Cohomology of Groups — Exercise Sheet 3

JUN.-PROF. DR. CAROLINE LASSUEUR Due date: Monday, 10th of May 2021, 18:00

This Exercise Sheet is a recap sheet on module theory, with focus on exact sequences, the Hom functors and tensor products. Throughout, *R* and *S* denote unital associative rings.

Exercise 1

Prove that if $\varphi : M \longrightarrow N$ is a homomorphism of *R*-modules, then there is always an exact sequence

 $0 \longrightarrow \ker(\varphi) \longrightarrow M \xrightarrow{\varphi} N \longrightarrow \operatorname{Coker}(\varphi) \longrightarrow 0.$

Compute the sequences associated with the following \mathbb{Z} -homomorphisms:

- (i) $\mathbb{Z} \xrightarrow{p} \mathbb{Z}$ (i.e. external multiplication by a prime number *p* in \mathbb{Z});
- (ii) $\mathbb{Z}/15\mathbb{Z} \xrightarrow{\cdot 3} \mathbb{Z}/15\mathbb{Z}$ (i.e. external multiplication by $3 \in \mathbb{Z}$).

Exercise 2

Let *Q* be an *R*-module and let $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ be a short exact sequence of *R*-modules.

- (a) Find a counterexample in which the functor $\operatorname{Hom}_R(Q, -)$ does not preserve surjectivity, i.e find a surjective *R*-homomorphism $g : B \longrightarrow C$ such that the induced homomorphism $g_* : \operatorname{Hom}_R(Q, B) \longrightarrow \operatorname{Hom}_R(Q, C)$ is not surjective.
- (b) Prove that the induced sequence of abelian groups

$$0 \longrightarrow \operatorname{Hom}_{R}(C,Q) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(B,Q) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(A,Q)$$

is exact.

Find a counterexample of an injective *R*-homomorphism $f : A \longrightarrow B$ such that the induced homomorphism $f^* : \text{Hom}_R(B, Q) \longrightarrow \text{Hom}_R(A, Q)$ is not surjective.

EXERCISE 3 (Extension of scalars)

- (a) **Extension of scalars**: Prove that for every left *R*-module *M*, the tensor product $S \otimes_R M$ can be endowed with a left *S*-module structure via $x \cdot (s \otimes m) = xs \otimes m, \forall x, s \in S, m \in M$.
- (b) Prove that the map $\iota: M \longrightarrow S \otimes_R M : m \mapsto \iota(m) = 1 \otimes m$ is an *R*-homomorphism, for every left *R*-module *M*.
- (c) **Universal property of the extension of scalars**: Prove that for every left *S*-module *N* and for every *R*-homomorphism $g : M \longrightarrow N$ (where *N* is seen as an *R*-module via restriction of scalars), there exists a unique *S*-homomorphism $\tilde{g} : S \otimes_R M \longrightarrow N$ such that $\tilde{g} \circ \iota = g$, that is such that the following diagram commutes:

$$M \xrightarrow{g} N$$

$$\downarrow \qquad \bigcirc \qquad \bigcirc \qquad \searrow \qquad \searrow \qquad N$$

$$S \otimes_R M$$

- (d) Prove that if *M* is a free left *R*-module with basis $\{e_i\}_{i \in I}$, then $S \otimes_R M$ is a free *S*-module with basis $\{1 \otimes e_i\}_{i \in I}$.
- (e) Assume $R \subseteq S$ is an extension of commutative rings such that *S* is a free *R*-module of finite rank *n*. Prove that $S \otimes_R M$ is *R*-isomorphic to a direct sum of *n* copies of *M*.
- (f) If $S \cong R/I$ is a quotient of R by a two-sided ideal I and $f : R \longrightarrow R/I$ is the quotient morphism, recall that $S \otimes_R M = R/I \otimes_R M \cong M/IM$ and deduce that the map ι is not necessarily injective.