long exact sequences)

Let 0—>A—~B-% C—~0 be a short exact sequence of ZG-modules. Then there are long

exact sequences of abelian groups in homology and cohomology:

(a)

o Hy1(G, O) 25 H (G A) 25 Ho (G, B) Y5 Ho (G, C) — - -
o Hy(G, C) 2 Ho (G, A) 5 Ho(G, B) Y Ho(G, C) — 0

0—= HY(G, A) 5 H(G, B) Y% HO(G, )~ H'(G, A) — - -

= HY(G, A) P HY (G, B) Y HY(G, C) 2 H (G A) —> -

Proof: By definition of the homology and cohomology groups of G, (b) is a special case of Proposition 12.5(a)
and (a) is a special case of Theorem 12.10(i). ]

To start our investigation we characterise the (co)homology of groups in degree zero:

Proposition 15.4
Let A be a ZG-module. Then

(@) Ho(G,A) =~ Z®zg A= Ag, and
(b) H%(G, A) = Homzg(Z, A) = A¢

as abelian groups.

Proof: (a) By Definition and Proposition 12.10(b) we have
Ho(G,A) = Tor§%(Z,A) ~ Z®zc A.

Moreover, Remark 14.6(d) yields Z®zc A~ (Z®z A)c = Ac.
(b) By Definition and Proposition 12.3(a) we have

HY(G,A) = ExtY-(Z, A) = Homzg(Z, A) .

Moreover, Remark 14.6(c) yields Homzg(Z, A) = Homz(Z, A)¢ = AS. |
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Next, the degree-one (co)homology groups with coefficients in a trivial ZG-module can also be char-
acterised using the augmentation ideal.

Remark 15.5

If Ais a trivial ZG-module, then there are several interpretations of the 1st homology and coho-
mology groups of G which easily follow from the results we have seen so far:

(@) H1(G,A) = IG®z6 A= IG/(1G)? ®z6 A= 1G/(IG)? Rz A= Ggp ®7 A;

(b) H'(G,A) = Homz(IG, A) = Homzc(IG/(1G)?, A)
~ Homz(IG/(1G)?, A) = Homz(Gap, A) = Homep (G, A).

See Exercise 33.

Corollary 15.6
If Z denotes the trivial ZG-module, then H;(G, Z) = IG/(I1G)? = Gqp.

Proof: This is straightforward from Remark 15.5. ]

16 The Bar Resolution

In order to compute the (co)homology of groups, we need concrete projective resolutions of Z as a
ZG-module.

Notation 16.1

Let n € Z>¢ be a non-negative integer. Let F,, be the free Z-module with Z-basis consisting of all
(n + 1)-tuples (go, g1,...,¢gn) of elements of G. Then the group G acts on F, via

g-(90:91,--,9n) = (990,991, -, 9gn),
and it follows that F, is a free ZG-module with ZG-basis B, := {(1, g1

for each 0 < i < n, define maps
ai: Gn+1 — G"
(go,---.gn) ~—  (go,---.Gi,---,Gn),

where the check notation means that g; is deleted from the initial (n + 1)-tuple in order to produce
an n-tuple, and extend them by Z-linearity to the whole of F,. If n = 1, define

..... gn) | gi € G}. First,

dy,: F, — F,_4
n .
x> Y (=) ai(x).
i=0

Since the maps 0; are ZG-linear by definition, so is d,. Finally consider the augmentation map

e Fp=2G6— 2
g—1 Vged.
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Proposition 16.2

dn d dn d . . . .
The sequence --- AL F,—> F,_1 ikl S Fo is a free ZG-resolution of the trivial ZG-

module.

Proof: Set F_4 := Z and dp := € (note that € = dy is consistent with the definition of d,). We have to
prove that the resulting sequence

dn , do_
R N

is an exact complex.

- Claim 1: d,_1od, =0 for every n > 1.
Indeed: Let (go,...,g,) € G"*" be a basis element. Then

n—=1 n

(do-10dn)(go,.-. gn) = D, D (1 1(6:00;)(go,-- -, gn)-

i=0 j=0

Now let 0 < ig < jo < n. If we remove g, first and then g;,, we get

(04 ©0)(go, -, gn) = (— )’°+’°(go,...,ﬁio,...,éjo,...,gn) )

On the other hand, if we remove g, first, then g, is shifted to position jo — 1 and must be removed
with sign (—=1)%~". So both terms cancel and it follows that d,_1 o d, is the zero map.

. Claim 2: F, = Z is an exact complex.
Indeed: by definition of the modules F,, (n = 0), we may view (F,, d.) as a complex of Z-modules.
In fact it suffices to prove that there exists a homotopy between Idr, and the zero chain map. For
n > 0, define
Sp: Fn — n+1
(go,--vgn) = (1.90,--,9n),
let s_1:Z=F_4 — Fy =~ ZG be the Z-homomorphism sending 1 to (1), and let s; := 0 for all

i<—2 Forn=0and(go,...,g,) € G""" compute

+
(dn+1osn—|—5n_1od,,)(go,...,g,,):(go,...,gn Z 1 go,...,\g/,-_1,...,g,,)

n

S YEITOPE S

i=0
= (go.---.gn),
and it is clear that d, 11 05, + 5,1 0 d, = Idr, for every n < —1, as required. u
Notation 16.3 (Bar notation)
Given n € Zy, set
) 1
[91192]---1g9s] == (1,91, 9192, 919293, ..., g1 - ...~ gn) € G"*".

With this notation, we have

(1, h1, oo hy) = [m|hy " holhy ths] o h T by
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Hence F, becomes a free ZG-module with basis {[g1]...|gn] | gi € G} =: G", which as a set is
in bijection with G". In particular Fg is the free ZG-module with basis {[ ]} (empty symbol). With
this notation, for every n > 1 and every 0 < i < n, we have

g1-[92|-.-1gn] i=0,
ailgrl---1gal = 3 [g1]---19i=119igixalgis2l .- 1gn] 1<i<n-—1,
[g1]...1gn-] i=n.

In
lut

Because of this notation the resolution of Proposition 16.2 is known as the bar resolution.

fact, it is possible to render computations easier, by considering a slight alteration of the bar reso-
ion called the normalised bar resolution.

Notation 16.4 (The normalised bar notation)

Let n € Z>0, and let F, be as above and let D, be the ZG-submodule of F, generated by all
elements [g1]...|gn] of F, such that at least one of the coefficients g; is equal to 1. In other words,
it (1,h1,...,hy) € Fp, then:

(1, h1,...,hp)eD, <= 3I1<i<n—1 suchthat h;=hi.

mma 16.5

The following assertions hold:
(@) (D.,d.) is a subcomplex of (F., d.);
(b) sn(Dp) < Dyyq forall n = 0.

Proof: (a) Let n > 1. We have to prove that d,(D,) € D,_1. So let (1, hq,..., h,) € D,, so that there is

an index 1 < i < n —1 such that h; = h;;1. Then, clearly
o;(1,hy, ..., h,)€ D,—1 foreachO<j<nsuchthatj#ii+1.

On the other hand, we have the equality ¢;(1, h1,..., h,) = 0ix1(1, b1, ..., h,) and in the alter-
nating sum d,(1, hq,..., h,) = 20 o(=1)'0:(1, hy, ..., h,), the signs of J; and 0,41 are opposite to
each other. Therefore, we are left with a sum over j # i,i+ 1.

(b) Obvious by definition of s,,. ]

Corollary 16.6

Set F, := n/D,, for every n > 0. Then (F.,d,) is a free ZG-resolution of the trivial module.

Proof: Since D, is a subcomplex of F,, we can form the quotient complex (F,, d,), which consists of free

ZG-modules. Now by the Lemma, s,(D,) < D,1 for each n > 0, therefore D, is in the kernel of s,
post-composed with the quotient map F,.1 —> F,41/D,+1 and each Z-linear map s, : F, — Fq
induces a Z-linear maps 5, : F, —> F,,1 via the Universal Property of the quotient. Hence, similarly
to the proof of Proposition 16.2, we get a homotopy {?n | ne Z} and we conclude that the sequence

Z 0.

is exact, as required. |
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Definition 16.7 (Normalised bar resolution)

The chain complex (f.,g.) is called the normalised bar resolution of Z as a ZG-module.

Example 10 (Bar resolution in low degrees)

In low degrees the bar resolution has the form

d>

F2
bases elts: [g1]92] [] []
with
([ =1
- di([g]) = ao([g]) — (gD =gl ] =[]
- d2[g1]g2] = do([g1]g2]) — 1([g11g2]) + 02([91192]) = g1lg2] — [9192] + [91]-

Similar formulae hold for F,. (Exercise!)

17 Cocycles and Coboundaries

We now use the (normalised) bar resolution in order to compute the cohomology groups H"(G, A)
(n = 0), where A is an arbitrary ZG-module. To this end, we need to consider the cochain complex

Homzg(F., A). Define
C"(G,A) ;== Homse(G", A)

to be the set of all maps from G" to A, so that clearly there is an isomorphism of Z-modules
Homzg(F,, A) — C"(G, A)
mapping f — f|g,. Using this isomorphism, we see that the corresponding differential maps are:

d*: C"(G,A) — C"(G,A)
f— d5(f)

where

n—1

di(F)([g1]---1ga]) = f(g1lgal .. lgal) + D (=D ([g1] .- |gigit1l..Ign])
i=1

+(=1)"([g1]---1gn-1]) -

Definition 17.1 (n-cochains, n-cocycles, n-coboundaries)

With the above notation:
(a) The elements of C"(G, A) are called the n-cochains of G.

(b) If fe C"(G,A) is such that d:’;“f = 0, then f is called an n-cocycle of G, and the the set of
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Pr

all n-cocycles is denoted Z"(G, A).

(c) If f e C"(G,A) is in the image of d* : C"'(G,A) — C"(G, A), then f is called an n-
coboundary of G. We denote by B"(G, A) the set of all n-coboundaries.

oposition 17.2

Let A be a ZG-module and n > 0. Then H"(G,A) ~ Z"(G,A)/B"(G, A).

Proof: Compute cohomology via the bar resolution and replace the Z-module Homz¢(F,, A) by its isomorphic

Z-module C"(G, A). The claim follows. [

Remark 17.3

If we used the normalised bar resolution instead, the n-cochains are replaced by the n-cochains
vanishing on n-tuples [g1]...|g,] having (at least) one of coefficient g; equal to 1. (This is because
Homzg(F,, A) © Homzg(Fn, A)). We denote these by C"(G, A), and thus C" (G, A) = C"(G, A).
The set of resulting normalised n-cocycles is denoted by ?H(G,A), and the set of resulting nor-
malised n-coboundaries by B"(G, A). It follows that

H"(G,A) =~ Z"(G,A)/B"(G,A) ~Z"(G,A)/B" (G, A).

18 Exercises for Chapter 4

Ex

ercise 32
(@) Let M and N be KG-modules. Prove that:

(i) MC is the largest submodule of M on which G acts trivially;
(ii) Mg is the largest quotient of M on which G acts trivially;
(iti) Homg (M, N)E = Homkg(M, N);

)

(iv) M®k N)g = M®kg N.
(b) Prove that if G is finite, then (KG)¢ = (Xgec 90k and if G is infinite, then (KG)“ = 0.

ercise 33

(a) Prove that there is an isomorphism of abelian groups (/G/(1G)?, +) = (Gqp, "), where Ggp
denotes the abelianisation of G;

(b) Assume A is a trivial ZG-module. Prove that there are group isomorphisms

() H1(GA) = IG®26 A= 1G/(IG)2 ®26 A= 1G/(IG? @2 A= Gup @z A;
(i) H'(G,A) = Homz6(IG, A) = Homzc(IG/(1G)?, A)
Homz(/1G/(1G)?, A) = Homz(Ggp, A) = Homgp (G, A).

lle
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E(ercise 34
Let A be a KG-module.

(@) Prove that if F is a free ZG-module, then
Homkeo (K ®z F,A) = Homzg(F, A).

[HINT: Given a Z-basis X of F, prove that K ®z F is also free and describe a K-basis.]

(b) Prove that Extis (K, A) = ExtZ(Z, A) for every n > 0.
[HINT: Given a free resolution of Z as a ZG-module, construct a free resolution of K as a KG-module, using the

“same” bases.]

(c) Sketch similar arguments to prove that TorkC (K, A) = Tor2%(Z, A) for every n > 0.




Chapter 5. Easy Cohomology

In this short chapter we consider some cases in which the cohomology groups of a group G have an easy
interpretation. This is for example the case in low degrees (zero, one, two). Next we consider families
of groups whose cohomology groups are easy to compute with the methods we have so far at our disposal.
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Notation for the chapter. Throughout this chapter we let (G,-) (in multiplicative notation) denote a
group and A denote a ZG-module.

19 Low-degree Cohomology

A. Degree-zero cohomology.

We have already proved in Proposition 15.4 that H(G, A) = A®, the G-fixed points of A.
In particular, if A is a trivial ZG-module, then HO(G,A) = A

B. Degree-one cohomology.

Using the bar resolution to compute H'(G, A) yields H'(G,A) = Z'(G,A)/B'(G, A).
1-cocycles: By definition, and the description of the differential maps of the bar resolution, we have

Z'(G,A) = {f € Homse(G', A) | d3(f) = 0}
= {f € Homse((G', A) [ 0 = f(g1[g2]) — f([g192]) + f([g1]) ¥ [g1]g2] € G*}

66



Lecture Notes: Cohomology of Groups SS 2021 67

In other words, a map f: G —> A is a 1-cocycle if and only if it satisfies the

’1—cocgcle identity: f(g1-92) = g1-f(g2) + f(g1) Vg1,g92€ G‘.

1-coboundaries: C%(G,A) = Homse:({[ ]}, A) = {fa : {[]} — A[]— a | ae A} D, A It follows
that the differential map

d¥: C%G,A) — C'(G,A)
is such that d¥(fs)(g) = fa(g[ ]) — fa([ ]) = ga — a for every g € G and every a € A. Therefore,
f: G— Als a 1-coboundary if and only if there exists a € A such that f(g) = ga — a for every g € G.

