Cohomology of Groups — Exercise Sheet 2

JUN.-PROF. DR. CAROLINE LASSUEUR Due date: Monday, 3rd of May 2021, 18:00

Exercise 1

- (a) Let *X* and *Y* be two sets with the same cardinality. Prove that $F_X \cong F_Y$. [Notice that the converse holds as well. You can try to find a proof too, but arguments are more involved.]
- (b) Prove that in a free group, every equivalence class of words contains a unique reduced word.
- (c) How many reduced words of length $\ell \ge 1$ are there in a free group of rank $r \in \mathbb{Z}_{>0}$?

Exercise 2

Let $G = \langle x, y | x^2 = y^2 = (xy)^2 \rangle$. Prove that *G* is a finite group, determine its order and identify this group up to isomorphism.

[Hint. Draw the Cayley graph of *G*. Consider Z(G) and G/Z(G).]

Exercise 3

Prove Theorem 2.7 through the following steps. Set r := st and let m be the order of r. Set $H := \langle r \rangle \cong C_m$ and $C := \langle s \rangle \cong C_2$.

- 1. Prove that $m \ge 2$ and $srs^{-1} = r^{-1}$.
- 2. Prove that $G = H \rtimes C = D_{2m}$.
- 3. By 2. and Example 4, *G* admits the presentation $\langle r, s | r^m = 1, s^2 = 1, srs^{-1} = 1 \rangle$. Apply the universal property of presentations twice to prove that *G* also admits the presentation $\langle s, t | s^2 = 1, t^2 = 1, (st)^m = 1 \rangle$.