Cohomology of Groups — Exercise Sheet 8

JUN.-PROF. DR. CAROLINE LASSUEUR Due date: Monday, 14th of June 2021, 18:00

Throughout these exercises (G, \cdot) denotes a group.

Exercise 1

Assume $G = \langle g \rangle$ is an infinite cyclic group. Prove that $0 \longrightarrow \mathbb{Z}G \xrightarrow{m_{g-1}} \mathbb{Z}G$ is a free resolution of the trivial $\mathbb{Z}G$ -module, and

$$H^{n}(G,A) = \begin{cases} A^{G} & \text{if } n = 0, \\ A/\operatorname{Im}(m_{g-1}) & \text{if } n = 1, \\ 0 & \text{if } n \ge 2. \end{cases}$$

Exercise 2

Let *A* be a $\mathbb{Z}G$ -module. Prove that $Der(G, A) \cong Hom_{\mathbb{Z}G}(IG, A)$ via the map sending a derivation *d* to the homomorphism \tilde{d} such that $\tilde{d}(g-1) = d(g), \forall g \in G \setminus \{1\}$.

Exercise 3

Let *A* be a left $\mathbb{Z}G$ -module, and let $A \rtimes G$ be the semi-direct product of (A, +) by (G, \cdot) , that is, the group of all pairs $(a, g) \in A \times G$, with group law

$$(a,g) \cdot (b,h) := (a + g \cdot b, gh).$$

Let $\pi : A \rtimes G \longrightarrow G : (a, g) \mapsto g$ and let $\text{Hom}'(G, A \rtimes G)$ be the set of all group homomorphisms $f : G \longrightarrow A \rtimes G$ such that $\pi \circ f = \text{Id}_G$. Prove that Der(G, A) is in bijection with $\text{Hom}'(G, A \rtimes G)$.