Definition 19.1 (Derivation, principal derivation)
Let A be a ZG-module and let f : G — A be a map.

(a) If f satisfies the 1-cocycle identity, then it is called a derivation of G. We denote by Der(G, A)
the set of all derivations of G to A.

(b) If, moreover, there exists a € A such that f(g) = ga — a for every g € G, then f is called
a principal derivation (or an inner derivation) of G. We denote by Inn(G, A) the set of all
inner derivations of G to A.

Remark 19.2
It follows from the above that H'(G,A) = Z'(G,A)/B'(G, A) = Der(G, A)/ Inn(G, A).

Example 11

Let A be a trivial ZG-module. In this case, the 1-cocycle identity becomes
f(g-h) = 1f(g) + f(h),
so that Z'(G, A) = Homgyp ((G,+), (A, +)). Furthermore B'(G, A) = 0. Therefore
H'(G, A) = Homgr, ((G,-), (A, +)) .

Compare with Remark 15.5(b).

C. Degree-two cohomology.

Again using the bar resolution to compute H?(G, A) yields H?>(G, A) = Z%(G, A)/B*(G, A).

2-cocycles: By definition, and the description of the differential maps of the bar resolution, we have
72(G, A) = {f € Homse(G2, A) | d5(f) = 0}
= {f € Homset(G? A) | 0 = f(g1[g2lg93]) — f([91921g3])
+ £(lg119293]) — 1([g1]92]) V [g1l92195] € G}

In other words, a map f : G x G — A is a 2-cocycle if and only if it satisfies the

2-cocycle identity: g1f(g2,93) + f(g1,9293) = (9192, 93) + (g1, g2) Vg1,92,93 € C‘-
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2-coboundaries: If ¢ € C'(G, A), then

d5(¢)([g1192]) = ¢(g1(g2]) — d([g192]) + #([g1]) V¥ [g1lg2] € G*.

Therefore a map f : G x G — A is a 2-coboundary if and only if there exists a map ¢ : G — A such
that

f(g1,92) = g1 c(g2) — c(g192) + c(g1) Vg1.92€G.

20 Cohomology of Cyclic Groups

Cyclic groups, finite and infinite, are a family of groups, for which cohomology is easy to compute. Of
course, we could use the bar resolution, but it turns out that in this case, there is a more efficient
resolution to be used, made up of free modules of rank 1.

Notation 20.1

If Ais a ZG-module and x € ZG, then we let m, : A— A, x — x - a denote the left action of x on
A (or left external multiplication by x in A).

Proposition 20.2 (Free resolution of finite cyclic groups)

Let C, be a finite cyclic group of order n € Z-( generated by g, and let t := Z?:_J g' € ZC,. Then

mi Mmg—1 mi Mg—1

ZCn ZCn ZCn ZCn ’

is a free ZC,-resolution of the trivial ZC,,-module.

Proof: Set G := C,. By Lemma 14.4,
1IG={g'—1[1<i<n—-1}z={9 Tz

Therefore, the image of my_ is equal to /G, which is the kernel of the augmentation map € : ZG — Z.
Now, let x = X7 X g' € ZG. Then, tx = 37 A t. Hence

n—1 n—1
ker(m;) = { Z Agl Z A= 0}
i=0 i=0

and we claim that this is equal to the image of my_4. Indeed, the inclusion Im(my_1) < ker(my) is clear,
and conversely, if h = 27;01 gt € ker(m;), then Z,.";(; Ai = 0, so that h € ker(e) = IG = Im(my_1),
whence ker(m;) < Im(my_4). Finally, we claim that ker(my_1) = Im(m;). We have
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n—1 n—1 n—1 n—1
Z Aigl e ker(mg_1) <= (g—1) (Z )\ig’) =0 Z Aigit! — Z Xgi=0
i=0 i=0 i=0 i=0
n—1 ) n—1 )
— DA1g = > gt =0, (A1 = Aya)
j=0 i=0
n—1 )
— Yl —A)g' =0
i=0
< VO<i<H—1,)\1_1 :/\[:Z)\
n—1 n—1
— Z Mgl = At = Z Aghe Im(my).
i=0 i=0 ]

Theorem 20.3 (Cohomology of finite cyclic groups)

Let C, ={g | g" = 1) be a finite cyclic group of order n € Z-( and let A be a ZC,-module. Then

ACn if m=0,
H™(Cy, A) = <{ A% /Im(m;) if m=>=2,m even,
ker(m¢)/Im(mg_1) ifm>1,m odd,

where t = Zf’;& g' € ZC, and for x € {t,g — 1}, m, denotes left external multiplication by x in A.

Proof: By Proposition 20.2 the trivial ZG-module Z admits the projective resolution

mi mg—1 mi

ZC, ZC,

mg_—q

ZC, ZC,.

For m = 0, we already know that H°(C,, A) = A%. For m > 0, applying the functor Homz¢, (—, A) yields
the cochain complex

rn*7 m:k m*7
Homzc, (ZCp, A) —=> Homzc, (ZCp, A) ——> Homzc, (ZC,p, A) ——> - - -

'

where in each degree there is an isomorphism Homz¢, (ZC,, A) = A, f — f(1). Hence for x € {g—1, t},
there are commutative diagrams of the form

k
Homzc, (ZCy, A) —— Homgzc, (ZCy, A)

l o l;

my
A.

Hence, the initial cochain complex is isomorphic to the cochain complex

mg_1 m¢ A mg—1 A m
(degree) 0 1 2 3

and the claim follows. [ |

For infinite cyclic groups the situation is even simpler:
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Th

eorem 20.4 (Cohomology of infinite cyclic groups)

If G ={g) is an infinite cyclic group, then 0 - 7G 2L 7G s a free resolution of the trivial
ZG-module, and

AG ifn=0,
H"(G,A) =< Allm(mg_q) ifn=1,
0 ifn>2.

where the second my_1 denotes the left external multiplication by g — 1 in A.

Proof: Exercise 37. [ |

21 Exercises for Chapter 5

Ex

Ex

Ex

Ex

ercise 35

Let A be a ZG-module. Prove that Der(G, A) = Homz(/G, A) via the map sending a derivation d
to the homomorphism d such that d(g — 1) = d(g), Vg € G\{1}.

ercise 36

Let A be a left ZG-module, and let A x G be the semi-direct product of (A, +) by (G,-), that is,
the group of all pairs (a, g) € A x G, with group law

(a.9)-(b,h):=(a+g-b,gh).

let 1:Ax G —> G:(a,g)+— g and let Hom’(G, A x G) be the set of all group homomorphisms
f:G—> Ax G such that o f =Ids . Prove that Der(G, A) is in bijection with Hom'(G, A x G).

ercise 37

Assume G = {g) is an infinite cyclic group. Prove that 0 —=ZG 271 7G s a free resolution
of the trivial ZG-module, and

AC ifn=0,
H"(G,A) =< Allm(mg_q) ifn=1,
0 ifn>=2.
ercise 38

Let F be a free group on a set X.
(@) Prove that 0 — /F — ZF is a free resolution of Z considered as a ZF -module.
(b) Prove that H"(F,A) = 0 for all n > 2.
(c) Prove that, if A is a trivial ZF-module, then H1(F,A) ~ [ [ex A

(d) Solve Exercise 37 again.
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E(ercise 39

Let G be a finite cyclic group of order divisible by a prime p and let A be a trivial F,G-module.
Prove that H"(G, A) =~ A for all n > 0.




Chapter 6. Cohomology and Group Extensions

In this chapter we consider connections between the short exact sequences of groups of the form
1— A— E — G —> 1 with abelian kernel and the cohomology of the group G with coefficients
in A. If the sequence splits, then we shall prove that the 1st cohomology group H'(G, A) parametrises
the splittings. Moreover, we shall also prove that the 2nd cohomology group H?(G, A) is in bijection
with the isomorphism classes of extensions 1 — A — E — G — 1 inducing the given ZG-module
structure on A, and the neutral element of H?(G, A) corresponds, under this bijection, to a s.e.s. where
E is a semi-direct product of A by G.
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22  Group Extensions

In Chapter 1, we have seen that if a group G is a semi-direct product of a subgroup N by a subgroup H,
then this gives rise to a s.e.s. of the form

1—-N—>G—H—1.

This is a special case of a so-called group extension of N by H.

Definition 22.1 (Group extension)

A group extension is a short exact sequence of groups (written multiplicatively) of the form

1 A—-r-t.q 1,
and, in this situation, we also say that the group E is an extension of A by G.

Convention: We shall always identify A with a normal subgroup of £ and assume that i is simply
the canonical inclusion of A in E. Moreover, we shall say that A is the kernel of the extension.

72
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Lemma 22.2

Let 1 A—LsE-L.qg 1 be a group extension, where A is an abelian group. Then A
is naturally endowed with the structure of a ZG-module.

Proof: First note that with the above notation (A, -) is a group written multiplicatively. Next, for each g € G,
choose a preimage g € E of g under p, that is p(g) = ¢, and define a left G-action on A via:
*: GxA — A
(g.a) — grai=9dai=G-a-5,

First, we check that  is well-defined, i.e. that this definition is independent of the choice of the preimages:
indeed, if g € F is such that p(g) = g, then, we have

hence G- g~ € ker(p) = A, and thus, there exists a € A such that § = ag. Therefore, for every x € A,

Gg-x-G '=agxg 'a " =aa"gxg~
eASE

1 1

-9,

where the last-but-one equality holds because A is abelian.

We extend * by Z-linearity to the whole of ZG, and finally one easily checks that (A, -, *) is a ZG-module.
See Exercise 2, Exercise Sheet 10. |

Convention: From now on, given a group extension 1 A P.qg 1 with A abelian,
we always see A as a ZG-module via the G-action of the proof of Lemma 22.2. We write A, := (A, -, *)
to indicate that we see A as a ZG-module in this way.

Lemma 22.3

Let 1 A—t-p-P.qg 1 be a group extension with A abelian. Then, A is central in
E if and only if Ay is trivial as a ZG-module.

Proof: A is a trivial ZG-module <= % =a VaeA VgeG < §G-a-§ '=a YacAVieE
< ga=ag YVaeAVgekE

— Ac Z(E).
]
Definition 22.4 (Central extension)
A group extension 1 A—t-fE-P.qg 1 be a group extension with A abelian satisfying
the equivalent conditions of Lemma 22.3 is called a central extension of A by G.
Definition 22.5 (Split extension)
A group extension 1 AL P.qg 1 splits iff there exists a group homomorphism
s : G —> E such that pos = Idg. In this case s is called a (group-theoretic) section of p, or a
splitting of the extension.




Lecture Notes: Cohomology of Groups SS 2021 74

Remark 22.6

Unlike short exact sequences of modules, it is not true that p admits a group-theoretic section if
and only if { admits a group-theoretic retraction. In fact, if i admits a group-theoretic retraction,
then £ =~ A x G. (See Exercise 40.)

Proposition 22.7

Let 1 A—‘se-Ltoq 1 be a group extension. Then the following assertions are
equivalent.

(@) The extension splits.
(b) There exists a subgroup H of E such that p’H : H — G is an isomorphism.
(c) There exists a subgroup H of E such that E is the internal semi-direct product of A by H.

(d) There exists a subgroup H of E such that every element e € E can be written uniquely e = ah
with a e Aand he H.

Proof:

(@) = (b): By (a) there exists a section s : G — E for p. Define H :=Ims. Then p!H is an isomorphism
since, on the one hand p|H os = ldg by definition of s, and on the other hand for every h € H,
there exists g € G such that h = s(g), so that

(soply,)(h) = (sop)(s(g)) =s(g) =h
and sopl, = ldy.
(b) = (c): By (b) there is H < E such that p‘H : H — G is an isomorphism. Hence

{1} =ker(p}H) =ker(p)nH=AnH.

Now, let e € E. Then p(e) e G = (p‘H)f1 op(e)e H and p(e) = p(p};1 o p(e)), so that

e- ((p’H)f1 op(e))_1 ekerp=A.

Therefore, there exists a € A such that

e=a-((pl,) " ople)) e AH
_EH

as required.

() = (d): Was proven in Step 1 of the proof of Proposition 1.3.

(d) = (b): We have to prove that p‘H : H — G is an isomorphism.
Surjectivity: Let g € G. Then by surjectivity of p there exists e € E such that g = p(e), and by (d),
e can be written in a unique way as e = ah with a € A and h € H. Hence p|H is surjective since

g = p(e) = p(ah) = p(a)p(h) =1-p(h) = p(h).
Injectivity: If h € H is such that p‘H(h) =1, then h € ker(p) = A, therefore
h=1-h=h-1€AH

so that by uniqueness, we must have h = 1 and ker(p‘H) = {1}.
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(b) = (a): If p‘H : H — G is an isomorphism, then we may define s := (p|H)71 : G — E. This is
obviously a group homomorphism and hence a splitting of the extension. m

If the equivalent conditions of the Proposition are satisfied, then there is a name for the subgroup H,
it is called a complement:

Definition 22.8 (Complement of a subgroup)

Let E be a group and A be a normal subgroup of E. A subgroup H of E is called a complement of
Ain Eit E=AH and An H =1, ie. if E is the internal semi-direct product of A by H.

23 H' and Group Extensions

In order to understand the connexion between the group extensions of the form

1 A E G 1

with abelian kernel and H'(G, A,), first we need to investigate the automorphisms of E.

Definition 23.1 (Inner automorphisms, automorphisms inducing the identity)

Let E be a group.
(a) Given x € E, write ¢, : E —> E, e — xex~" for the automorphism of E of conjugation by x.
(b) Set Inn(E) := {p € Aut(E) | Ix € E with ¢ = ¢,}.
(c) If A< G, then set Inna(E) := {@p € Aut(E) | Ix € A with ¢ = ¢, }.

(d) If 1 A—‘se-Ltoq 1 is a group extension with abelian kernel, then set

Autac(E) = {p € Aut(E) | p|a =1da and po ¢(e) = p(e) Vee E}.

We say that the elements ¢ of Auts (E) induce the identity on both A and G.

