COHOMOLOGY OF GROUPS — EXERCISE SHEET 5

TU Kaiserslautern

Bernhard Böhmler

SS 2021

Jun.-Prof. Dr. Caroline Lassueur Due date: Tuesday, 25th of May 2021, 10:00

Throughout these exercises *R* denotes an associative and unital ring.

Definition. A chain complex C_{\bullet} of R-modules is called **split exact** if it is exact and if moreover for each $n \in \mathbb{Z}$, $Z_n := Z_n(C_{\bullet})$ is a direct summand of C_n , i.e. $C_n = Z_n \oplus U_n$ for some R-module U_n .

Exercise 1

Let $(C_{\bullet}, d_{\bullet})$ be a chain complex of *R*-modules.

- (a) With the notation of the definition, prove that:
 - (i) If C_{\bullet} is split exact, d_n induces an isomorphism $U_n \stackrel{\cong}{\to} Z_{n-1}$ for all $n \in \mathbb{Z}$.
 - (ii) The inverse of the isomorphism of (a) induces an R-homomorphism $s_n : C_{n-1} \longrightarrow C_n$ such that $\ker(s_n) = U_{n-1}$ and $\operatorname{Im}(s_n) = U_n$.
 - (iii) C_{\bullet} is split exact if and only if $Id_{C_{\bullet}}$ is homotopic to the zero chain map.
- (b) Prove that $(\mathbf{C}_{\bullet}, \mathbf{d}_{\bullet})$ is split exact if and only if \mathbf{C}_{\bullet} is exact and there are R-homomorphisms $s_n : C_n \longrightarrow C_{n+1}$ such that $d_{n+1}s_nd_{n+1} = d_{n+1}$.

(Hint: For the sufficient condition, prove $ker(sd) \subseteq Im(ds)$ (where we omit the indices for clarity).)

(c) For $R \in \{\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}\}$ prove that the following complex of R-modules is acyclic but not split exact:

$$\cdots \xrightarrow{\cdot 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\cdot 2} \cdots$$

Exercise 2

Consider the two non-negative chain complexes of \mathbb{Z} -modules

$$P_{\bullet} := (0 \longrightarrow 0 \longrightarrow \mathbb{Z} \stackrel{\cdot 4}{\longrightarrow} \mathbb{Z}) \quad \text{ and } \quad Q_{\bullet} := (0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \stackrel{Id}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z}/2\mathbb{Z})$$

where the rightmost module is assumed to be in degree zero. Let

$$f: H_0(\mathbf{P}_{\bullet}) = \mathbb{Z}/4\mathbb{Z} \longrightarrow H_0(\mathbf{Q}_{\bullet}) = \mathbb{Z}/2\mathbb{Z}$$

be the unique non-zero \mathbb{Z} -linear map.

- (a) Find all possible chain maps $\varphi_{\bullet} : \mathbf{P}_{\bullet} \longrightarrow \mathbf{Q}_{\bullet}$ lifting f.
- (b) Construct homotopies between the different liftings of part (a).

Exercise 3

Prove the Horseschoe Lemma. [Hint: Proceed by induction on *n* and use the Snake Lemma.]