Cohomology of Groups — Exercise Sheet 13

JUN.-PROF. DR. CAROLINE LASSUEUR Due date: Monday, 19th of July 2021, 18:00

Throughout these exercises all groups are assumed to be given in multiplicative notation, and *K* denotes a field of characteristic $p \ge 0$.

Exercise 1

Let *B* be an abelian group. Prove that if a central extension $1 \longrightarrow Z \longrightarrow E \xrightarrow{\nu} G \longrightarrow 1$ of groups is *B*-universal, then the transgression tr : Hom(*Z*, *B*) \longrightarrow H²(*G*, *B*) is surjective.

Exercise 2

Let *G* be a finite group and assume that $K = \overline{K}$ is algebraically closed of characteristic $p \ge 0$. Prove that any cohomology class $c \in H^2(G, K^{\times})$ can be represented by a 2-cocycle $\alpha : G \times G \longrightarrow K^{\times}$ whose values are o(c)-th roots of unity in *K*.

Exercise 3

Assume $K = \mathbb{C}$ and let $1 \longrightarrow Z \longrightarrow E \xrightarrow{\pi} G \longrightarrow 1$ be a central extension of finite groups. Prove that if $Z \leq [E, E]$, then the transgression tr : Hom $(Z, \mathbb{C}^{\times}) \longrightarrow H^2(G, \mathbb{C}^{\times}) = M(G)$ is injective.