Recall (e.g. from the Einfiihrung in die Algebra-lecture) that: Inn(E)<JAut(E), as goc,op™ ' = Cy(x) for
every x € E and every ¢ € Aut(E), and the quotient Aut(E)/Inn(E) is called the outer automorphism
group of E. Moreover, Inn(E) = E/Z(E). It is also obvious that Auta c(E) < Aut(E).

Theorem 23.2 (H' and automorphisms)

Let 1 ALsE-P.qg 1 be a group extension with abelian kernel. Then:

(@) H'(G, Ay) = Autag(E)/Inna(E); and
(b) if, moreover, the extension is a central extension then

HY(G, A,) =~ Autag(E) .
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Proof:

(@) Claim 1: Inna(E) S Autac(E).
Indeed, clearly for each a € A, ¢,|a = lda because A is abelian and, moreover,

pocole) = p(aea™) = p(a)p(ea~'e™")p(e) = ple)

for every e € E, so that p o ¢, = p. Therefore Inng E < Autac(E), and it is a normal subgroup,

because
PpOCg0 ‘P_1 = Cy(a) = Ca
for every a € A, every ¢ € Autac(E) as ¢|, = lda.
Claim 2: AUtA’G(E) = Z1(G, A*)
We aim at defining a group isomorphism

a: AUtA,G(E) — Z1(G,A*) .
- To begin with, we observe that given ¢ € Autac(E) and x € E, we can write ¢(x) = f(x)x for
some element f(x) € E. This defines a map (of sets)
f: E — E
x = e(x)x7T,
such that Im(f) < A = ker(p) because for every x € E,
p(f(x)) = ple(x)x™") = ple(x)) p(x") =16
—
=p(x)
since ¢ induces the identity on G. Moreover, f is constant on the cosets of £ modulo A
because for every a € A and every x € E,
f(xa) = p(xa) - (xa) " = @(x) - p(a) -a”"-x7" = p(x)x7" = 1(x).
—
=a
Therefore f induces a map f : G — A, g — f(g) := f(g) where we may choose § arbitrarily
in p~'(g). This is a 1-cocycle since for all g, h € G, we may choose gh € p~'(gh), e p~'(g),
and h € p~'(h) such that gh = gh, and hence

f(gh) = f(gh) = f(gh) = ¢(@) - @(h)-h~" -G~
=0(G) -G F(h)-g7" =T(g)F(h),

which is the 1-cocycle identity in multiplicative notation.

- As a consequence, we set -
a(p) = (f: G— A).

To prove that this defines a group homomorphism, let ¢1, @, € Auta c(E) and respectively let
f1,f2: G —> A be the associated 1-cocycles, t.e. a(¢@1) = f1 and a(¢@y) = f,. Then

01(9) =11(9), ¢(9)=12(9)§ VgeGwithgep '(g),

and hence using the fact that A is abelian yields

AN~

a(@ro92)(g) = (¢1002)(§)G " = @1 (F2(9)g) 5"
g

as required.
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- In order to prove that « is an isomorphism, we define
B: Z'(G,A.) — Autac(E)
c = B(o):E—E g—c(9)g,
where g = p(g).
First, we check that B(c) is indeed a group homomorphism: for ﬁF e E with the above
notation, we have

B(c)(§-h) = c(gh)gh "L c(g)-%(h)-Gh
= c(g)ge(h)g"gh
= c(g)gc(h)h

Next, if g € A = ker(p), then g = 1¢ and therefore
B(c)(g) =c(1)-g=1-9=9,

where we use the fact that a 1-cocycle is always normalised (indeed c(1¢) = 14, since for
he G, c(1g-h) = c(1g) - (e(h) = c(1g)c(h) by the 1-cocycle identity). Thus we have
proved that B(c)|a = Ida.

Furthermore, since c(g) € A = ker(p), p(c(g)) = 1¢ and we get

(poB(0)(G) =p(c(g)-g) = p(c(g) -p(@) = p(g)
=1¢

and so p o B(c) = p, or in other words B(c) induces the identity on G.

Finally, using Exercise 41 we obtain that any group homomorphism E — E inducing the
identity on A and on G must be an isomorphism. Therefore, we have proved that B(c) €
Auta g(E) for every c € Z'(G, Ay).

- It remains to prove that @ and B are inverse to each other. Firstly,
((@aoB)(©)(g) =B(c)(G)-§ ' =clg)gg ' =clg) VgeGVceZ (G As),

so that a o B is the identity on Z'(G, A4). Secondly,

((Boa)()(@) = (al))(9) -G = 9(9)35 " = ¢(g) Y§eE,¥gpeAutac(E),

so that B o a is the identity on Auta (E).
Claim 3: Inna(E) = B'(G, Ay).
- Let a € A and ¢, € Inng(E). Then for every g € G,
alca)(g)=ca(@) g ' =a-§-a g =ga"'gT -a=a")a = di(a"")(g)
—
EASE
and therefore a(cq) € B'(G, Ay), Le. a(lnna E) < B'(G, Ay).
Conversely, if a € A and d¥(a) € B'(G, Ay), then d¥(a)(g) =% -a~" and
B(dT(a)(@) = di(a)(g) - §="a-a"-g=G-a-§7 -0 - G=§-§ ' a7'G a=c(9).
| — —
EASE =1

Hence B(d¥(a)) = c,-1 € Inna(E), and B(B'(G,Ay)) S Inna(E). It follows that Inns(E)
corresponds to B'(G, Ax) under the bijection given by a and B, and we obtain

HY(G,Ay) = Z'(G,Ay)/B' (G, Ay) = Autag(E)/ Inna(E) .
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(b)

If Ais a central subgroup of E, then for every a € A the conjugation automorphism by a is given
bycs,:E— E, e~ agea ' =aa e = e, ie. the identity on E. Thus

Inna(E) = {cy: E— E | ae A} = {ldg}
and it follows from (a) that

HY(G,Ay) = Autac(E)/Inna(E) = Autac(E).

78

]
We are now ready to parametrise the slpittings of split group extensions with abelian kernel:
Theorem 23.3 (H' and splittings)
Let& = (1 A—‘sE-L.qg 1) be a split group extension with abelian kernel. Then

Proof:
(a)

the following holds:

of &,.

of Ain E.

Choose a splitting so : G — E and define a map
a: Autag(E) — {splittings of &}
% = ¢osp.

It is obvious that a is well-defined, i.e. that @osq is a splitting of the extension as pgsy = pso = Id¢.
Define a second map

B: {splittings of &} — Autac(E)
s —  (¢s: E—> E,aso(g) — as(g)),

where by Proposition 22.7 an arbitrary element x € E can be written in a unique way as x = as(q)
with a € A and g € G. We check that B is well-defined. Firstly, (s is a group homomorphism: for
every x; = a150(g1), x2 = a250(g2) € E, we have

Ys(x1 - x2) = Ps(a1s0(g1) - a250(92)) = Ys(ar - 9'az - so(g192))
=aq-%a, .5(9192)
= a15(g1) - a25(92)
= ¢ (a150(g1)) - s (a250(g2)) = s(x1) - Ps(x2) -

Secondly, s|a = Ida by definition. Thirdly, pis = p since for x = asp(g) € E, we have
(pois)(x) = (poys)aso(g)) = plas(g)) = pla) -p(s(g)) = g = p(aso(g))-
— ] N ——
=1 =ldc(9)

Finally, the fact that (s is an isomorphism follows again from Exercise 41, because s induces the
identity on both A and G. Whence B is well-defined.
Next, we check that a and B are inverse to each other. On the one hand,

(aoB)(s) = a(ys) = s oso Vs € {splittings of &}

(a) There is a bijection between H'(G, A;) and the set S of A-conjugacy classes of splittings

(b) There is a bijection between H'(G, A,) and the set of E-conjugacy classes of complements
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but for every g € G, (s 050)(g) = ¥s(1a-50(g)) = 16s(g) = s(g), hence a o B is the identity on
the set of splittings of &. On the other hand, for every ¢ € Auta g(E), we have

(Boa)(g) = B(poso) = hyos,

and for each x = as¢(g) € E (with a € A and g € G), we have

la=1d
Pgos (aso(9)) = a- (90 50)(g) "= @(a) - (pos0)(g) = ¢(a-s0(g)),
hence B o a is the identity on Auta ¢(E).
Therefore,
Auta (E) e {splittings of &}
B

are bijections (of sets). Finally, we determine the behaviour of Inna(E) under these bijections. Let
@ € Autag(E) and ¢p € Inna(E) with b e A. Let ¢’ = ¢, 0 . Then

alp) =¢@osyp and a(cpop)=croposy.

Hence a coset modulo Inna(E) is mapped via @ to an equivalence class for the action by conjugation
of A on splittings

A x {splittings of &} — {splittings of &}
(b,s) = os.

Thus passing to the quotient (group quotient on the left hand side Auta ¢(E), and orbits of Inna(E)
on the right hand side) yields a bijection

AUtA.G(E)/InnA(E) ———— = {A-conjugacy classes of splittings of &}
(Thm. 23.2)$;
H'(G, As)

as required.

(b) By Proposition 22.7, a splitting s of & corresponds to a complement s(G) of A in E, and conversely,

a complement H of A in E corresponds to a splitting (p!H)_1 : G — H. Moreover, the A-conjugacy
class of H is the same as the E-conjugacy class of H, because every e € E may be written in a
unique way as e = ah with a € Aand h € H and so eHe™" = aHa™". The claim follows. m

24 H? and Group Extensions

Convention: In this section all group extensions are assumed to have abelian kernel.

Definition 24.1 (Equivalent group extensions)

’

Two group extensions 1 A—tsfE-Pog 1 and 1 At p P.oq 1
with abelian kernels are called equivalent if there exists a group homomorphism ¢ : E — E’ such
that the following diagram commutes

o
IdA\L iﬁo O ildc
At
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Remark 24.2

(@) In the context of Definition 24.1, the homomorphism ¢ is necessarily bijective. However an
isomorphism of groups does not induce an equivalence of extensions in general. In other words,
the same middle group E can occur in non-equivalent group extensions with the same kernel
A, the same quotient G and the same induced ZG-module structure on A. (See Example 12
at the end of the section.)

(b) Equivalence of group extensions is an equivalence relation.

Notation: If G is a group and A, := (A, -, *) is a ZG-module (which may see simply as an abelian
group), then we let £(G, A) denote the set of equivalence classes of group extensions

1— A F P g1

inducing the given ZG-module structure on A.

Theorem 24.3

Let G be a group and let A, := (A, -, %) be a fixed ZG-module (written multiplicatively). Then, there
is a bijection

H2(G, Ay) =~ £(G,A,) .

Moreover, the neutral element of H?(G, A;) corresponds to the class of the split extension.

Proof: We want to define a bijection £(G, A;) — H?(G, Ay).

- To begin with, fix an extension

1 — A F P G 1

inducing the given action = on A, and we choose a set-theoretic section s : G — E for p, L.e. such
that p os = Idg. Possibly s is not be a group homomorphism, but for ecery g, h € G we may write

s(g) - s(h) = f(g, h) - s(gh)
for some element f(g, h) € E. This defines a map

f: GxG — E
(g.h) —  f(g,h):=s(g)-s(h)-s(gh)~".

Furthermore, notice that (g, h) € A = ker(p) because
_ —1 1 -
p(f(g.h)) = p(s(g)s(h)s(gh)™") = p(s(g)) - p(s(h)) - p(s(gh)) ™ = ghh™'g™" =1¢
for every g, h € G. Hence f € Homset(G x G, A), and as a matter of fact, f is a 2-cocycle because:
(s(g) - s(h)) - s(k) = (g, h) - s(gh) - s(k) = f(g, h) - f(gh, k) - s(ghk)

and

s(g) - (s(h) - s(k)) = s(g) - f(h, k) - s(hk) = s(g) - f(h, k) - s(g)~" - s(g) - s(hk)
=9f(h,k)-f(g, hk)-s(ghk)
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for every g, h, k € G. Therefore, by associativity in £, we obtain
f(g.h) - f(gh, k) =9 (h,k)-f(g, hk),
which is precisely the 2-cocycle identity in multiplicative notation.
Now, we note that if we modify s by a 1-cochain ¢ : G — A and define
s G — E
g — Sg):=cg)s(g),

then the corresponding 2-cocycle is given by

f'(g.h) =s'(g)-s'(h) -s'(gh)™"
— c(g) - 5(g) - c(h) - s(h) - s(gh)~" - c(gh)~"
— c(g) - 5(g) - c(h) - 5(g)"s(g) - s(h) - s(gh) " - c(gh)~"
— c(g) - s(g) - c(h) - s(g~") - 7(g. h) - c(gh) "
= c(qg) - %(h)-c(gh)™" - f(g, h) (as A is abelian)
=9(h)-c(gh)~™" - c(g) - f(g, h) (as A is abelian)

= (d%(c))(g,h)-f(g.h) Vg, heG.

To sum up, we have modified the 2-cocycle f by the 2-coboundary d3 (c). Therefore, the cohomology
class [f] := fB*(G, As) of f in H?>(G, As) is well-defined, depending on the given extension, but
does not depend on the choice of the set-theoretic section s. Hence, we may define a map

&: E(G,Ay) —  HX(G, AL)
[1=ALELG=1] — [f].

- We check that & is well-defined. Suppose that we have two equivalent extensions

[1=ALELGo1]=[1=ALEZ G186 A,

that is a commutative diagram of the form

1 — A F P G o

|dAl O i‘ﬂ O

where ¢ is an isomorphism of E — E’. As above, we choose a set-theoretic section s : G — E
of p, and it follows that @ o s is a set-theoretic section for p’, since p’ opos = pos = ldg. The
corresponding 2-cocycle is given by

f'(g,h) = (pos)(g)- (pos)(h)-(pos)(gh)™" =

Idg

G 1

-

(f(g.h)) =f(g.h) VYg,heG

as ¢|a = lda. Hence & is well-defined.

- Remark: We may choose s : G —> E is such that s(1) = 1, and the associated 2-cocycle
is normalised. Now if we modify s by a normalised 1-cochain ¢ : G — A (iLe. such that
c(1) = 1), then d5(c) is a normaised 2-coboundary. Therefore, we may as well use normalised
cocycles/cochains/coboundaries.
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- Surjectivity of &:
Let a € H?(G, A4) and choose a normalised 2-cocycle f : G x G —> A such that @ = [f]. Construct
Ef :== A x G (as a set), which we endow with the product

(a,g)-(b,h)=(a-%-f(g,h),g-h) Va,beAVg heG.

Then (Ef,-) is a group whose neutral element is (1,1). (Exercise 44.) Clearly there are group
homomorphisms:

i:A— E, a+—(a,1),
p:Er— G, (a,9)—g

such that ker(p) = Im(i), thus we get a group extension

1 Ao/ P Gc— 1.

We need to prove that the cohomology class of the 2-cocycle induced by this extension via the
above construction is precisely [f]. So consider the set-theoretic section s : G — Ef, g — (1, g)
of p and compute that for all g, h € G, we have

(1.9)-(1,h)-(1,gh)™"
(1-91-£(g, h), gh) - (9" "F(gh, (gh)™") ", (gh)™")
= (F(g, )9 F(gh, (gh)™"), (gh)(gh)™")
(

as required.

- Injectivity of &
Let

[1 A—tseE-Lt.qG 1,

1 ALE ", ¢ 1]

be two classes of group extensions in £(G, Ay). Choose, respectively, s: G — E and §: G — E
two set-theoretic section with corresponding 2-cocycles f and f respectively. Now, assume that

[f] = [f] e H*(G, As).

Then f = d%(c) o f for some 1-cochain ¢ : G —> A. Changing the choice of 5 by defining

.G — E,g — c(g)"" - 5(g) modifies T into d¥(c)~" o f by the first part of the proof. But
d;‘( ) 'o f = f, therfore, we may assume without loss of generality that the two 2-cocycles are
the same. Compute the group law in E: each element of E can be written as a - s(g) for a € A and
g € G because s: G —> E is a section for p : E —> G. Hence the product is

as(g) - bs(h) = as(g)bs(g)~"s(g)s(h)
= a%s(g)s(h
= a%f(qg, h)s(gh)
€A

which is exactely the group law in E;. Hence Ef >~ E (via (a,g) — a -s(g)) as groups, but also
as extensions, because the latter isomorphism induces the identity on both A and G. Similarly, we
get that E =~ Ey, as group extensions. The injectivity of & follows.
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- Finally notice that the image under & of the split extension

1 A Ax G G 1

where the action of G on A is given by %, and where the first map is the canonical inclusion
and the second map the projection onto G, is trivial. This is because we can choose a section
s: G — AxG,g — (1,g), which is a group homomorphism. Therefore the corresponding
2-cocycle is f : G x G —> A, (g, h) — 1. This proves the 2nd claim. -

Remark 24.4

(a) In the above proof, if we choose s: G —> E such that s(1) = 1, then we obtain a normalised
2-cocycle. If we modify s : G — A by a 1-cocycle ¢ : G — A such that ¢(1) = 1 (a
normalised 1-cochain), then dc is a normalised 2-coboundary. So we see that we can use
normalised cochains, cocycles and coboundaries throughout.

(b) If the group A is not abelian, then H3(C,Z(A)) comes into play for the classification of the
extensions. This is more involved.

Example 12

For example, if we want to find all 2-groups of order 2" (n = 3) with a central subgroup of order 2
and a corresponding dihedral quotient, then we have to classify the central extensions of G := D;n—1
by A := ;. By Theorem 24.3 the isomorphism classes of central extensions of the form

1—CG-—E—Dy1—1.
are in bijection with H2(G, A,), where A, is the trivial ZG-module. Computations*) yield
HA(G AL = (2/2)°
hence there are 8 isomorphism classes of such extensions. Since a presentation of D,,-1 is
po|p*=1=0(po)" " =1),
obviously E admits a presentation of the form
{r,s,t|rt=tr,st=ts, 2 =1,r" =172 = tb, (rs)zni2 =t (a,b,ce{0,1})).
Letting a, b, ¢ vary, we obtain the following groups E:
(i) The case a = b = ¢ = 0 gives the direct product C; x Dyn-1.
(it) The case a = b =0, ¢ =1 gives the dihedral group Djn.
(iit) The cases a =c=0,b=1and b =c =0, a =1 give the group (Con—2 x C3) x C,.

(iv) The cases a =0, b =c=1and b =0, a = ¢ = 1 both give the semi-dihedral group SD>»
of order 2".

(v) The case ¢ =0, a = b =1 gives the group Gn-2 x Cy.

(vi) The case a = b = ¢ = 1 gives the generalised quaternion group Qy».
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If n > 4, the groups in cases (i)-(vi) are pairwise non-isomorphic. If n = 3 the above holds as
well, but the groups in (ii) and (iii) are all isomorphic to Dg, and the groups in (iv) and (v) are all
isomorphic to & x Cy.

(%) A direct computation of 2-cocycles and 2-coboundary is possible. Alternatively, the cohomolog-
ical Kiinneth formula yields the result easily. We will come back to this formula later in the lecture
if time permits.

25 Exercises for Chapter 6

Ex

ercise 40

let1—A-S5E2 G—1bea group extension. Prove that TFAE:
(@) i has a group-theoretic retraction;
(b) A has a normal complement in E;

(c) there is a subgroup H of E such that E ~ A x H.

Exhibit examples of split extensions of groups which do not admit a group-theoretic retraction.

Exercise 41

Let1—A-SEL G—1bea group extension.
(@) Prove that if G is a free group, then the extension splits.

(b) Prove that any group homomorphism E — E inducing the identity on A and on G is an
isomorphism.

Exercise 42

(@) Consider the dihedral 2-group £ = D (n = 3) and A its cyclic subgroup of index 2. How
many E-conjugacy classes of complements of A in E are there? Describe them all.

(b) Same question for E = (A x --- x A) x G, where A is an abelian group and C, acts by
—_——

m factors
cyclic permutations.

Exercise 43

Let G be a finite group, let A be a finite trivial ZG-module, and assume that gcd(|A

|Gl = 1.

(a) Prove that H'(G, A) = 0.
(b) Find all complements of Ain A x G.

Exercise 44
Let A be a ZG-module, written multiplicatively and let f : G x G — A be a normalised 2-cocycle.
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Ex

Let £Ef = A x G with product
(a,g)(b, h) = (a%bf(g, h),gh)  V(a,g), (b h)eEs

Using the 2-cocycle identity, prove that Ef is a group and that the left and right inverses coincide,
that is:

(9 a g ) g ) = (9 a9 M (g,g7) g7 V(a,g)€Er

Moreover, verify that there is an extension 1T — A — Ey — G — 1 associated with the
2-cocycle f which induces the given G-action on A.

ercise 45
(@) Let A:= (G4 and G := C,.
e Find all actions by group automorphisms of G on A.
e For each such action, compute Hz(G,A).
o In each case, describe all extensions of A by G inducing the given action, up to equiva-

lence.

(b) Let G := G x (3 and A := (, regarded as a trivial ZG-module. Assume known that
H?(G,A) = (Z2/2)3.

e Given 1 — A — E — G — 1 an arbitrary central extension of A by G, determine
a presentation of the group E using a presentation of A and a presentation of G.

e Find all central extensions of A by G, up to equivalence, using the previous point.

(c) Classify groups of order 8 up to isomorphism.




Chapter 7. Subgroups and Cohomology

Throughout this chapter, unless otherwise stated, (G denotes a group in multiplicative notation and
H < G a subgroup of G. The aim of the chapter is to investigate relations between the cohomology
of G and the cohomology of H. This can be done using four operations called restriction, transfer (or
corestriction), induction, and coinduction. As our next aim in the lecture is to prove theorems about

finite groups using cohomology, we will most of the time work under the mild assumption that H has
finite index in G.
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26 Restriction in Cohomology

Notation 26.1 (Restriction of ZG-modules)

Let M be a ZG-module. Because ZH < ZG is a subring, we may perform a change of the base
ring (see Example 4(e)) and restrict the action of ZG on M to an action of ZH on M. In this way,
we regard M as a ZH-module, which we denote by Resﬁ(/\/l) or Miﬁ (or sometimes simply by M
itself again) and call the restriction of M from G to H.

In other words Resf, : zcMod — zyMod is a forgetful functor, which is obviously covariant. More-
over, Res{(M) =~ ZG ®zg M as left ZH-modules where ZG is seen as a (ZH, ZG)-bimodule.

Definition 26.2 (Left transversal, right transversal)

A left transversal of H in G is a set {g;}ic/ of representatives of the left cosets of H in G. Thus

G =[], giH. Similarly, a right transversal of H in G is a set of representatives of the right cosets
of H in G.

We want to investigate how restriction of modules interacts with the cohomology the groups G and H.
To this end, first we need to understand restriction of projective resolutions.

86
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Lemma 26.3

Let P be a free (resp. projective) right ZG-module. Then P l,g is a free (resp. projective) right
ZH-module. (Similarly for left modules.)

Proof: It suffices to prove that P |$ is a free ZH-module for P = ZG, because an arbitrary free ZG-module
is isomorphic to a direct sum @ ZG. So, choose a left transversal {g;}ie; of H in G. Then

Z2G =P giZH
iel
and it follows that ZG is a free right ZH-module. Now, if P is a projective right ZG-module, then P is

a direct summand of a free ZG-module by Proposition-Definition 7.7, therefore by the above P |5 is a
direct summand of a free ZH-module, hence is a projective ZH-module. ]

Remark 26.4 (Restriction in Cohomology)

d3 d> dq

Let P, = ( P P Po) be a projective resolution of the trivial ZG-module Z
and let M be an arbitrary ZG-module. Then H"(G, M) is the cohomology of the cochain complex
Homzg(P., M). By Lemma 26.3, restricting to H yields a projective resolution

d> dq

d
Resfi(P)) = (- —=P> 1§ PG Pol%)

of Z = Zlﬁ seen as a ZH-module. Now, there is an inclusion map of cochain complexes:
io : Homzg(Pe, M) — HomZH(ResE,(P.),/\/Il,C_;,)
which, by functoriality, induces a homomorphism in cohomology
res : H'(G,M) — H"(H,M |%).

called restriction from G to H.

Remark 26.5

(@) The map res,f, need not be injective in general.

(b) If the bar resolution is used to compute cohomology, then on Z"(G, M), the map resf, is given

by ordinary restriction of cocycles from G" to H".

27 Transfer in Cohomology
Assume that H has finite index in G, say r := |G : H|. Let {g;}1<i<r be a left transversal for H in G.
If L and M are ZG-modules, then there is a Z-linear map
tr& : Homzp (L, M) — Homzg(L, M)
r
¢ Z} 9i99; "

where gf1 denotes the action of 971 € G on L and g; denotes the action of g; € G on M.
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Lemma 27.1
The map trf is well-defined.

Proof:

(1) The definition of trf, does not depend on the choice of the transversal:

Assume {gi}1<i<r is another left transversal for H in G and write g} = g;h; (1 < i < r) for some
hi € H. If ¢ € Homzy(L, M) then making use of the ZH-linearity of ¢, we get

>, gi0(g}) Z gihiph g ZE" Y giphih g7 = Y gipgi
i=1 i=1

i=1

as required.

(2) ZG-linearity of tr¥(¢):
Let s € G. Then for each 1 < i < r, we may write sg; = g,(;h;, where U € S, is a permutation and

h; € H (if i and j are such that o(i) = a(j), then we find g; = g; - h; " - h; and thus i = j, since
{gi}1<i<r is a transversal). Now, let x € L and compute

(tr(e Z sqip(97'%) = > 9oy hie(g; ' x)
i=1

> 9o @(higi'x)

i=1

= 90295 5X)
i=1

;
= Z Ga(i) (ng_(1,') (SX)
i=1

= (trfi(e))(sx),

as required. m

Assuming (P., d.) is a projective resolution of the trivial ZG-module Z, then for each n > 1, we may

consider the diagram
G

HomZH(Pn_1 , /\/I) L HomZG(P,,_1 , /VI)

N E

HomZH(Pn, M) T> HomZG(Pn, /\/’) ,

TH

where for ¢ € Homzy(P,—1, M) we compute

(d* o tr&)( Z d*(gipg;" Z (gipgi") o dy 2L Dlgilwody)g " =t (di(9))
i=1 i=1

since d, is ZG-linear. Hence, the diagram commutes and it follows that
trS = (tr&)s : Homzy(Ps, M) — Homzg(P., M)

is a cochain map, and therefore by functoriallity, for each n > 0, it induces a homomorphism in
cohomology
trS : H"(H,M) — H"(G,M).
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Definition 27.2 (Transfer)

Let n € Z=o. The map tr : H"(H, M) — H"(G, M) is called transfer from H to G (or relative
trace map, or corestriction).

Proposition 27.3

Suppose H has finite index in G. Then, for every n > 0 the composition

tréorest : H'(G, M) — H"(G, M)

is multiplication by |G : H]|.

Proof: Setsay r:=|G: H| < w0 and let {g;}1<i<r be a left transversal for H in G. Let P, be a projective
ZG-resolution of Z. For m € Z-, the composition

. rC
Homzc(Pa, M) —"> Homz (P, M) —> Homzg(Pa, M)

maps ¢ € Homzg(Pn, M) to
- —1 ZG-lin. d _ 4
trii(@) = >, gipgi " “=" D gig7 9= 9 =|G: Hlg.
i=1 =1 =

These are maps of cochain complexes and induce resf and tr,g, functorially, in cohomology, Thus, the
claim follows from the fact that left multiplication by r induces left multiplication by r in cohomology. W

28 Induction and Coinduction in Cohomology

Definition 28.1 (Induction)
If M is a ZH-module, then we define Ind,g(/\/l) = ZG ®zy M, the induction of M from H to G.

Remark 28.2

The induced module Indf,(/\/l) is endowed with the structure of a left ZG-module via the left ZG-
module structure on ZG. This is an extension of scalars, as studied in Exercise 14. Hence we have
a universal property for the induction of modules from G to H as given by Exercise 14(c).

Proposition 28.3 (Universal property of the induction)

Let M be a ZH-module and let t : M — Indf,(/\/l), m — 1 ® m be the canonical morphism. Then
for every ZG-module N and for every ZH-linear map ¢ : M — Resﬁ(N), there exists a unique
ZG-linear map ¢ : Indf,(/\/l) — N such that the following diagram commutes:

1
ti c.”
73
Ind§ (M)
In other words, there is an isomorphism of abelian groups

Homzy (M, Resf(N)) = Homzc (Indf;(M), N).
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Remark 28.4

In fact, one can prove that the functor Ind$ is left adjoint to the functor Res&. (Out of the scope of
the lecture.)

Definition 28.5 (Coinduction)

If M is a ZH-module, then we define Coind%(M) := Homz(ZG, M), the coinduction of M from H
to G.

Remark 28.6

The module Coindf (M) is endowed with the structure of a left ZG-module, using the right ZG-
module structure on ZG. Explicitly, for g € G, ¢ € Homzy(ZG, M) and x € ZG, we have

(g-9)(x) = p(xg).

Proposition 28.7 (Universal property of the coinduction)

Let M be a ZH-module. Let p : Coind%(M) — M, @ — @(1) be the canonical evaluation map.
Then for every ZG-module N and every ZH-linear map ¢ : N — M, there exists a unique
ZG-linear map ¢y : N — Co[ndf,(/\/l) such that the following diagram commutes:

Coind§ (M)
g7
L7 lp
NZ M
Proof: Exercise. [ |

Theorem 28.8 (The Eckmann-Shapiro Lemma)

Let M be a ZH-module. Then for each n € Z there are group isomorphisms

Ho (G, IndS(M)) = H,(H, M) and H" (G, Coind%(M)) = H"(H, M) .

Proof: Fix n € Z5( and let P, be a projective resolution of Z as a ZG-module (hence also as a ZH-module).
Then
Py @z M = P, ®26 ZG ®@zn M = P, ®z¢ Indfj(M) .
Now, the left-hand side gives the homology group H,(H, M), while the right-hand side gives the homology
group H,(G, Ind%(M)), hence H,(G, Ind%(M)) = H,(H, M).
Similarly
Homzy(P,, M) = Homzc(P,, Coind%(M)),
where the left-hand side gives the cohomology group H"(H, M) while the right-hand side gives the
cohomology group H"(G, Coind%(M)). |

Lemma 28.9
If M is a ZH-module and H has finite index in G, then Coind%(M) = Ind% (M) as ZG-modules.
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Proof: Define

a:Z2G®zy M — Homzy(Z2G, M)
gRmMv— Qg 2G — M

where g € G, me M and for s € G,

sgm ifsge H
‘Pg,m(s) =77 . 7
0 if sg¢ H.

It is easily check that a is ZG-linear. Then, defining

B : HomZH(ZC, M) —ZG ®ZH M

Yr— > gi®ulg "),
i=1

where {g1, ..., g:} is a left transversal of H in G, one easily checks that B is ZG-linear, a0 B = Id and
B o a = Id. The claim follows. |

Corollary 28.10

If M is a ZH-module and H has finite index in G, then H"(G, Ind%(M)) =~ H"(H, M) for each
ne ZZO-

Proof: By the previous lemma Coind$ (M) = Ind$(M). Hence the claim follows from the Eckmann-Shapiro

Lemma. [ |

29 Exercises for Chapter 7

Exercise 46

Let H < G a subgroup and let M be a ZG-module.

(@) Prove that there is a surjective ZG-linear map

7. Ind§ResG(M) — M
g®m — gm VYgeG

and an injective ZG-linear map

e: M — Coind% Res&(M)
m — &(m)

where €(m)(g) := gm for every g € G.
(b) Prove that the composite map

H"(G, M) =% H"(G, Coind$ Res&(M)) =~ H"(H, Res(M))

is equal to res,f,.
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(d) Suppose that H has finite index in G. Prove that the composite map
H"(H, Res&(M)) =~ H"(G, Coind Res&(M)) = H"(G, Ind% Res$ (M) =% H' (G, M)

is equal to tr,g.

c) Prove that soe is multiplication by |G : H| in M. Deduce that tr% o res& is multiplication
P y H H p

by |G : H| in H"(G,M).




Chapter 8. Finite Groups

The aim of this chapter is to prove several central results of the theory of finite groups: Theorems of
Schur and Zassenhaus and Burnside’s transfer theorem (aslo known as Burnside's normal p-complement
theorem). We will see that these theorems can be stated in terms of elementary group theory, but their
proofs rely on cohomological arguments.

Notation: Throughout this chapter, unless otherwise stated, G denotes a finite group in multiplicative
notation and A be a ZG-module.
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30 Cohomology of Finite Groups

To begin with, we collect in this section a few general results about the cohomology of finite groups.

Lemma 30.1
If G is a finite group, then |G|- H"(G,A) = 0 for every n > 1.

Proof: Let n € Z>; and let 1 denote the trivial group. Because 1 is a cyclic group of order one Theorem 20.3
yields H"(1, A) =~ 0. Now, by Proposition 27.3, the composition of the restriction with the transfer

resc I'G
HY (G, A) —5 {7 (1,A) —2 s H(G, A)
~0

is multiplication by |G : 1| = |G| and factors through 0 if n = 1 by the above. Therefore, multiplication
by |G| is zero in H"(G, A). |

Proposition 30.2

If G is a finite group and A is a finitely generated ZG-module then H%(G, A) is a finitely generated
abelian group and H"(G, A) is a finite abelian group of exponent dividing |G| for every n > 1.
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Recall that the structure theorem for finitely generated modules over a PID states that a finitely gen-
erated abelian group B decomposes as B = B! @ Bfr¢¢ where B> — the torsion part of B — is a
finite direct sum of finite cyclic groups and B¢ — the free part of B — is isomorphic to Z™ for some
positive integer m.

Proof: Fix n e Z>o.
Claim 1: H"(G, A) is a finitely generated abelian group.

Indeed: Using the fact that ZG is a noetherian ring as G is finite, we may construct a projective ZG-
resolution P, of Z in which all the modules are finitely generated abelian groups. Now, applying the
functor Homzg(—, A) to P, we obtain a cochain complex of finitely generated abelian groups since for
each m > 0, Homzg(P,, A) = Homz(P,,,A)¢ < Homz(P,,A), which is a finitely generated abelian
group if both P, and A are. The cohomology groups of this cochain complex are again finitely generated.

Thus the claim about H(G, A) is proved and so is the abelianity of H"(G, A) for n > 1.

Claim 2: The free part H"(G, A) is a trivial if n > 1.

Indeed: Since H"(G,A) is a finitely generated abelian group by Claim 1 and |G| - H"(G,A) = 0 by
Lemma 30.1, its free part must be trivial.

It follows that for n > 1, H"(G, A) is a torsion group, so it is finite and the claim about the exponent is
straightforward from the fact that H"(G, A) is annihilated by |G| . |

31 The Theorems of Schur and Zassenhaus

In this section we prove two main results of the theory of finite groups, which are often considered as
one Theorem and called the Schur-Zassenhaus Theorem. Beacause of the methods we have developed,
we differentiate between the abelian and the non-abelian case.

Theorem 31.1 (Schur, 1904)

Let G be a finite group and let A, := (A, -, *) be a ZG-module such that there exists m € Z>4 with
a™ =1 for all a € A If (|G|, m) =1, then the following assertions hold.

(@) Every group extension 1 A—se-t.q 1 inducing the given G-action * on
A splits.

(b) Any two complements of A in E are E-conjugate.

Proof: First, we prove that the H"(G, A;) is trivial for all n > 1. For convenience, write A additively in
this proof. (Le. (A, +) instead (A, "), so that we can differentiate between the group law in A and the
action of Z on all abelian groups involved.) Thus by assumption we have m - A = 0. This implies that
m-C"(G,As) =0, and thus m- H"(G, Ax) = 0 for every n = 1. Now, by the Bézout identity there exists
u,v e Z such that

u-|Gl+v-m=1,

and hence we have

H™ (G, Ay) =1-H"(G,Ay) = u-|G|- H"(G,Ay)) +v-m - H"(G,Ay) =0

=0 =0




Lecture Notes: Cohomology of Groups SS 2021 95

for every n =1 as |G|-H"(G, Ay) = 0 by Lemma 30.1. Now, because H?(G, A;) vanishes, any group ex-

tension 1 A—sfE-Lt.qg 1 inducing the given G-action * on A splits by Theorem 24.3.
Because H'(G, A,) vanishes, all complements of A in E are E-conjugate by Theorem 23.3(b). |

Theorem 31.2 (Zassenhaus, 1937)

Let 1 A—t-rp-P.qg 1 be an extension of finite groups (where A is not necessarily
abelian). If ( ) =1, then the extension splits.

Proof: W.Lo.g. we may assume that |G| > 1. Then, we proceed by induction on the order of A.

- If |A| = 1 or |A| is a prime number, then A is cyclic, hence abelian. Moreover, alAl = 1 for all a € A.
Thus Schur’s Theorem applies and yields the result.

, let P be a Sylow

- Suppose now that |A] >
g-subgroup of A, and set N := Ng(P) for the normaliser of P in E.

Claim 1: £ = AN.
Indeed, if e € E, then P and ePe~" are Sylow g-subgroups of A, hence A-conjugate, and so
there exists a € A such that a~'(ePe~")a = P. Thus a~'e € Ng(P) = N, and therefore
e=ua(a""e) e AN.

Claim 2: A has a complement in E.
We split the proof of this claim in two cases:

Case 1: N # E.
In this case, restricting p to N yields the group extension

ilanN pIn

1——ANnN N G 1

where An N ¢ A because G =~ E/A = AN/N =~ N/(An N). Thus, by the induction hypothesis,
this extension splits, and, by Proposition 22.7, there exists a complement H of An N in N. Since
|H| = |G| and ( ) =1, we have Hn A = {1}, and therefore H is a complement of A in E.

Case 2: N =E.

Let Z := Z(P) be the centre of P, which is a non-trivial subgroup of P because P is a g-group.
Since Z is characteristic in P (i.e. invariant under all automorphisms of P), and since P is normal
in N, we deduce that Z is normal in E. Thus, by the universal property of the quotient, p induces
a group homomorphism p : E/Z — G, eZ —> p(e), whose kernel is A/Z. In other words, there is
a group extension of the form

1 A/Z E/Z G 1.

Now
splits. So let F be a complement of A/Z in E/Z By the Correspondence Theorem there exists a

subgroup F<E containing Z such that F = F/Z In other words, there is a group extension

~

1 V4 F F 1.

Since F =~ G and Z < P < A, we have (|Z],|F|) = 1 and therefore this extension splits by Schur’s

Theorem. Thus, there is a complement H of Z in F. Again |H| = |F| = |G| and (|A],|G]) =1
imply that H n A =1, so that H is also a complement of A in E. The second claim is proved.

Finally, we conclude that the extension splits using Proposition 22.7 . m
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Remark 31.3

(@) Notice that both Schur’s and Zassenhaus’ Theorems can be stated in terms not involving
cohomology, but their proofs rely on cohomological methods.

(b) A variation on the proof of the later theorem yields the following result due to Gaschiitz
(1952):

Let g be a prime number. Let K be a normal abelian g-subgroup of a finite group G, and
let P be a Sylow g-subgroup of G. Then K has a complement in G if and only if K has a
complement in P.

32 Burnside's Transfer Theorem

Throughout this section, we let H be a subgroup of G (assumed to be finite!) of index |G : H| =: r and
A be a trivial ZG-module. Our first aim is to understand the action of the transfer homomorphism on
H'(G, A). So first recall that H'(G, A) = Z'(G, A) = Homgp(G, A) by Example 11, and hence we see
the transfer as a homomorphism

tr; : Homgep(H, A) — Homgrp (G, A) .

L_emma 321

Let n € Z>¢ and let ZG"*" be the n-th term of the bar resolution of Z seen as the trivial ZG-
module. View it as a projective resolution of Z as a ZH-module by restriction. Fix a right transversal
S ={sy,...,s:;}of Hin G. Then the comparison maps between this resolution and the bar resolution
of Z as a ZH-module are given by the canonical inclusions

in: ZHn+1 —>ZG”+1

and by the maps

On: ZGn+1 N ZHn+1
(go,---,gn) +—  (ho,..., hy),

where, for every 0 < i < n, g; = h;s; for some h; € H and some s; € S.

Proof: Thus the Comparison Theorem yields the result, because using the definition of the differential maps
of the bar resolution, we see that for each n > 1 there are commutative diagrams

ZH 1 s z G+ ZH "~ 7G,
J(d,, O \Ld” el O ie
ZH" —— = ZG" Z——>7
in—1
and
zGn ' 2zt zG—2-7H,
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Proposition 32.2

Fix a right transversal S = {s1,...,s,} of H in G. Then the transfer for H' is described as follows:

tre; : Homgrp(H, A) — Homgrp (G, A)
f— (tr,(_;,(f) 1 g — Z f(h[)) ,
i=1

where s;g = h;s,(;) with h; € Hforevery 1 <i<rand ogeS,.

Proof: On the one hand
Homgep(H, A) = H'(H, A) = H'(Homzn(ZH?, A)),

via the bar resolution. On the other hand,
Homaep(H, A) = H'(H, A) = H'(Homz4(ZG?, A)),

via the bar resolution for G restricted to H. Now, transfer is defined using the second resolution, therefore,
we need to compare these two resolutions. But

H'(H,A) = Z'(H, A),
because B'(H, A) = 0 since H acts trivially on A, and
Z'(H,A) < C'(H,A) = Homgzy, (ZH?, A).
If for a given f € Homcrp(H, A), f denotes the image of f in Homzy (ZHZ,A), then for h € H set
f:zZH? — A
(1,h) = [h] — (h)

and thus for each k € H,
F((k,kh)) =f(k-(1,h)) = k-f(h) = f(h),

because H acts trivially on A, and we extend this map by Z-linearity to the whole of ZH?. Using the
comparison map ¢ : ZG? —> ZH? of the previous lemma yields fog:ZG? —> A, which is ZH-linear.
Now, computing the transfer using its definition yields for every x € ZG?*:

r

try; (Fo o1)( Zs (foq)(six) = Z(?OW)(SIX)

i=1

because {5171, Ce S 1} is a left transversal of H in G and A is trivial. We want to view this as a 1-cocycle
for G, that is evaluate this on an element [g] = (1,9) € G* = ZG? :

tr/(‘;/(f)(g):tr}(—;l (?O(p1 Z fO<P1 SLIS[Q)ZZ?(1,hi)
i=1 i=1

because s; = 1-s; and s;g = h;iS,(;). So we obtain

= ) = Y f(h)

i=1 i=1

as required. ]
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Lemma 32.3 (Choice of transversal for a fixed g € G)

Fix g e G.
(@) There exists a right transversal of H in G of the form

S={titig,..., g™ "t tag, ..., g™ ..t tsg, .. tsg™ )
with my + ...+ ms=|G: H| =rand t;g"t; ' e Hforall 1 <i<s.

(b) If f € Homgp(H, A) and g € G, then trS(H(g) =354 f(tig’”"ti_1).

Proof:

(@) The element g acts on the right on right cosets Hs, via Hs — Hsg. Decompose the set of right
cosets into g-orbits. Let r be the number of g-orbits and let Ht, ..., Ht, be representatives of the
g-orbits. We get all the right cosets of H by applying powers of g to each Ht; and we suppose
that Ht;,g™~'g = Ht; (that is, m; is the cardinality of the orbit). With this choice, we obtain a
right transversal with the required properties.

(b) Proposition 32.2 together with (a) yield for 1 < i <'s:

m;—1

tig, t,g ;.. tig

belong to the right transversal S, so that (t;g*) - g =1 (t,g*™") e H- S for 0 < k < m; — 2 and
tig"~'g = (t:g™t;")t;e H- S. Therefore

trf(M(g) = >, F(tig™ ;"

i=1

because all the other elements of H appearing are 1 and f(1) = 0.

Theorem 32.4 (Burnside’s transfer theorem (or Burnside’s normal p-complement theorem), 1911)

98

Let G be a finite group, let p be a prime number such that p | |G| and let P be a Sylow p-subgroup
of G. If P is abelian and C;(P) = Ng(P), then there exists a normal complement N to P in G, i.e.

G=NxP.

Proof:

-1 1

Claim: |If there exist g € G and u € P such that u, gug™' € P, then gug™" = u.

Indeed: using the assumptions, we have u € g~'Pg, which is abelian, and therefore both P and g~'Pg
are Sylow p-subgroups of Cg(u). Thus P and g~'Pg are conjugate in Cg(u), so that there exists
c € Cg(u) such that cPc™' = g7 Pg, that is gcP(gc)~" = P and hence gc € Ng(P) = Cs(P). Finally,
gug~' = (gc)u(gc)~! = u because u € P, as required.

Now consider the identity map Idp € Homg, (P, P) and trg(Idp) € Homg, (G, P). The previous lemma
yields for a fixed u € P,

tri(Idp)( H Idp ( tiu’"‘t
Now using the Claim yields t;u™t;" = u™ for each 1 < i < s, hence

trp (Idp)( nu’"' = ylGPl,
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In particular, this proves that trg(ldp) : G — P is a surjective group homomorphism, because for each
v € P, there exists u € P such that u!&Fl = v by the Bézout identity. (Indeed, Bézout implies that there
exist a, b € Z such that a|P| 4+ b|G : P| = 1, hence v = v! = (v*)I%Pl and we choose u = v?))

Finally, set N := ker (trg(ldp)>, so that we have a group extension

trs(1dp)

1 N G P 1

with a section given by IJ%P\ -1, where t : P — G is the canonical inclusion. It follows that N is a
normal complement of P in G. ]

Corollary 32.1

A finite non-abelian simple group G cannot have a non-trivial cyclic Sylow 2-subgroup.

Proof: Exercise 50 proves that a finite non-abelian group G with a non-trivial cyclic Sylow 2-subgroup
possesses a normal 2-complement — as a consequence of Burnside’s transfer theorem. It follows that such
a group cannot be simple, proving the claim. ]

33 Exercises for Chapter 8

Exercise 47

Let G be a finite group. If A is a ZG-module which is induced from the trivial subgroup, then
H"(G,A) = 0 for every n = 1. Deduce that H"(G,A) = 0 for every n > 1 if A is a projective
ZG-module.

Exercise 48

Let p be a prime number, let G be a finite group of order divisible by p, and let P be a Sylow
p-subgroup of G. If Ais an F,G-module, then the restriction map

res$ : H'(G, A) — H"(P,ResS(A))

is injective for every n = 0.

Exercise 49

Let p be a prime number. Let G be a finite group of oder divisible by p and let P be a Sylow
p-subgroup of G.

(@) Prove that C5(P) = Z(P) x H, where H is a subgroup of G of order coprime to p.
(b) Prove that PCg(P) = P x H.
(c) Prove that Ng(P) = P x K, where K is a subgroup of G of order coprime to p, and H < K.

Exercise 50

Let G be a finite group of even order and assume that a Sylow 2-subgroup P of G is cyclic.

(a) Prove that Aut(P) is a 2-group.
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(b) Prove that P has a normal complement in G.



Chapter 9. The Schur Multiplier and Universal Central Extensions

The Schur multiplier is a very important tool of finite group theory and representation theory of finite
groups. For an arbitrary group G it is defined as the integral homology group M(G) := H>(G, Z),
which makes it a very important tool of algebraic topology as well. However, when G is a finite group,
we have several interpretations of M(G) through cohomology groups. Furthermore, we will see that it
has very natural connections with central extensions and projective representations.

Throughout this chapter, unless otherwise stated, G denotes a finite group in multiplicative notation and
K denotes a field of arbitrary characteristic. As standard, we let (C, +,-) denote the field of complex
numbers, (C*,-) be its multiplicative group of units and we let S' := {z € C* | |z| = 1} < C* for
the complex 1-sphere. Moreover, without mention of an explicit G-action, abelian groups are seen as
trivial ZG-module.

References:

[CR90] C. W. CurTis AND |. REINER, Methods of representation theory. Vol. I, Wiley Classics Library,
John Wiley & Sons, Inc., New York, 1990.

[Rot09] J. J. RoTMAN, An introduction to the theory of groups. Fourth ed., Graduate Texts in Mathema-
tics, vol. 148, Springer-Verlag, New York, 1995.

[LT17]  C. Lassueur and J. Thévenaz, Universal p’-central extensions, Expo. Math. 35 (2017), no. 3,
237-251.

34 Definition and Equivalent Characterisations

Definition 34.1 (Schur multiplier)

The Schur multiplier (or multiplicator) of a group G (not necessarily finite) is the abelian group
M(G) := H(G, 2).

For finite groups, we can further characterise the Schur multiplier in terms of cohomology in different
ways as explained below.

We start with a crucial result coming from algebraic topology, which we accept without proof.

Theorem 34.2 (Integral duality theorem)
If G is a finite group, then H"*1(G,Z) =~ H,(G,Z) whenever n > 1.

101
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Remark 34.3 (Uniquely divisible groups)

(a)

(b)

Proof:
(a)

(b)

Recall from group theory that:

- An abelian group (A, +) is said to be uniquely divisible by an integer u € Z>4 if for all
a € A there exists a unique b € A with @ = ub, or equivalently iff the homomorphism of
multiplication by u, i.e. my, : A— A, b — ub is an isomorphism. For example, if A is finite

and (JA|, u) = 1 then A is uniquely divisible by u.

- Moreover, A is said to be uniquely divisible if it is uniquely divisible by every positive integer

ue 221.
Obviously, Q, R, R x R, ... are uniquely divisible, but Q/Z is not uniquely divisible.

Lemma 34.4
Let G be a finite group.

If (M, +, ) is a ZG-module such that the underlying abelian group (M, +) is uniquely divisible

by |G

, then H"(G, M) = 0 for every n > 1.
H"(G,C*) =~ H"™1(G,Z) =~ H"(G,Q/Z) for all n = 1.

Let n > 1 be fixed. By the assumption multiplication by |G|, m|g : M — M, m — |G|m, is an
isomorphism, hence so is multiplication by |G|, m|g| : H"(G, M) — H"(G, M) by functoriality of
cohomology. This map being the zero map by Lemma 30.1, it follows that H"(G, M) = 0.

Polar coordinates induce a group isomorphism
x = X 1 iarg(z)
C* —=—RI,;xS,z—(|z], e )

and exp : (R, +) — (S',.), t — e?™" is a surjective group homomorphism with ker(exp) = Z, hence
it induces a group isomorphism R/Z =~ S'. Therefore, there is a group extension

£:1— =7 =RY,YxRUL RX xS o1,

~Cx

Because the natural logarithm In : (RX,,-) — (R, +) is a group isomorphism the term in the

middle is isomorphic to R x R, and hence is uniquely divisible. Thus, it follows from (a) that the
long exact sequence in cohomology associated to the extension £ (which we see as a s.e.s. of trivial
ZG-modules) has the form

- — H'(G,RXy xR) — H'(G,C*) — H*(G,Z) —= H?(G,RXy xR) —=---
—_—
~0 ~0

- — H"(G,RXy x R) — H"(G,C*) — H"*(G,Z) — H"""(G,RX; xR) —>---
—_————
0

112
112

0

Hence, we conclude that H"(G,C*) =~ H"+(G, Z) for each n > 1.
H"™1(G,Z) for all n > 1.

lle

Exercise 51: use a similar argument to prove that H"(G, Q/Z)
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Proposition 34.5 (Alternative descriptions of the Schur multiplier of a finite group)
If G is a finite group, then M(G) = Hy(G,Z) = H3(G,Z) = H*(G,Q/Z) =~ H*(G,CX).

Proof: The isomorphism H>(G, Z) = H3(G, Z) is given by the integral duality theorem. The second and the
third isomorphisms are given by Lemma 34.4(b). ]

&zmark 34.6

In view of Proposition 34.5 and the fact that Schur worked with finite groups, the Schur multiplier
of finite group is often defined to be M(G) = H?>(G,C>).

Finally we give a characterisation of M(G) due to Schur, which is known under the name of Hopf’s
Formula, and which we also accept without proof.

Theorem 34.7 (Hopf's Formula (Schur, 1907))

Let G be a finite group which we see as the quotient of a finitely generated free group free group
F,ie. G = F/Rwith R<F. Then, M(G) = (Rn [F,F])/[F,R].

Notice that, in particular, Hopf's formula enables us to recover information about G from a presentation.

R_emark 34.8

Hopf proved in 1942 that an aspherical topological space X has the property that its homology
groups are completely determined by its fundamental group st1(X). More precisely, he proved that
Hy(X) = (R n [F, F])/[F,R], where F is a group and R < F are such that w1(X) = F/R. Schur
had already proved this formula in the special case of finite groups, hence the terminology! In fact,
comparison of Hopf's Formula with Schur’s Theorem from 1907 lead Eilenberg and Mac Lane to
the creation of the Cohomology of Groups.

Remark 34.9

In the ATLAS of Finite Groups the Schur multiplier is one of the first piece of information which is
listed at the top of the page corresponding to a simple group. We will see in the next sections how
it relates to central extensions of simple groups.

35 Numerical Properties

Lemma 35.1

If G is a finite group, then M(G) is a finite abelian group such that exp(M(G)) | |G].
In particular, if p is a prime number and G is a finite p-group, then so is M(G).

Proof: This is a special case of Proposition 30.2. ]

Remark 35.2

In fact it can be proved that exp(M(G))? | |G|. This was already proved by Schur in 1904 in specific
cases. A proof in the general case requires the notion of a representation group (or covering group)

which we will introduce in the next section. Moreover, Jon Alperin and Kuo Tzee-Nan proved in
1967 that exp(M(G)) - exp(G) | |G].
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Lemma 35.3
If G is a finite cyclic group then M(G) =~ {1}.

Proof: Exercise 52. [ |

Theorem 35.4

Let p be a prime number and let P € Syl,(G). Then res$ Imcc), : M(G)p, —> M(P) is an injective
group homomorphism.

Proof: By Proposition 27.3, trg ores$ : M(G) = H?*(G,C*) — H?*(G,C*) = M(G) is multiplication by
|G : P|. Restriction of this multiplication to M(G), is an automorphism since (|G : P|,p) = 1. This
proves that res Im(c), is an injective map. ]

Corollary 35.5

If for every prime number p such that p | |G| the Sylow p-subgroups of G are cyclic, then
M(G) = {1}.
Proof: Assume p is a prime number such that p | [M(G)|. Then p | |G| by Lemma 35.1. So let P € Syl,(G).
Then M(P) = {1} by Lemma 35.3. Therefore, M(G), = {1} since it is isomorphic to a subgroup of M(P)
by Theorem 35.4(b). The claim follows. ]

Example 13
Corollary 35.5 implies for example that:

(a) the Schur multiplier of the symmetric group S3 is trivial because |&3| = 6 and &3 has Sylow
2-subgroups isomorphic to C; and a unique Sylow 3-subgroup isomorphic to C3;

(b) the Schur multiplier of the dihedral group Dyg is trivial because |Djg| = 10 = 2 -5 so the
Sylow p-subgroups must be isomorphic to C, for each p € {2,5}.

36 Projective Representations

Definition 36.1 (Projective representation)

A projective representation of a finite group G over a field K, with 2-cocycle a : G x G — K* is
amap T : G—> GL(V) where V is a finite-dimensional K-vector space and such that

I'(g)T(h) =a(g,h)T(gh) Vg, heG.

R_emark 36.2

(@) Notice that a projective representation is not in general a group homomorphism. Nevertheless,
if my : GL(V) — PGL(V) := GL(V)/(K* -1dy) denotes the quotient morphism, then clearly
a projective representation T : G — GL(V) gives rise to a group homomorphism

0:G - GL(V) 2% PGL(V),

explaining the terminology.
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However, we emphasise projective representations in the sense of Definition 36.1 are not
the same as the K-representations associated to projective KG-modules in the sense of
Remark 14(a).

(c) Two projective representations S : G — GL(W) and T : G — GL(V), with 2-cocycles B
and o resp., and are called equivalent if there exists a K-isomorphism X : W — V and a
1-cochain (= a map) p: G — K™ such that

p(g)-XoS(g)=T(g)eX  Vgel.

When this occurs, B and « differ by the 2-coboundary d*(u).

(d) Since K* -Idy = Z(GL(V)) there is a natural central extension

1 — KX ldy — GL(V) 2% PGL(V) — 1.

&)tation 36.3

Given a central extension of groups 1 — Z — E 5 G — 1 (i.e. with Z = kerr < Z(E)) in
order to shorten the notation will often say that the pair (E, 1) is a central extension of G.

Definition 36.4 (Projective lifting property)

A central extension (E, 1) of G is said to have the projective lifting property (relative to K) if, for
every finite-dimensional K-vector space V, every group homomorphism 6 : G — PGL(V) can be
completed to a commutative diagram of group homomorphisms:

E z G 1

J

1 ——=K* - 1dy —= GL(V) 2> PGL(V) —=1

1

When this can be done, we say that 6 can be lifted to the K-representation A of £ and A is called
a lift or a lifting of 6.

R_emark 36.5

(@) In general, the homomorphism A is not uniquely determined. However, by commutativity of
the diagram, if A, A’ : E — GL(V/) are two liftings of 0 to E, then there exists a degree one
representation y: E — GL(K) such that X' = A® p.

(b) Practically speaking, if a central extension (E, ) of G has the projective lifting property and
T : G —> GL(V) is any projective representation of G, then there exists a K-representation
A E — GL(V) of E, such that T is equivalent (as a projective representation) to the
projective representation inducing Aou : G —> PGL(V) where u : G — E is a set-theoretic
section for 7.
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37 Central Extensions and Universality

We now want to establish connections between central extensions, the projective lifting property and
the Schur multiplier. To achieve this aim, we need to introduce further concepts.

Definition 37.1 (B-universal central extensions)

Let B be an abelian group. A central extension 1 — Z — E —» G — 1 is called B-universal
if, for any central extension of groups 1 — B — X 5 G* — 1 with kernel B and any group
homomorphism 6 : G — G*, there exists a group homomorphism 6 : E — X such that the
following diagram commutes:

1 7 F—Y~G 1
§|Zi Eléi Q\L
1 B X s G* 1

Remark 37.2

Any K*-universal central extension of groups has the projective lifting property.

Remark 37.3 (The Hochschild-Serre 5-term exact sequence)

To each central extension 1 — Z — E %> G — 1 and each abelian group (B,-) (seen with
trivial action of Z, E and G) can be associated a 5-term exact sequence
E E E
1— Hom(G, B) ™& Hom(E, B) %% Hom(Z, B) > H2(G, B) ™4 H2(E, B)
called the Hochschild-Serre exact sequence in the literature, because it arises from the low degree
terms in the Hochschild-Serre spectral sequence associated to the given central extension (see
[Wei94, Section 6.8]). The first homomorphism Infg is the inflation of homomorphisms, which is

defined by
InfE(y) = Yom Ve Hom(G, B),

and is clearly injective. The homomorphism Res§ denotes the ordinary restriction of maps from E
to Z. The last homomorphism Infg is the inflation in cohomology, which is defined as follows: given
a class [a] € H(G, B) represented by a 2-cocycle a € Z%(G, B), the element Inf&([a]) € H2(E, B)
is the cohomology class represented by the 2-cocycle B € Z?(E, B) defined by

B(u,v) = a(x(u), n(v)), Yu,veE.

Finally, the homomorphism tr is called transgression and is defined as follows: given ¢ € Hom(Z, B),
then
tr(¢) := [p o a] € H*(G, B),

where a € Z?(G, Z) is a 2-cocycle representing the cohomology class corresponding to the central
extension (E, ).

For ease of notation we often simply write Inf for the inflation maps and Res for the restriction map.
In the case in which B = K*, writing Hom(G, K*) =: X(G), the 5-term exact sequence is

1— X(G) 2 X(E) X x(2) 2% H2(G, K*) ™ H2(E,K*).
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Proposition 37.4

A central extension 1 — Z — E —» G — 1 is B-universal if and only if the transgression
homomorphism tr : Hom(Z, B) — H?(G, B) is surjective.

Proof: The necessary condition is left as an exercise. See Exercise 53.
Conversely, assume that tr : Hom(Z, B) — H?(G, B) is surjective. Let 1 — B — X 7> G* — 1
be a central extension of groups and let 8 : G — G* be a group homomorphism. Let v : G — E,
v : G* — X be set-theoretic sections for v and 7, respectively, and let f : G x G — Z and
g : G* x G* —> B be the associated 2-cocycles, respectively. Then

go: Gx G c*xc* LB

is a 2-cocycle in Z?(G, B) (because f is and O is a group homomorphism). Since tr is surjective, there
exists ¢ € Hom(Z, B) such that tr(¢) = [p o f] = [ge] € H*(G,B). Thus @ o f and gg differ by a
2-coboundary, so there exists a 1-cochain 7 : G — B such that 7(1) = 1 and

of(x,y) = g(6(x), 0(y))T(N)T(y)T(xy) ™" Vx,yeG.
Since any element of E may be written as zu(x) with z e Z and x € G, define
A E— E*, zu(x) — @(2)T(x)v(6(x)) .
It is then easily verified that A is the required homomorphism. |
Lemma 37.5
If G is a finite group and K = K is an algebraically closed field of characteristic p > 0, then

pIH*(G KX

Proof: Let c € H*(G,K*) and write ¢ = [a] with a € Z%(G,K*). Write o(c) = p? - m where (m,p) = 1.
We must prove that a = 0. Since ¢°() is trivial in H*(G, K*), we have

of

a(x, ) = p(x)p(y)uxy)™ Vx,yeG

for some 1-cochain y : G — K*. Since K is algebraically closed each of its elements has a unique
p?-th root of unity and we can write

a1 —1\ P*

(alx, )" = (W) ()P u(xg) 7 )

and it follows that ;

alx, y)™ = p(x) 7 p(y) ™ p(xy) =

which contradicts the assumption that ¢ has order p - m, unless p? = 1, as required. ]

Theorem 37.6

Let G be a finite group and let K = K be an algebraically closed field. Then the following assertions
hold:

(a) There exists a central extensions 1 — Z — E - G — 1 with kernel Z = H?(G,K*)
and having the projective lifting property relative to K.

(b) Any central extension (E, ) of G with the projective lifting property relative to K is K*-
universal.
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Proof:

(@) By Remark 37.2 and Proposition 37.4 it suffices to construct a central extension

1— H*(G,K*) —E- G—1
such that the associated transgression homomorphism
tr: Hom (H*(G, K*), K*) — H*(G,K*)

is surjective. Since by Proposition 30.2 the group H?(G,K*) is a finite abelian group, we may
express it as a finite product of finite cyclic groups

HZ(C,KX):<C1|C$1 =1 x - x{cqg|c=1)

where by Lemma 37.5, char(K) { e; =: o(c;) for each 1 < i < d. Now, as K = K, for each
1 < i < d, we there exists an e;-th primitive root of unity {; € K (these need not be distinct). Then,
by Exercise 54, for each 1 < i < d there exists o; € Z?(G, K*) such that ¢; = [o;] and

ai(x,y) = Cfi(x'y) Vx,yeG

where the exponents a;(x, y) are uniquely determined integers such that 0 < a;(x,y) < e;. Next,

for each (x,y) € G x G, let

a(x,y) = ¢V ey

The 2-cocycle identity
ai(y, 2)a;(x, yz) = a;(xy, z)ai(x, y) Vx,yze G, V1<i<d
implies then that
ai(y,z) + ai(x,yz) = a;(xy, z)a;(x,y) (mod e;) Vx,y,ze G,V1<i<d

and since ¢; has order e; for each 1 < i < d, it follows that a : G x G — HZ(G, K*) satisfies
the 2-cocycle identity and defines a 2-cocycle. Therefore, by Theorem 24.3 (and its proof), there

exists a central extension
1— H*(G,K*) —E- G—1

associated to [a] € H*(G, H*(G,K*)) and it remains to prove that the associated transgression
map is surjective. So let b € H*(G, K*) and write

b=(c,..., AAyedlor | =1y x - x{cq| 5 =1)
with 1 < b; < ey for each 1 < i < d. Then b = [B] for the 2-cocycle B € Z%(G,K*) defined by
4 b
B(x,y) := Hfiiai(x’y) Vx,yeG.
i=1

Then, there exists a well-defined ¢ € Hom (HZ(G, K>, KX) defined by

and which is such that
pla(x,y)) =Bx.y) VxyehC.
Hence, tr(¢) = b, completing the proof of (a).
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(b) Let 1 — Z — E -5 G — 1 be a central extension of G with the projective lifting property
relative to K. Let u : G — E be a set-theoretic section for ;t and let f : G x G — Z be
the associated 2-cocycle. By Proposition 37.4, it suffices to prove that the transgression map
tr : Hom(Z, K*) — H?(G,K*) is surjective. So let ¢ € H*(G,K*) and write ¢ = [a] with
a e Z?(G,K*). Then, there exists a projective representation T : G — GL(V/) with associated 2-
cocycle a and we let 8 := wyo T : G —> PGL(V) be the induced group homomorphism to PGL(V)
as in Remark 36(b). Then, by the projective lifting property, there exists a K-represenentation
A: E — GL(V) such that the diagram

1 z E it G 1
CIE
1 —= K*-ldy GL(V) =~ PGL(V) —=1

commutes. Moreover, from the fact that for every x, y € G we have

u(x)u(x) = f(x,y)ulxy)

follows that
Au(x))A(u(y)) = Alz(f(x, y))A(u(xy)) -
Therefore tr(A|z) = ¢, proving the surjectivity of the transgression, as required. m

We can now eventually connect central extensions to the Schur multiplier.

Definition 37.7

Assume K = C. A representation group of a finite group G is a central extension (E, ) of G of
minimal order with the projective lifting property relative to C.

eorem 37.8

Let G be a finite group. Then, representations groups of G exist. Furthermore, a central extension
1 — Z — E 5 G — 1 is a representation group of G if and only if Z < [E, E] and
|Z| = |H?(G,C*)|, and if these two conditions are satisfied, then Z =~ H?(G, C*).

Proof: To begin with representation groups of finite groups exist by Theorem 37.6(a) and one of them has

kernel H?(G,Cx).

Next, assuming that (E, i) is a representation group of G, then (E, 7r) is C*-universal by Theorem 37.6(b)
and thus the transgression tr : Hom(Z,C*) — H?(G,C*) is surjective by Proposition 37.4. Therefore,
|Z| = |Hom(Z,C*)| = |H*(G,C)|
since |Hom(Z,C*)| = |Z| because Z is abelian and Hom(Z,C*) is the group of linear characters of Z.

So by minimality of (E, ) we must have

|Z| = |H*(G,CX)| and tr is an isomorphism.

Therefore ker(tr) = {1} and Z < [E, E] by Exercise 55.

Conversely, assume 1 — Z — E 7> G — 1 is a central extension such that Z < [E, E] and
|Z| = |H?(G,C*)|. Aqgain, to prove that (E, ) is a representation group of G, it suffices to prove that
the transgression tr : Hom(Z,C*) — H?(G, C*) is surjective. Since Z < [E, E], Exercise 55(a) yields

ker(tr) = (Z n [E, E])* = Z+ = {1}

so tr is injective. This and the assumption yield |Z| = |H?(G,C*)| = |Hom(Z,C*)| = |Z] and so in fact
equality holds, proving that tr is surjective. ]
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38 Exercises for Chapter 9

Exercise 51

Prove that H"(G,Q/Z) =~ H"*'(G, Z) for all n > 1 using an argument similar to the one used in
the proof of Lemma 34.4.

Exercise 52

Prove that M(G) is trivial if G is a finite cyclic group.

Exercise 53

Let B be an abelian group. Prove that if a central extension 1 — Z — E —» G — 1 is
B-universal, then the transgression homomorphism tr : Hom(Z, B) — H?(G, B) is surjective.

Exercise 54

Let G be a finite group and K = K be an algebraically closed field of characteristic p > 0. Prove
that any cohomology class ¢ € H?(G, K*) can be represented by a 2-cocycle a : G x G —> K*
whose values are o(c)-th roots of unity in K.

Exercise 55

Assume K = C and let 1 — Z — E 7> G — 1 be a central extension of finite groups. Prove
that:

(a) ker(tr) = (Z n[E,E])* =: {@p e Hom(Z,C*) | Z n [E, E] < ker(¢)}; and

(b) Z < [E,E] if and only if the transgression tr : Hom(Z,C*) — H?(G,C*) = M(G) is
injective.

Exercise 56

Assume K = C and let 1 — Z — E %5 G — 1 be a central extension of finite groups. Prove
that if Z < [E, E], then the transgression tr : Hom(Z,C*) — H?(G,C*) = M(G) is injective.




Appendix: The Language of Category Theory

This appendix provides a short introduction to some of the basic notions of category theory used in this
lecture.

References:
[McL98] S. Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Math-
ematics, vol. 5, Springer-Verlag, New York, 1998.

[Wei94] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math-
ematics, vol. 38, Cambridge University Press, Cambridge, 1994.

A Categories

Definition A.1 (Category)

A category C consists of:

e a class ObC of objects,
e a set Hom¢(A, B) of morphisms for every ordered pair (A, B) of objects, and

e a composition function

Hom¢(A, B) x Home(B,C) —  Hom¢(A, C)
(f.g) — gof
for each ordered triple (A, B, C) of objects,

satisfying the following axioms:

(C1) Unit axiom: for each object A € ObC, there exists an identity morphism 14 € Hom¢(A, A)
such that for every f € Hom¢(A, B) for all B e Ob(,

fola=f=1gof.

(C2) Associativity axiom: for every f € Hom¢(A, B), g € Home(B, C) and h € Hom¢(C, D) with
A,B,C,D e Ob(,

ho(gof)=(hog)of.
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Let us start with some remarks and examples to enlighthen this definition:

Remark A.2

(@) ObC need not be a set!

(b) The only requirement on Hom¢ (A, B) is that it be a set, and it is allowed to be empty.

(c) It is common to write f : A— B or A ', Binstead of f € Hom¢(A, B), and to talk about
arrows instead of morphisms. It is also common to write "A € C" instead of "A € Ob(C".

(d) The identity morphism 14 € Hom¢(A, A) is uniquely determined: indeed, if f4 € Hom¢(A, A)
were a second identity morphisms, then we would have f4g = f4014 = 14.

Example A.3

(@) C =1 : category with one object and one morphism (the identity morphism):

SO"

(b) C = 2 : category with two objects and three morphism, where two of them are identity
morphisms and the third one goes from one object to the other:

1A(j/4*> 8913

(c) Agroup G can be seen as a category C(G) with one object: ObC(G) = {e}, Hom¢(g(e, ) = G
(notice that this is a set) and composition is given by multiplication in the group.

(d) The n x m-matrices with entries in a field k for n, m ranging over the positive integers form
a category Mat,: ObMat, = Z-o, morphisms n — m from n to m are the m x n-matrices,
and compositions are given by the ordinary matrix multiplication.

Example A.4 (Categories and algebraic structures)

(@) C = Set, the category of sets: objects are sets, morphisms are maps of sets, and composition
is the usual composition of functions.

(b) C = Vecy, the category of vector spaces over the field k: objects are k-vector spaces, mor-
phisms are k-linear maps, and composition is the usual composition of functions.

(c) C = Top, the category of topological spaces: objects are topological spaces, morphisms are
continous maps, and composition is the usual composition of functions.

(d) C = Grp, the category of groups: objects are groups, morphisms are homomorphisms of groups,
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and composition is the usual composition of functions.

e) C = Ab, the category of abelian groups: objects are abelian groups, morphisms are homomor-
C = Ab, the category of abelian groups: object belian group phi h
phisms of groups, and composition is the usual composition of functions.

(f) C = Rng, the category of rings: objects are rings, morphisms are homomorphisms of rings,
and composition is the usual composition of functions.

(g) C =rMod, the category of left R-modules: objects are left modules over the ring R, morphisms
are R-homomorphisms, and composition is the usual composition of functions.

(g') C = Modg, the category of left R-modules: objects are right modules over the ring R,
morphisms are R-homomorphisms, and composition is the usual composition of functions.

(g") C =rMods, the category of (R, S)-bimodules: objects are (R, S)-bimodules over the rings
R and S, morphisms are (R, S)-homomorphisms, and composition is the usual composition of
functions.

(h) Examples of your own ...

Definition A.5 (Monomorphism/epimorphism)

Let C be a category and let f € Hom¢(A, B) be a morphism. Then f is called

(@) a monomorphism iff for all morphisms gq,g>: C — A,
fogi=fog)=qg1=¢>.
(b) an epimorphism iff for all morphisms g1, g2 : B— C,

giof=grof = g1 =¢>.

Remark A.6

In categories, where morphisms are set-theoretic maps, then injective morphisms are monomorphisms,
and surjective morphisms are epimorphisms.
In module categories (”Mod, Modg, fMods, ...), the converse holds as well, but:
Warning: It is not true in general, that all monomorphisms must be injective, and all epimorphisms
must be surjective.
For example in Rng, the canonical injection ¢ : Z — Q is an epimorphism. Indeed, if C is a ring
and g1, g2 € Hompyg(Q, €)

Z——=0Q % C

1

are such that g1 ot = g o (, then we must have g1 = g by the universal property of the field of
fractions. However, ¢ is clearly not surjective.
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B Functors

Definition B.1 (Covariant functor)

Let C and D be categories. A covariant functor F : C — D is a collection of maps:
e fF:0bC— ObD, X — F(X), and
e Fap :Home(A, B) — Homp(F(A), F(B)),
satisfying:
(@) IfA B9 C are morphisms in C, then F(gof) = F(g) o F(f); and
(b) F(1a) = 1F(a) for every Ae ObC.

Definition B.2 (Contravariant functor)

Let C and D be categories. A contravariant functor F : C — D is a collection of maps:
e F:0ObC— ObD, X — F(X), and
e Fap :Home(A, B) — Homp(F(B), F(A)),
satisfying:
(@) IfA 1, B-% Care morphisms in C, then F(gof) = F(f) o F(g); and
(b) F(1a) = 1F(a) for every Ae ObC.

Remark B.3

Often in the literature functors are defined only on objects of categories. When no confusion is to

be made and the action of functors on the morphism sets are implicitely obvious, we will also adopt
this convention.

Example B.4
Let Q € Ob(gMod). Then

Homg(Q,—): RMod — Ab
M —  Homg(Q,M),

is a covariant functor, and

Homg(—,Q): fRMod — Ab
M — HomR(/\/I, Q),

is a contravariant functor.

Exact Functors.

We are now interested in the relations between functors and exact sequences in categories where it
makes sense to define exact sequences, that is categories that behave essentially like module categories
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such as fMod. These are the so-called abelian categories. It is not the aim, to go into these details,
but roughly speaking abelian categories are categories satisfying the following properties:

e they have a zero object (in Mod: the zero module)
e they have products and coproducts (tn Mod: products and direct sums)
e they have kernels and cokernels (in ;MMod: the usual kernels and cokernels of R-linear maps)

e monomorphisms are kernels and epimorphisms are cokernels (in ;Mod: satisfied)

Definition B.5 (Pre-additive categories/additive functors)

(@) A category C in which all sets of morphisms are abelian groups is called pre-additive.

(b) A functor F : C — D between pre-additive categories is called additive iff the maps Fa 5
are homomorphisms of groups for all A, B ObC(.

Definition B.6 (Left exact/right exact/exact functors)

Let F : C — D be a covariant (resp. contravariant) additive functor between two abelian categories,

and let 0 — A -5 B -9 C— 0 be a ses. of objects and morphisms in C. Then F is called:

(a) left exact if 0 — F(A) A F(B) b)) F(C) (resp. 0 — F(C) i F(B) =

exact sequence.

F(A))) is an

(b) right exact if F(A) " F(B) E9 F(c) — 0 (resp. F(C) T F(B)

exact sequence.

7 Fa)) — 0) is an

(0) exact f 0 — F(A) "0 F(B) 9 F(c) — 0 (resp. 0 — F(C) 2% F(B)

0) is a short exact sequence.

0 Fay) —

Example B.7

The functors Homg(Q, —) and Homg(—, Q) of Example B.4 are both left exact functors. Moreover
Homg(Q, —) is exact if and only if Q is projective, and Homg(—, Q) is exact if and only if Q is
injective.
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Index of Notation

General symbols
C

Fq

[dpg

Im(f)

ker (@)

N
No

\l/\lN;UrO'U
)

Z>Ul ZSU! Z<U

=

&

e <9 ®® x JQMDEC
X

Q
o
Q
—
o

'

—~
Q
[y

~—

bIgs

field of complex numbers
finite field with g elements
identity map on the set M
image of the map f

kernel of the morphism ¢

the natural numbers without 0
the natural numbers with 0
the prime numbers in Z

field of rational numbers

field of real numbers

ring of integer numbers
{meZ|m=>=a (resp. m>a,m>=a,m<a)}
cardinality of the set X
Kronecker’s delta

union

disjoint union

intersection

summation symbol
cartesian/direct product
semi-direct product

direct sum

tensor product

empty set

for all

there exists

isomorphism

a divides b, a does not divide b
gcd of a and b

restriction of the map f to the subset S
injective map

surjective map
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Group theory

Aut(G) automorphism group of the group G
Auts (E) automorphism the group G inducing the identity on A and G
Ay alternating group on n letters
Cn cyclic group of order m in multiplicative notation
Ce(x) centraliser of the element x in G
Ce(H) centraliser of the subgroup H in G
D), dihedral group of order 2n
End(A) endomorphism ring of the abelian group A
E(G,Ay) set of equivalence classes of group extensions
1 A—‘-E-P.qg 1 inducing the G-action *
G/N quotient group G modulo N
GL,(K) general linear group over K
PGL,(K) projective general linear group over K
H<G H< G H is a subgroup of G, resp. a proper subgroup
N< G N is a normal subgroup G
Ng(H) normaliser of H in G
N xg H semi-direct product of N by H w.rt. 6
PGL,(K) projective linear group over K
Qs quaternion group of order 8
Qo generalised quaternion group of order 2"
G, symmetric group on n letters
SDy» semi-dihedral group of order 2"
SL,(K) special linear group over K
Z/mZ cyclic group of order m in additive notation
*g conjugate of g by x, i.e. gxg~'
“=xe subgroup of G generated by g
G=X|R) presentation for the group G
|G : H| index of the subgroup H in G
xe G/N class of x € G in the quotient group G/N
{1},1,1 trivial group
Module theory
Homgr(M, N) R-homomorphisms from M to N
Endr(M) R-endomorphism ring of the R-module M
KG group algebra of the group G over the ring K
€:KG— K augmentation map
1G augmentation ideal
MG G-fixed points of the module M
Mg G-cofixed points of the module M
M |G, Resf (M) restriction of M from G to H
Ind$ (M) induction of M from H to G
res,f, restriction from G to H in cohomology
G

trp transfer from H to G
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Homological algebra

n-coboundaries with coeff. in A rel. to the bar resolution

n-cochains with coeff. in A rel. to the bar resolution
n-th Ext-group of M with coefficients in N

n-th homology group of the group G with coeff. in M
n-th cohomology group/module of C*

n-th cohomology group of the group G with coeff. in M

projective resolution of the module M
n-th Tor-group of M with coefficients in N

n-cocycles with coeff. in A rel. to the bar resolution

B,(C.) n-boundaries of C,
B"(C*) n-coboundaries of C*
B"(G,A)

(G, d.), G, chain complex
(C*,d*), C* cochain complex
C"(G,A)

Extk(M, N)

H,(C,) n-th homology group/module of C,
Hy (G, M)

H"(C*)

H"(G, M)

Py - M

Tor®(M, N)

Z,(G) n-cycles of C,
zZ"(C*) n-cocycles of C*
Z"(G,A)

[g1l92] .- |gn] bar notation

Category Theory
ObC

objects of the category C

Hom¢ (A, B) morphisms from A to B

Set the category of sets

Veck the category of vector spaces over the field k
Top the category of topological spaces

Grp the category of groups

Ab the category of abelian groups

Rng the category of rings

fRMod the category of left R-modules

Modg the category of left R-modules

RMods the category of (R, S)-bimodules
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B-universal, 106

G-cofixed points, 58

G-fixed points, 58
n-boundary, 36

n-coboundary, 39, 64
n-cochain, 63

n-cocycle, 39, 63

n-cycle, 36

n-th cohomology group, 39, 58
n-th homology group, 36, 58

action
conjugation, 57
diagonal, 56
arrow, 112
augmentation
ideal, 57
map, 57
automorphism, 19
axiom
associativity axiom, 111
unit axion, 111

basis
of a free group, 10
of a module, 26

category
abelian, 115
homotopy category, 39
of abelian groups, 113
of bimodules, 113
of groups, 113
of left modules, 113
of right modules, 113

of rings, 113

of sets, 112

of topological spaces, 112
of vector spaces, 112
pre-additive, 115

change of the base ring, 20
coimage, 20

coinduction, 90

cokernel, 20

of a morphism of complexes, 35

complement, 75
complex

acyclic, 38, 51
augmented, 41
chain, 34

cochain, 39

exact, 38, 51
non-negative, 34
positive, 34

quotient complex, 35
zero complex, 37

composition function, 111
connecting homomorphism, 24, 37
corestriction, 89

degree, 34
derivation

inner, 67
principal, 67

dimension shifting, 48
direct sum

external, 23
internal, 23

endomorphism, 19
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epimorphism, 113
exact sequence, 23
short, 23

split s.e.s., 26
Ext-group, 44
extension

central, 73

equivalent, 79

split, 73

functor
additive, 115
contravariant, 114
covariant, 114
exact, 115
left exact, 115
right exact, 115

generating set, 26
group
extension, 72
finitely presented, 13
free, 10
presentation, 13
uniquely divisible, 102
group algebra, 55
group ring, 55

homomorphism

canonical, 20

of modules, 19
homotopy equivalence, 38

identity
1-cocycle, 67
2-cocycle, 67
image
of a morphism of complexes, 35
induction
of a module, 89
isomorphism, 19

kernel
of a morphism of complexes, 35
of an extension, 72

lemma
Eckmann-Shapiro lemma, 90
horseshoe lemma, 43

shake lemma, 24
lifted, 105
long exact sequence
in cohomology, 40, 59
in homology, 37, 59

map

R-balanced, 29

chain map, 35

cochain map, 39

differential map, 34

relative trace, 89
module

bimodule, 18

flat, 31

free, 26

injective, 28

left module, 18

projective, 28

right module, 18

trivial, 56
monomorphism, 113
morphism

identity morphism, 111

in a category, 111

of chain complexes, 35

of cochain complexes, 39

object, 111

projective lifting property, 105
projective representation, 104

quasi-homomorphism, 38

rank
of a free group, 10
relation, 13
representation, 56
resolution, 40
augmented, 41
bar, 62
free, 40
injective, 44
normalised bar, 63
projective, 40
restriction
in cohomology, 87

121



Lecture Notes: Cohomology of Groups SS 2021 122

of a module, 86
retraction, 26

Schur multiplier, 101
section, 26
semi-direct product
external, 9
internal, 7
subcomplex, 35
submodule, 19

tensor product
of modules, 29
of morphisms, 30
theorem
lifting theorem, 41
Burnside's normal p-complement theorem, 98
Burnside’s transfer theorem, 98
comparison theorem, 43
Schur, 94
Zassenhaus, 95
Tor-group, 50
transfer, 89
transversal, 86

universal property
of free groups, 10
of free modules, 27
of presentations, 14
of the coinduction, 90
of the direct sum, 22
of the induction, 89
of the product, 22
of the tensor product, 29

word, 12
equivalent, 12
length of, 12
reduced, 12
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